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Thermodynamics and criticality of su(m) spin chains of Haldane-Shastry type
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We study the thermodynamics and critical behavior of su(m) spin chains of Haldane-Shastry type at zero
chemical potential, both in the AN−1 and BCN cases. We evaluate in closed form the free energy per spin for
arbitrary values of m, from which we derive explicit formulas for the energy, entropy, and specific heat per spin. In
particular, we find that the specific heat features a single Schottky peak, whose temperature is well approximated
for m � 10 by the corresponding temperature for an m-level system with uniformly spaced levels. We show that
at low temperatures the free energy per spin of the models under study behaves as that of a one-dimensional
conformal field theory with central charge c = m − 1 (with the only exception of the Frahm-Inozemtsev chain at
zero value of its parameter). However, from a detailed study of the ground-state degeneracy and the low-energy
excitations, we conclude that these models are only critical in the antiferromagnetic case, with a few exceptions
that we fully specify.
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I. INTRODUCTION

In this paper we shall consider a broad class of spin chains
with long-range interactions modeled on the Haldane-Shastry
chain [1,2], whose interactions can be expressed in terms of
the generators of the su(m) algebra in the fundamental repre-
sentation. More precisely, if N denotes the number of sites and
m is the number of internal degrees of freedom the canonical
basis of the system’s Hilbert space ⊗N

i=1C
m is spanned by the

vectors

|s1, . . . , sN 〉 := |s1〉 ⊗ · · · ⊗ |sN 〉, (1)

where si ∈ {1, . . . , m}. We define the permutation and spin flip
operators Si j and Si (1 � i < j � N) by the usual formulas

Si j | · · · si · · · s j · · · 〉 = | · · · s j · · · si · · · 〉, (2)

Si| · · · si · · · 〉 = | · · · m − si + 1 · · · 〉. (3)

The latter operators can be easily expressed in terms of the
(Hermitian) su(m) generators T α

k in the fundamental repre-
sentation, where 1 � α � m2 − 1 and the subindex labels the
chain sites. Indeed, using the normalization tr(T α

k T β

k ) = 2δαβ

we have

Si j = 1

m
+ 1

2

m2−1∑
α=1

T α
i T α

j , Si = T γ

i + 1

2m
[1 − (−1)m],

where the index γ is fixed but arbitrary. In particular, for m =
2 we have T α

k = σα
k , and hence [3] Si = σ 1

i , Si j = 1
2 (1 + σ i ·

σ j ), where σα (α = 1, 2, 3) are the Pauli matrices. Note that
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the operators Si j obey the standard permutation algebra

Si jO j = OiSi j, Si jOi = OjSi j, Si jOk = OkSi j,

where k �= i, j and Ok is any operator acting on the kth site.
The first class of spin chains we shall be interested in are

the Haldane-Shastry (HS), Polychronakos-Frahm (PF) [4–6]
and Frahm–Inozemtsev (FI) [7] chains. They can be collec-
tively defined through the formula [8]

H± =
∑
i< j

Ji j (1 ∓ Si j ), (4)

where

Ji j = J

2N2 sin2(ξi − ξ j )
, ξk = kπ

N
(HS chain), (5)

Ji j = J

N (ξi − ξ j )2
, HN (ξk ) = 0 (PF chain), (6)

Ji j = J

2N2 sinh2(ξi − ξ j )
, Lc−1

N (e2ξk ) = 0 (FI chain).

(7)

Here J > 0 is a real constant fixing the energy scale, HN

denotes the Hermite polynomial of degree N and Lc−1
N is a

generalized Laguerre polynomial of degree N with positive
parameter c. For reasons that will become clear in the sequel,
we shall sometimes refer to the ferromagnetic models H+ as
bosonic and to the antiferromagnetic ones H− as fermionic.
From the previous expressions we see that the HS chain can
be naturally considered as a circular chain with equally spaced
sites and spin-spin interactions inversely proportional to the
square of the chord distance, while the PF and FI chains
are better regarded as linear chains with sites ξk defined in
Eqs. (6) and (7) and, respectively, rational (inverse square) or
hyperbolic interactions.
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The spin chains discussed above are all naturally related to
the AN−1 classical root system. The second type of chain we
shall deal with is the variant of the HS chain related to the
BCN root system (HS-B chain), whose Hamiltonian shall be
taken as [9,10]

H± = J

4N2

∑
i< j

[
1 ∓ Si j

sin2(ξi − ξ j )
+ 1 ∓ S̃i j

sin2(ξi + ξ j )

]

+ J

8N2

∑
i

(
β1

sin2 ξi
+ β2

cos2 ξi

)
(1 + εSi ),

(8a)

with

Pβ1−1,β2−1
N (cos 2ξk ) = 0. (8b)

Here J > 0, Pβ1−1,β2−1
N is a Jacobi polynomial of degree

N and parameters β1,2 > 0, ε = ±1, and we have used the
abbreviation S̃i j := Si jSiS j = SiS jSi j . This model can be re-
garded as the open version of the HS chain, with chain sites
z j := e2iξ j lying on the upper unit circle (although in general
not uniformly spaced). The spin at z j interacts both with the
remaining spins at zk (with k �= j) and their reflections z̄k with
respect to the real axis, the interaction strength being inversely
proportional to the square of the (chord) distances |z j − zk|
and |z j − z̄k|.

The HS spin chain was originally introduced as a parent
Hamiltonian for the Gutzwiller variational ground state for
the one-dimensional Hubbard model in the limit of infinite
on-site energy. In fact, the (exact) ground state of the HS
chain contains a Jastrow factor reminiscent of the Laughlin
wave function in the fractional quantum Hall effect [11–13].
The remarkable properties of the HS chain became appar-
ent shortly after its introduction. For instance, it was soon
found that its spinon excitations behave as effective particles
obeying Haldane’s fractional statistics [12,14,15]. This can
indeed be regarded as the simplest realization of anyons in one
dimension. The HS chain is completely integrable [16–18],
and is actually invariant under the Yangian quantum algebra
Y [sl(m)] even for a finite number of sites, which in part ex-
plains the high degeneracies of its spectrum [19]. It is closely
related to the Wess-Zumino-Novikov-Witten (WZNW) model
at level 1 [14], and can also be embedded into a larger class of
models constructed from chiral vertex operators of an appro-
priate conformal field theory [20,21].

A characteristic property of the HS chain that distinguishes
it from short-range chains like the Heisenberg model is the
fact that it can be obtained as the strong interaction (large cou-
pling) limit of an integrable one-dimensional system, namely
the (spin) Sutherland model [22–24]. In fact, the PF and
FI chains can be analogously derived from the integrable
spin Calogero [25,26] and Frahm-Inozemtsev [27] dynamical
models. Similarly, the HS-B chain is the large coupling limit
of the spin Sutherland model of BCN type [9,10,28]. As first
pointed out by Polychronakos [6], the connection between
the spin chains (4)–(8) and the dynamical spin models of
Calogero-Sutherland type mentioned above can be exploited
to derive the chains’ partition functions in closed form [10,29–
31]. From the common structure of these partition functions
and their relation to the representation theory of the Yan-
gian algebra in terms of border strips and their associated

FIG. 1. Linear vertex model associated to su(m) spin chain of HS
type.

motifs [32], a remarkable equivalence between the AN−1

chains (4)–(7) and certain (inhomogeneous) vertex models
was established in Ref. [33]. Indeed, the spectrum of the latter
chains (with the correct degeneracy for each energy) is the
same as that of a suitable linear vertex model with N + 1
vertices that we shall next describe. Each vertex is labeled
by an integer in the range 0, 1, . . . , N , and is connected to
its nearest neighbors by a bond which can take the values
1, . . . , m. Thus, a configuration of the model is determined
by a bond vector

s := (s1, . . . , sN ) ∈ {1, 2, . . . , m}N ,

where si denotes the value of the bond joining the (i − 1)th
and the ith vertices (see Fig. 1). The energy of the configura-
tion represented by the bond vector s can be computed through
the formula

E (s) = J
N−1∑
i=1

δ±(si, si+1)E (xi ), xi := i/N. (9)

Here the dispersion function E (x), which depends on the chain
considered, is given by

E (x) =
⎧⎨⎩x(1 − x), (HS chain),

x, (PF chain),
x(x + γN ), (FI chain),

(10)

with γN := (c − 1)/N , while the function δ± (where the ±
sign corresponds to the double sign in H±) is defined by

δ+(i, j) =
{

0, i � j,
1, i > j,

δ−(i, j) =
{

0, i < j,
1, i � j.

(11)

We thus see that the spin degrees of freedom behave as
bosons (respectively, fermions) in the ferromagnetic (respec-
tively, antiferromagnetic) case. Note also that the vectors with
components δ±(si, si+1) are closely connected to the motifs
introduced by Haldane [14]. An analogous description of the
spectrum of the HS-B chain was recently found in Ref. [34].
More precisely, in this case the vertex model has an additional
vertex and a last bond sN+1 assuming the fixed (half-integer)
value mε + 1

2 , where

mε := 1
2 [m + επ (m)],

and π (m) = 1
2 [1 − (−1)m] is the parity of m. Thus, in this

case

E (s) = J
N∑

i=1

δ±(si, si+1)E (xi ), (12)

with δ± as above and dispersion function

E (x) = x

(
γN + 1 − x

2

)
, γN := 1

2N
(β1 + β2 − 1). (13)

The thermodynamics of spin chains of HS type has been
studied ever since the early work of Haldane, who derived an
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expression for the entropy of the su(2) HS chain by means
of the spinon description of its spectrum [35]. Shortly af-
terwards, Sutherland and Shastry [36] addressed the general
su(m) case, outlining a complicated procedure for computing
the free energy which involves two successive integrations.
This procedure, however, only yields an explicit expression
for m = 2. Around the same time, a heuristic formula for
the free energy per spin of the PF and FI chains (with no
magnetic field or chemical potential term) was presented in
Refs. [5,7], again only for the su(2) case. In fact, a systematic
study of the thermodynamics of the AN−1 chains (4)–(7) (with
an additional chemical potential or magnetic field term) using
the transfer matrix method was undertaken for the first time
in Ref. [37], and extended later to the supersymmetric case in
Ref. [38]. The key idea in this respect is the fact that using
Eq. (9) (or, actually, its generalization to allow for a chemical
potential term) it is straightforward to express the partition
function as the trace of a product of N site-dependent m × m
transfer matrices. In our case, it follows from Eq. (9) that the
partition function of the three AN−1 chains can be collectively
written as

Z = tr[A(x0)A(x1) · · · A(xN−1)],

where the m × m transfer matrix A(x) has entries

Aμν = e−βJE (x)δ±(μ,ν), 1 � μ, ν � m. (14)

Here β := 1/T is the inverse temperature (taking Boltzmann’s
constant kB as unity), and the dispersion relation E (x) is given
by Eq. (10). Since the matrix A(x) has positive entries for
all x ∈ [0, 1], the classical Perron theorem [39,40] implies
that A(x) has a positive simple eigenvalue λ1(x) which ex-
ceeds the modulus of any other eigenvalue. From this fact
it readily follows that in the thermodynamic limit N → ∞
the free energy per spin f (T ) of the chains (4)–(7) can be
expressed as

f (T ) = −T
∫ 1

0
ln λ1(x) dx. (15)

As shown in Ref. [41], similar expressions are valid for the
HS-B chain (8). Indeed, from Eq. (12) we obtain

Z = tr[A(x1) · · · A(xN−1)B],

where Aμν (x) is defined as above but using Eq. (13) for the
dispersion relation, and the m × m matrix B has entries

Bμν = e−βJ (γN +1/2)δ±(μ,mε+ 1
2 ), 1 � μ, ν � m.

Since all the matrices in the expression for the partition
function have again positive entries, it follows from Perron’s
theorem that the thermodynamic free energy per spin is given
by Eq. (15) also in this case (see Ref. [41] for details). Note
that when computing the thermodynamic free energy from
Eq. (15) we must replace the parameter γN in Eqs. (10) and
(13) by

γ := lim
N→∞

γN � 0.

In fact, Eq. (15) has been shown to hold for the su(m|n)
supersymmetric version of the chains (4)–(8) studied in this
paper, even with the addition of a general chemical potential
term [38,41]. Thus, the thermodynamic functions of all of

these models can be computed in closed form provided that
the Perron eigenvalue λ1(x) of the transfer matrix A(x) in
Eq. (14) can be explicitly found. So far, this has only been
done in the su(2) case (bosonic or fermionic) [37,41] and in
the supersymmetric case [42] with 1 � m, n � 2 [38,41].

The main aim of this paper is to derive a remarkably simple
expression for λ1(x) for all the HS-type su(m) chains (4)–(8),
valid for arbitrary values of m. Thus, the thermodynamic
functions of these models can be evaluated in closed form. We
stress that such closed-form expressions had been obtained so
far only for the su(2) case, even at zero chemical potential.

Another problem we shall address in this work is the study
of the critical behavior of the chains (4)–(8). As is well known,
a strong indication of the critical character of a model is the
low-temperature behavior of its free energy. The reason for
this is that at low temperatures the free energy per unit length
of a (1 + 1)-dimensional conformal field theory (CFT) with
central charge c behaves as [43,44]

f (T ) 	 f (0) − πcT 2

6v
, (16)

where v is the Fermi velocity and we are using natural units
h̄ = 1. It is thus expected that the free energy of a critical
system obey the latter asymptotic formula at sufficiently low
temperatures, with c equal to the central charge of the effective
CFT governing the model’s low-energy behavior. Using the
explicit expression (15) for the free energy per spin of the
chains (4)–(8), we shall show that Eq. (16) is satisfied for
these models with central charge c = m − 1 (with the only
exception of the FI chain with γ = 0). This result agrees
with the calculation in Ref. [45] for the supersymmetric PF
chain (using a different method), and is consistent with the
fact that the low-energy excitations of the (original) HS chain
(5) are governed by the su(m)1 WZNW model [14,46,47]. It
should be emphasized, however, that (16) is only a necessary
condition for criticality. Indeed, a CFT—and thus a truly crit-
ical model—must have low-energy excitations with a linear
energy-momentum relation and the degeneracy of its ground
state should remain finite in the thermodynamic limit. Using
Eqs. (9)–(10) and (12)–(13), we shall prove that both of these
conditions hold in our case. In this way we shall show that the
chains (4)–(7) (with γ > 0 for the FI chain) are critical only
in the fermionic (antiferromagnetic) case, which is again in
agreement with the results for the HS chain in Ref. [48]. On
the other hand, we shall see that the HS-B chain is critical not
only in the fermionic case, but also in the bosonic (ferromag-
netic) one when m = 2, or m = 3 and ε = −1.

We shall close this section with a few words on the pa-
per’s organization. In Sec. II we recall the formula for the
free energy per spin of su(m) chains of HS-type in terms of
the Perron eigenvalue of a suitable transfer matrix derived in
Refs. [37,41]. We then evaluate this eigenvalue, thus obtaining
a simple closed-form expression for the free energy of the
latter models valid for arbitrary values of m. This expression
is used in Sec. III to derive explicit formulas for the energy,
entropy, and specific heat per spin. We also study the ap-
proximation of these functions by those of an m-level system
with uniformly spaced levels, and establish the existence of
a single Schottky peak in the specific heat for all values of
m. In Sec. IV we analyze the critical behavior of the models
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under study by first determining the low-temperature behavior
of their free energy, and then examining in detail the ground-
state degeneracy and the existence of low-energy excitations
with linear energy-momentum relation. The paper ends with
a technical Appendix in which we deduce the full asymptotic
expansion of the free energy per spin at low temperatures used
in Sec. IV.

II. FREE ENERGY

In this section we shall evaluate the Perron (“dominant”)
eigenvalue λ1(x) of the transfer matrix A(x) given by Eq. (14),
which as we have seen determines the free energy per spin
of the HS-type chains (4)–(8) through the integral (15). To
this end, we first recall that according to Perron’s theorem
the dominant eigenvalue of a positive matrix [49] possesses
a positive eigenvector. In fact, a corollary of Perron’s theorem
posits that the dominant eigenvalue of a positive matrix is the
only eigenvalue possessing a positive eigenvector. Since this
property shall be essential in what follows, we shall briefly
summarize its proof. Indeed, suppose that v is a positive
eigenvector of a positive matrix P with eigenvalue λ, and de-
note by λ1 the dominant eigenvalue of P. Since the transpose
matrix PT is also positive and has the same spectrum as P,
its dominant eigenvalue is also λ1, and therefore there exists a
positive vector w such that PTw = λ1w. We then have

λ1(w, v) = (PTw, v) = (w, Pv) = λ(w, v),

where we have used the fact that PT and λ1 are real. Since
both v and w are positive vectors, from the latter equality it
follows that λ = λ1, as claimed.

In fact, if an eigenvalue λ of a positive matrix P is known,
Perron’s theorem provides a simple test to ascertain whether
λ is the dominant eigenvalue of P. Indeed, if we denote by
Cλ

i j the (i, j) cofactor of the matrix λ − P, we then have the
elementary identity

m∑
j=1

(λδi j − Pi j )C
λ
k j = δik det(λ − P) = 0,

where m is the order of P. From the previous identity it
follows that any row of the cofactor matrix (Cλ

i j )
m
i, j=1 is an

eigenvector of P with eigenvalue λ. However, as part of the
proof of Perron’s theorem, it is shown that all the cofactors Cλ1

i j
corresponding to the dominant eigenvalue λ1 are positive [40].
From the discussion in the previous paragraph we then obtain
the following elementary test: an eigenvalue λ of a positive
matrix P is its dominant eigenvalue if and only if any row of
the cofactor matrix of λ − P is a positive vector.

Let us now turn to the computation of the dominant eigen-
value of the positive matrix A(x) in Eq. (14). To begin with,
from the definition (11) of δ+ it follows that in the bosonic
case the matrix A(x) has the following structure

A(x) =

⎛⎜⎜⎜⎜⎝
1 1 · · · 1 1

am 1 · · · 1 1
...

...
. . .

...
...

am am · · · 1 1
am am · · · am 1

⎞⎟⎟⎟⎟⎠,

where we have set [50]

a := e−βJE (x)/m.

An elementary calculation shows that

λ(x) =
m−1∑
k=0

ak = 1 − am

1 − a

is an eigenvalue of A(x). We could now apply the previous test
to check whether λ(x) is the dominant eigenvalue of A(x), but
in this case it is easier to observe that the vector

v = (1, a, . . . , am−1)

is a positive eigenvector of A(x) with eigenvalue λ(x). Indeed,

[A(x)v]k =
k−1∑
i=1

amai−1 +
m∑

i=k

ai−1 =
m+k−2∑
i=k−1

ai

= ak−1λ(x) = λ(x)vk.

From the previous discussion it follows that λ(x) = λ1(x).
We thus obtain the following remarkable formula for the free
energy per spin f+(T ) of the bosonic HS-type chains (4)–(8):

f+(T ) = −T
∫ 1

0
ln

(
m−1∑
k=0

e−βJE (x)k/m

)
dx

= −T
∫ 1

0
ln

(
1 − e−βJE (x)

1 − e−βJE (x)/m

)
dx

= f0 − T
∫ 1

0
ln

[
sinh(βJE (x)/2)

sinh(βJE (x)/(2m))

]
dx, (17)

where

f0 := J

2

(
1 − 1

m

)
E0, E0 :=

∫ 1

0
E (x)dx.

The constant E0, which can be easily found from Eqs. (10)
and (13), takes the values 1/6 (HS chain), 1/2 (PF chain), and
γ /2 + 1/3 (FI and HS-B chains).

An analogous result for the fermionic case can be easily
derived noting that

A−(x) = A+(x) + (am − 1)1,

where for clarity’s sake we have denoted by A−(x) [respec-
tively, A+(x)] the matrix A(x) in the fermionic (respectively,
bosonic) case. Hence, the dominant eigenvalue of the matrix
A−(x) is given by

λ1(x) =
m−1∑
k=0

ak + am − 1 = a
m−1∑
k=0

ak .

Substituting into Eq. (15) we obtain the following simple
formula for the free energy per spin f−(T ) in the fermionic
case:

f−(T ) = f+(T ) + JE0

m
. (18)

For m = 2, the previous formulas for f± coincide with
those in Refs. [37,41]. As an additional consistency check,
note that as T → ∞ from Eqs. (17) and (18) we easily
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obtain

f (T ) 	 −T ln m,

in agreement with the elementary identity

Z (T ) 	
T →∞

mN .

Remark 1. The thermodynamic free energy of the PF chain
can be computed in closed form in terms of the dilogarithm
function [51]

Li2(z) := −
∫ z

0

ln(1 − t )

t
dt,

analytic in the cut complex plane C \ [1,∞), where the inte-
gral is taken along any path in the latter set joining the origin

to the point z. Indeed, we have

f+(T ) = T 2

J

[
m Li2(e−βJ/m) − Li2(e−βJ ) − π2

6
(m − 1)

]
.

III. THERMODYNAMICS

The energy density u, entropy per spin s and specific heat
per spin cV of the HS-type chains (4)–(8) can be readily com-
puted using Eqs. (17) and (18). Before doing so, to simplify
our formulas we shall set without loss of generality J = 1, so
that energy and temperature become dimensionless. With this
proviso, we find

u± = ∂

∂β
(β f±) = 1

2

(
1 ∓ 1

m

)
E0 − 1

2

∫ 1

0
E (x)

[
coth

(
βE (x)

2

)
− 1

m
coth

(
βE (x)

2m

)]
dx, (19)

s = β(u± − f±) =
∫ 1

0

{
ln

[
sinh
(

βE (x)
2

)
sinh
(

βE (x)
2m

)]− βE (x)

2

[
coth

(
βE (x)

2

)
− 1

m
coth

(
βE (x)

2m

)]}
dx, (20)

cV = −β2 ∂u±
∂β

= β2

4

∫ 1

0
E (x)2

[
1

m2
csch2

(
βE (x)

2m

)
− csch2

(
βE (x)

2

)]
dx. (21)

Using the explicit formula for the free energy per spin of the
PF chain from the previous section we readily find the follow-
ing simple expressions for its thermodynamic functions:

u+ = u− − 1

2m
= − f+ − T ln

(
1 − e−β

1 − e−β/m

)
,

s = −2β f+ − ln

(
1 − e−β

1 − e−β/m

)
,

cV = −2β f+ − 2 ln

(
1− e−β

1− e−β/m

)
+ β

(
1

eβ − 1
− 1/m

eβ/m −1

)
.

From the first equality in Eq. (17) it follows that for large
T (i.e., for T 
 E (1) for the PF, FI and HS-B chains or T 

E (1/2) = 1/4 for the HS chain) the ferromagnetic free energy
per spin f+(T ) can be well approximated replacing E (x) by its
mean value E0 over the interval [0,1]. In other words, we have

f+(T ) 	
T →∞

−T ln

(
m−1∑
k=0

e−kβ
E0
m

)
=: fm(T ).

The right-hand side is the partition function of an m-
level system with uniformly spaced levels Ek = kE0/m, k =
0, . . . , m − 1. In fact, at sufficiently high temperatures the
thermodynamic functions of the HS-type chains (4)–(8) be-
have qualitatively as those of the corresponding m level
system, as can be seen, for instance, from Fig. 2 for the HS
chain with m = 2, . . . , 5 (we omit the corresponding plots
for the PF, FI, and HS-B chains, which are very similar).
It should be noted, however, that at low temperatures the
thermodynamic functions of the HS-type chains behave quite
differently than those of their corresponding m-level system.
Indeed, at low temperatures the free energy of the m-level

system,

fm(T ) = −T ln

(
1 − e−βE0

1 − e−βE0/m

)
= −Te−βE0/m + O(Te−2βE0/m),

is exponentially small, and so are its remaining thermody-
namic functions. On the other hand, from the discussion in
the next section [cf. Eq. (26)] it follows that for the HS-type
chains f±(T ) − f±(0) ∼ −T 2 as T → 0+ [or ∼ − T 3/2 for
the FI chain with γ = 0; cf. Eq. (A2)]. Thus, u − u(0) ∼ T 2,
s ∼ T , and cV ∼ T as T → 0+ [or u − u(0) ∼ T 3/2, s ∼
T 1/2, and cV ∼ T 1/2 for the FI chain with γ = 0].

FIG. 2. Thermodynamic free energy, energy, entropy, and spe-
cific heat per spin of the su(m) HS chain (4)–(5) with m = 2, 3, 4, 5
(green, red, blue, and orange solid lines, respectively) vs temperature
T , compared to their counterparts for an m-level system (dashed
lines).
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FIG. 3. Left: Temperature Tm of the Schottky peak of the su(m)
HS chain with m = 2, . . . , 200 compared to its rough m-level ap-
proximation E0/(2tm ) = 1/(12tm ). Right: Difference E0/(2tm ) − Tm

for the HS, PF, FI HS-B chains (with γ = 0 for the last two chains)
for m = 2, . . . , 200.

From Fig. 2 (and similar plots for the PF, FI, and HS-B
chains that we are not displaying) it is apparent that, at least
for low values of m, the specific heat per spin of the HS-type
chains features a single absolute maximum (i.e., a Schottky
peak). This behavior can be qualitatively understood by ana-
lyzing the specific heat of the corresponding m-level system,
given by

cV,m = t2

[
1

m2
csch2(t/m) − csch2 t

]
, t := βE0

2
.

Indeed, although we have not found an analytic proof, we
have compelling numerical evidence that cV,m(t ) has a single
critical point tm in the half-line (0,∞) which is an absolute
maximum. It is therefore to be expected that the specific heat
of the su(m) HS-type chains feature a single Schottky peak
at a temperature Tm of the order of E0/(2tm). In fact, for low
values of m � 10 the Schottky temperature Tm is reasonably
well approximated by the m-level value E0/(2tm), as can be
seen from Fig. 3 (left) for the HS chain (and similarly for
the other HS-type chains). On the other hand, for large m the
difference E0/(2tm) − Tm appears to tend to a constant positive
value, while Tm → 0 (see Fig. 3, right).

IV. CRITICAL BEHAVIOR

As mentioned in the Introduction, one of the hallmarks of
criticality is the low-temperature behavior of the free energy,
given by Eq. (16). In our case, using Eqs. (17) and (18) with
J = 1 we obtain

f±(T ) − f±(0) = − T
∫ 1

0
ln(1 − e−βE (x) )dx

+ T
∫ 1

0
ln(1 − e−βE (x)/m)dx. (22)

As T → 0+, the main contribution to both of these integrals
comes from a small neighborhood of the points where the
dispersion relation E (x) vanishes, i.e., x = 0, 1 for the HS
chain and x = 0 for the PF, FI, and HS-B chains. For the latter
three chains E (x) is monotonically increasing over the interval
[0,1], so that performing the changes of variables y = βE (x)

and y = βE (x)/m in the integrals in Eq. (22) we have

f±(T ) − f±(0) = −T 2
∫ βE (1)

0
ln (1 − e−y)(E−1)′(Ty) dy

+ mT 2
∫ βE (1)

m

0
ln(1− e−y)(E−1)′(mTy) dy,

(23)

where E−1 : 0 → E (1) denotes the inverse function of E :
0 → 1. Since the main contribution to both integrals comes
from the point y = 0, we can approximate (E−1)′(Ty) and
(E−1)′(mTy) by (E−1)′(0) = 1/E ′(0) (assuming that γ > 0
for the FI chain) and push the upper limit in each integral to
+∞, thus obtaining

f±(T ) − f±(0) = (m − 1)T 2

E ′(0)

∫ ∞

0
ln (1 − e−y) dy + O(T 3)

= − (m − 1)T 2

E ′(0)
Li2(1) + O(T 3)

= − (m − 1)π2

6E ′(0)
T 2 + O(T 3); (24)

see the Appendix for more details [52]. It follows from
Eq. (24) that the free energy per spin of the PF, FI (with γ > 0)
and HS-B chains behaves as that of a CFT with central charge
c = m − 1. To see this, note first of all that the variable x can
be regarded as p/π , where p is the momentum (defined mod-
ulo 2π ). Indeed, since the dispersion relation is monotonic
the interval 0 � x � 1 corresponds to the positive momentum
range 0 � p � π and not to the full range −π � p � π . As
the relation between energy E (x) and momentum p = πx is
linear near p = 0, the Fermi velocity is given by

v = dE
d p

∣∣∣∣
p=0

= E ′(0)

π
, (25)

so that Eq. (24) can indeed be written as

f±(T ) − f±(0) = − (m − 1)π

6v
T 2 + O(T 3). (26)

For the HS chain (4)–(5), the dispersion relation E (x)
is symmetric about x = 1/2 and increasing in the interval
[0, 1/2]. Hence, we can write

f±(T ) − f±(0) = − 2T
∫ 1/2

0
ln(1 − e−βE (x) )dx

+ 2T
∫ 1/2

0
ln(1 − e−βE (x)/m)dx, (27)

and proceeding as above we arrive at

f±(T ) − f±(0) = − (m − 1)π2

3E ′(0)
T 2 + O(T 3) (28)

(see again the Appendix for details on the error term). How-
ever, in this case the symmetry of the dispersion relation
about x = 1/2 implies that the relation between x and p is
p = 2πx (the interval 0 � x � 1 now corresponds to the full
momentum range 0 � p � 2π ). Hence,

v = dE
d p

∣∣∣∣
p=0

= E ′(0)

2π
, (29)
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and Eq. (26) also holds in this case. Thus, Eq. (26) is valid for
all the HS-type chains, except for the FI chain with γ = 0. (In
fact, as shown in the Appendix, for the latter chain f±(T ) −
f±(0) ∼ −T 3/2 as T → 0+.)

As mentioned in the Introduction, to ascertain the critical-
ity of a quantum system we must also examine the degeneracy
of its ground state and study its low-energy excitations. Both
of these problems can be addressed with the help of Eqs. (9),
(10) and (12), (13) for the energy spectrum. We shall start by
constructing the bond vectors for the ground state of each of
the chains (4)–(8). In this way we shall easily determine the
ground-state energy and its degeneracy.

Consider, first, the PF, FI, and HS-B chains, whose dis-
persion relation E (x) is monotonically increasing over the
interval [0,1]. In the fermionic case δ(si, si+1) = 0 if and
only if si < si+1, and hence the bond vectors sg yielding the
ground state of the PF and FI chains are obtained by placing
[53] r := N/m� sequences (1, . . . , m) starting from the right
end and filling the remaining N − rm components with an
increasing sequence (s1, . . . , sN−rm) ∈ {1, . . . , m}N−rm:

sg = (s1, . . . , sN−rm, 1, . . . , m, . . . , 1, . . . , m),

1 < s1 < · · · < sN−rm.
(30)

The ground-state degeneracy is therefore
( m

N−rm

)� N as
N → ∞. In the case of the HS-B chain, since δ(sN , sN+1) =
δ(sN , mε + 1

2 ), to obtain the ground state we must take sN =
mε. Hence, the ground-state bond vectors are in this case

sg = (s1, . . . , sN−rm, 1, . . . , m, . . . , 1, . . . , m, 1, . . . , mε ),

1 < s1 < · · · < sN−rm,

where now r = (N − mε )/m�. The ground-state degeneracy
is again

( m
N−rm

)� N . Thus, the degeneracy of the fermionic
PF, FI, and HS-B chains remains finite in the thermodynamic
limit. The situation is completely different in the bosonic case,
since now δ(s, s) = 0. Thus, the ground-state bond vectors of
the PF and FI chains are of the form

sg = (s1, . . . , s1︸ ︷︷ ︸
k1

, . . . , sr, . . . , sr︸ ︷︷ ︸
kr

), (31)

with k1 + · · · + kr = N and 1 � s1 < · · · < sr � m. Thus, in
this case the ground-state degeneracy is given by

dg =
m∑

r=1

P (N ; r)

(
m

r

)
,

where P (N ; r) denotes the number of partitions of the inte-
ger N in r parts. In particular, the ground-state degeneracy
clearly tends to infinity in the thermodynamic limit. On the
other hand, for the bosonic HS-B chain we must impose the
additional restriction sr � mε, so that in this case we have

dg =
mε∑

r=1

P (N ; r)

(
mε

r

)
.

It follows that in this case the ground state is nondegenerate if
and only if mε = 1, i.e., for m = 2 or m = 3 and ε = −1. The
ground-state degeneracy is otherwise infinite (at least N + 1)
in the thermodynamic limit.

The above analysis must be slightly modified in the case
of the HS chain, whose dispersion relation is increasing over

the interval [0, 1/2] and symmetric about 1/2. For this rea-
son, to the bond vectors (30) we should add their “reflected”
counterparts

(1, . . . , m, . . . , 1, . . . , m, s1, . . . , sN−rm).

Thus, in this case the ground-state degeneracy is again finite
in the thermodynamic limit [2

( m
N−rm

)
when N is not a mul-

tiple of m, or 1 when it is]. Finally, in the bosonic case the
ground-state bond vector is still of the form (31), and hence
the ground-state degeneracy is infinite in the thermodynamic
limit. In summary, from the analysis of the ground-state de-
generacy we conclude that only the fermionic chains (4)–(8),
and the bosonic HS-B chain with m = 2 or m = 3, ε = −1,
can be truly critical. It is interesting to observe in this respect
that the bosonic su(3) HS-B chain with ε = 1 has exactly
the same thermodynamic functions as its counterpart with
ε = −1, but only the latter can be critical.

Let us now turn to the study of the low-energy excitations
over the ground state in the possible critical cases identified in
the previous paragraph. To begin with, consider the fermionic
su(m) HS chain. A low-energy excitation over a ground state
with bond vector sg is obtained, for instance, replacing a
component si with i � N (or N − i � N) and si < si+1, by
s′

i � si+1. In the first case we add an energy

E = E (xi ) 	 E ′(0)xi = O(1/N ),

while in the second one

E = E (xi ) = E (1 − xi ) 	 E ′(0)(1 − xi ) = O(1/N ).

On the other hand, it is well known [14] that the state de-
scribed by a bond vector s has momentum

P(s) = 2π

N−1∑
i=1

xiδ(si, si+1) mod 2π.

Hence, by replacing si by s′
i we add a momentum

P = ±2πxi, mod 2π,

where the “+” sign corresponds to the case i � N . Thus, in
this case the model is critical, and its Fermi velocity is given
by

v = lim
N→∞

∣∣∣∣E

P

∣∣∣∣ = E ′(0)

2π
,

in agreement with Eq. (29). Note that this conclusion is
consistent with the discussion in Ref. [48] for the su(m|n)-
supersymmetric HS chains.

For the fermionic PF, FI, and HS-B chains the situation
is quite different, as the Hamiltonian of these models is not
invariant under translations along the lattice and thus momen-
tum is not conserved. Of course, these models still possess
low-energy excitations obtained by exciting a component of
the ground-state bond vector with index i � N (both in the
fermionic case and for the bosonic HS-B chain with m = 2 or
m = 3, ε = −1), with energy

E = E (xi ) 	 E ′(0)xi = O(1/N ).
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By analogy with the HS chain, we assign to an energy eigen-
state with bond vector s an effective momentum

P(s) = π

N−η∑
i=1

xiδ(si, si+1), mod 2π, (32)

where η = 0 for the HS-B chain and η = 1 otherwise. Note
that, as explained above, in this case the factor multiplying
the sum is π instead of 2π , since the dispersion relation
of the PF, FI, and HS-B chains is monotonically increas-
ing over the interval [0,1], and thus this interval represents
only the positive momentum range. With this definition the
change in effective momentum of the low-energy excitations
described above is P = πxi, and hence their Fermi velocity
is given by Eq. (25). In summary, the HS-type chains (4)–(8)
are all critical in the fermionic case, while in the bosonic case
only the HS-B chain is critical when m = 2 or m = 3, ε = −1.

Remark 2. The PF chain is known to possess Yangian in-
variance [54], and it is conjectured that the same is true for the
FI chain in view of the structure of its partition function and
the high degeneracy of its spectrum [31]. Likewise, the HS-B
chain is also known to have twisted Yangian symmetry [9].
It is thus conceivable that the effective momentum (32) could
be related to the eigenvalues of one of the conserved Yangian
generators for these models.

V. CONCLUSIONS

In this paper we have completely determined in closed
form the thermodynamics of the su(m) spin chains of
Haldane-Shastry type (with zero chemical potential) (4)–(8)
for all m. Our method relies on the fact that the energy spec-
trum of these models coincides with that of an appropriate
vertex model, which makes it possible to express their ther-
modynamic free energy as an integral involving the Perron
eigenvalue of a position-dependent m × m transfer matrix. We
have been able to compute this eigenvalue in closed form
for arbitrary values of m by applying the classical Perron
theorem on positive matrices and some of its consequences.
This yields an explicit expression for the free energy per spin
of these models, which fully determines their thermodynam-
ics. We have found that at sufficiently high temperatures the
thermodynamic functions of the su(m) HS-type chains behave
qualitatively as those of an m-level system with uniformly
spaced levels. In particular, for all values of m the specific heat
features a single Schottky peak, whose temperature is close to
that of the corresponding m-level system for m � 10.

Using our explicit formula for the free energy per spin, we
have also examined the critical behavior of the su(m) HS-type
chains (4)–(8). We have first shown that the low-temperature
behavior of the free energy coincides with that of a CFT with
central charge c = m − 1, both in the ferromagnetic (bosonic)
and the antiferromagnetic (fermionic) regimes (with γ > 0 for
the FI chain). This low temperature behavior of the free en-
ergy is, however, only a necessary condition for criticality. To
ascertain whether the models under study are critical or not,
we have used the motif-based description of their spectrum to
study the degeneracy of their ground state and the existence
of low-energy excitations with a linear energy-momentum
relation. In this way we have shown that the antiferromagnetic

chains are all critical (again, with γ > 0 for the FI chain),
whereas in the ferromagnetic case only the su(2) and su(3)
HS-B chain (with ε = −1 in the latter case) are critical.

Our main result does not appear to be easily generalizable
to the case of nonzero chemical potential, or to su(m|n) super-
symmetric chains, and in fact the known expressions of the
thermodynamic functions of these models for low values of
m and n have a more complicated structure than those found
in this paper. Note, however, that our closed-form expression
for the Perron eigenvalue of su(m) chains in the zero chemi-
cal potential case could be used to identify and approximate
this eigenvalue for sufficiently small values of the chemical
potentials, which would in turn yield a corresponding approx-
imation for the thermodynamic functions.
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APPENDIX: ASYMPTOTIC EXPANSION
OF THE FREE ENERGY

In this Appendix we shall provide the details of the com-
putation of the asymptotic approximation to the free energy
per spin of the chains (4)–(8) at low temperatures [see, e.g.,
Eq. (24)]. In fact, we shall derive a complete asymptotic
expansion of the latter function for T → 0+.

Consider, to begin with, the FI chain with γ = 0, for which
E (x) = x2 and hence E−1(y) = √

y, 0 � y � 1. From Eq. (23)
we have

f±(T ) − f±(0) = −T 2[g(T ) − mg(mT )], (A1)

with

g(T ) = 1

2
T −1/2

∫ β

0
ln(1 − e−y)

dy√
y
.

Since∣∣∣∣∫ ∞

0
ln(1 − e−y)

dy√
y

−
∫ β

0
ln(1 − e−y)

dy√
y

∣∣∣∣
= −
∫ ∞

β

ln(1 − e−y)
dy√

y
= O(T 1/2e−β ),

we can write

g(T ) = 1

2
T −1/2

∫ ∞

0
ln(1 − e−y)

dy√
y

+ O(e−β )

= −
√

π

2
ζ (3/2)T −1/2 + O(e−β ),

where ζ (z) :=∑n�1 n−z is Riemann’s zeta function. From
Eq. (A1) we finally obtain

f±(T ) − f±(0)

= −(√m − 1
)√π

2
ζ (3/2)T 3/2 + O(T 2e−β/m), (A2)

which shows that the FI chain is not critical for γ = 0.
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Consider next the PF chain. In this case we simply have∫ 1

0
ln(1 − e−βx ) dx = T

∫ β

0
ln(1 − e−y) dy

= −π2T

6
+ O(Te−β ),

and from Eq. (22) we find

f±(T ) − f±(0) = −(m − 1)
π2T 2

6
+ O(T 2e−β/m).

This is in agreement with Eq. (24), since in this case E (x) = x.
Let us next deal with the FI and HS-B chains with γ > 0,

for which we respectively have

(E−1)′(z) =
{

(γ 2 + 4z)−1/2, 0 � z � γ + 1,

[(γ + 1)2 − 2z)]
−1/2

, 0 � z � γ + 1
2 .

Since in both cases all the derivatives of E (z) are bounded in
their respective domains we have

(E−1)′(z) =
n∑

k=0

ck
zk

k!
+ O(zn+1), ck := dk+1(E−1)

dzk+1

∣∣∣∣
z=0

.

From these formulas we obtain the estimates

g(T ) =
∫ βE (1)

0
ln (1 − e−y)(E−1)′(Ty) dy

=
n∑

k=0

ckT k
∫ βE (1)

0

yk

k!
ln(1 − e−y) dy + O(T n+1).

Moreover, since∫ ∞

βE (1)

yk

k!
ln(1 − e−y) dy = O(βke−βE (1) ),

the upper limit in all of the integrals above can be pushed to
infinity at the cost of an exponentially small term. We thus
have

g(T ) =
n∑

k=0

ckT k
∫ ∞

0

yk

k!
ln(1 − e−y) dy + O(T n+1)

= −
n∑

k=0

ckζ (k + 2)T k + O(T n+1),

which is equivalent to the infinite asymptotic expansion

g(T ) ∼ −
∞∑

k=0

ckζ (k + 2)T k . (A3)

By Eq. (A1), the latter formula yields the following asymp-
totic series for the free energy per spin of the FI and HS-B
chains with γ > 0:

f±(T ) − f±(0) ∼ −
∞∑

k=0

(mk+1 − 1)ckζ (k + 2)T k+2. (A4)

The coefficients ck can be easily computed in both cases, with
the result

ck =
{

(−2)k (2k − 1)!! γ −(2k+1) (FI),
(−1)k (2k − 1)!! (γ + 1)−(2k+1) (HS-B),

where (−1)!! := 1. In particular, from Eqs. (10)–(13) it easily
follows that the first term in the asymptotic series (A4) coin-
cides with Eq. (24).

The above argument must be slightly modified to deal with
the HS chain and the HS-B chain with γ = 0, since in both
cases (E−1)′ becomes infinite at the right endpoint E (1). For
instance, for the HS chain we have

(E−1)′(z) = (1 − 4z)−1/2, 0 � z � 1/4;

note that in this case E−1 is the inverse of E : [0, 1/2] →
[0, 1/4], since E (x) is increasing over [0, 1/2] and symmetric
about the half-point x = 1/2. Using Eq. (27) and performing
the change of variable βEx = y we again arrive at Eq. (A1),
where g(T ) is now given by

g(T ) = 2
∫ β/4

0
ln (1 − e−y)(1 − 4Ty)−1/2 dy. (A5)

To deal with the divergence of the last term at the upper limit
of the integral, we first note that

(1 − 4z)−1/2 = (−1)n+1

2n+1(2n + 1)!!

dn+1

dzn+1
(1 − 4z)

2n+1
2 .

We next define

h(z) = (−1)n+1

2n+1(2n + 1)!!

[
(1 − 4z)

2n+1
2 −

2n+1∑
k=0

ck
zk

k!

]
,

with

ck = dk

dzk

∣∣∣∣
z=0

(1 − 4z)
2n+1

2 ,

so that h(z) = O(z2n+2). Differentiating n + 1 times the ex-
pression for h(z) we arrive at the identity

(1 − 4z)−1/2 = h(n+1)(z) + (−1)n+1

2n+1(2n + 1)!!

dn+1

dzn+1

×
2n+1∑

k=n+1

ck
zk

k!

= h(n+1)(z) + (−1)n+1

2n+1(2n + 1)!!

n∑
j=0

cn+ j+1
z j

j!
.

Taking into account that

cn+ j+1 = (2n + 1)!!(2 j − 1)!!(−1)n+12n+ j+1,

we finally obtain

(1 − 4z)−1/2 = h(n+1)(z) +
n∑

j=0

2 j (2 j − 1)!!
z j

j!
.

Substituting this expression into Eq. (A5) yields

g(T ) =
n∑

j=0

2 j+1(2 j − 1)!! T j
∫ β/4

0

y j

j!
ln(1 − e−y)dy

+ 2βn+1
∫ β/4

0
ln(1 − e−y)

dn+1

dyn+1
h(Ty)dy.
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The asymptotic expansion of the first term is straightforward:
n∑

j=0

2 j+1(2 j − 1)!! T j
∫ β/4

0

y j

j!
ln(1 − e−y)dy

=
n∑

j=0

2 j+1(2 j −1)!! T j
∫ ∞

0

y j

j!
ln(1− e−y)dy + O(βne−β/4)

= −
n∑

j=0

2 j+1(2 j − 1)!! ζ ( j + 2)T j + O(βne−β/4). (A6)

We claim that the second term in the previous equation for
g(T ) is O(T n+1). This is easily proved by integrating by parts
n + 1 times:

βn+1
∫ β/4

0
ln(1 − e−y)

dn+1

dyn+1
h(Ty) dy

=
n∑

k=0

(−1)n−kβn+1−kϕ(n−k)(y)h(k)(Ty)
∣∣β/4

0

+ (−β )n+1
∫ β/4

0
ϕ(n+1)(y)h(Ty) dy,

with ϕ(y) := ln(1 − e−y). The boundary terms vanish at y =
0, since h(z) = O(z2n+2). On the other hand,

βn−k+1ϕ(n−k)(β/4)h(k)(1/4) = O(βn−k+1e−β/4),

for k = 0, . . . , n, as the first n derivatives of h are bounded.
Thus, the boundary terms are O(βn+1e−β/4), while

βn+1
∫ β/4

0
ϕ(n+1)(y)h(Ty) dy = O(T n+1),

since h(Ty) = O[(Ty)2n+2] and the integral∫∞
0 y2n+2ϕ(n+1)(y)dy is convergent. Putting all of the above

together we obtain the asymptotic series

g(T ) ∼ −
∞∑

k=0

2k+1(2k − 1)!! ζ (k + 2)T k,

from which it follows that

f±(T ) − f±(0) ∼ −
∞∑

k=0

(mk+1 − 1)2k+1

× (2k − 1)!! ζ (k + 2)T k+2. (A7)

In particular, truncating the series after the first term and using
Eq. (10) we obtain Eq. (28).

Consider, finally, the HS-B chain with γ = 0, for which
E (x) = x(1 − x/2). From Eqs. (22) and (27) it easily follows
that

f±(T ) − f±(0) = 2[ fHS,±(T/2) − fHS,±(0)],

whence we obtain the asymptotic series

f±(T ) − f±(0) ∼ −
∞∑

k=0

(mk+1 − 1)(2k − 1)!! ζ (k + 2)T k+2.

Again, the first term in this series is easily seen to yield
Eq. (24).
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