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Inspired by many examples in nature, stochastic resetting of random processes has been studied extensively in
the past decade. In particular, various models of stochastic particle motion were considered where, upon resetting,
the particle is returned to its initial position. Here we generalize the model of diffusion with resetting to account
for situations where a particle is returned only a fraction of its distance to the origin, e.g., half way. We show
that this model always attains a steady-state distribution which can be written as an infinite sum of independent,
but not identical, Laplace random variables. As a result, we find that the steady-state transitions from the known
Laplace form which is obtained in the limit of full resetting to a Gaussian form, which is obtained close to the
limit of no resetting. A similar transition is shown to be displayed by drift diffusion whose steady state can also
be expressed as an infinite sum of independent random variables. Finally, we extend our analysis to capture
the temporal evolution of drift diffusion with partial resetting, providing a bottom-up probabilistic construction
that yields a closed-form solution for the time-dependent distribution of this process in Fourier-Laplace space.
Possible extensions and applications of diffusion with partial resetting are discussed.
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I. INTRODUCTION

Random motion under resetting has been studied ex-
tensively in the past decade both theoretically [1–33] and
recently, also experimentally [34–36]. It has been established
that an unbound random motion becomes asymptotically
bound once resetting to the origin is initiated, thus leading
to a new type of nonequilibrium steady state [37–54]. For
example, the probability to find a colloidal particle diffusing
in a suspending fluid at position x at time t is given by the
known Gaussian form, P(x, t ) = 1√

4πDt
e−x2/4Dt , where D is

the diffusion constant. In this case, we have normal diffusion
and the mean-squared displacement of the particle diverges
linearly with time. In contrast, if the particle is returned to
the origin stochastically with rate r (Fig. 1, left panel), it will
become confined to the vicinity of the origin such that at long
times, its position distribution will converge to a steady state
that is given by the Laplace distribution, P(x) = α0

2 e−α0|x|,
where α0 = √

r/D is an inverse length scale corresponding
to the typical distance diffused by the particle in the time
between two consecutive resetting events [37].

Full resetting amounts to a situation where the value of a
given observable is initialized to zero (or any other value), thus
erasing all memory of past events. While this extreme form of
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resetting is the one most widely studied to date, one can easily
imagine situations where resetting acts in a partial manner,
e.g., when a catastrophic event leads to partial extinction of a
growing population [55,56]. As another example, consider a
case where resetting acts to backtrack a diffusing particle to
one of its previously visited locations according to some law,
as was, e.g., done in [57–61]. It is then natural to ask if any
type of “backtrack resetting” will result in a stationary posi-
tion distribution. For example, will a drift-diffusion process
that has a directed motion component arrive at a steady state
even for infinitesimally weak backtracking?

FIG. 1. Diffusion with partial resetting. A particle undergoing
diffusion is stochastically reset to a position x′ = ax, with rate r. The
left panel, where a = 0, represents the classical Evans-Majumdar
model of diffusion with (full) stochastic resetting [37]. The center
and right panels show diffusion with partial resetting where a = 0.5
and a = 0.9, respectively.

2470-0045/2022/106(5)/054116(13) 054116-1 Published by the American Physical Society

https://orcid.org/0000-0003-1927-4506
https://orcid.org/0000-0003-2292-8005
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.054116&domain=pdf&date_stamp=2022-11-07
https://doi.org/10.1103/PhysRevE.106.054116
https://creativecommons.org/licenses/by/4.0/


TAL-FRIEDMAN, ROICHMAN, AND REUVENI PHYSICAL REVIEW E 106, 054116 (2022)

Here, we study this and related questions via diffusion with
partial resetting, which acts to return the particle part of its
way back to the origin. An example is given in the middle
and left panels of Fig. 1, where a diffusing particle is partially
reset at stochastic times from its position x to a new position
x′ = ax, with 0 � a < 1. We note that a similar model in
which a was considered random was analyzed and solved for
ballistic motion in [62]. Here, we go beyond pure ballistic mo-
tion and show that partial resetting leads to a highly nontrivial,
yet fully tractable, time-dependent and steady-state behavior
for diffusion with and without drift.

The remainder of this paper is structured as follows. In
Sec. II, we introduce the model of diffusion with partial re-
setting and show that it always leads to a bound steady-state
position distribution to which we provide a closed-form ex-
pression. Moreover, we show that this steady-state distribution
transitions from the known Laplace form which is obtained
in the limit of full resetting (a = 0) [37] to a Gaussian form
which is obtained close to the limit of no resetting (a = 1). In
Sec. III, we go on to study drift diffusion with partial resetting.
Here too, we show that—despite drift being present—partial
resetting leads to a confined steady-state distribution for any
value of the partial resetting parameter (0 � a < 1). We pro-
vide a closed-form expression for this steady-state distribution
and show that it too transitions from a known form, which is
obtained in the limit of full resetting [39,44], to a Gaussian
form, which is obtained close to the limit of no resetting. In
Sec. IV, we analyze a deterministic partial resetting protocol
in which resetting occurs at fixed time intervals, i.e., sharp
resetting [7,40,63–65]. We analyze the time evolution of this
process and show that it converges to a cyclostationary steady
state. The insight gained from the analysis of the sharp re-
setting mechanism is carried over to Sec. V, in which we
build the full time-dependent probability distribution of drift
diffusion with stochastic partial resetting, from the bottom up.
We conclude in Sec. VI, where we discuss possible extensions
and applications of diffusion with partial resetting.

II. DIFFUSION WITH PARTIAL RESETTING

Consider diffusion in the presence of partial stochastic
resetting. A particle starts its motion at the origin and diffuses
until resetting occurs. The resetting process is stochastic:
times between consecutive resetting events are taken from an
exponential distribution with rate r. When resetting occurs,
the particle’s position undergoes an instantaneous transforma-
tion,

x

partial
resetting−−−−→ ax, (1)

with 0 � a � 1. Thus, when a = 0, the particle is brought
back to its initial position, and in the other extreme limit,
when a = 1, no resetting occurs and the particle continues
diffusing unaffected. For intermediate values of a, partial re-
setting occurs: the particle is taken to an intermediate position
in between its final position and the origin.

The master equation describing diffusion with partial re-
setting is given by

∂P(x, t )

∂t
= D

∂2P(x, t )

∂x2
− rP(x, t ) + r

a
P(x/a, t ), (2)

where P(x, t ) is the probability to find the particle at position
x at time t , D is the diffusion constant, and r is the resetting
rate. The change of probability density, at position x and time
t , has three contributions. The first term on the right-hand
side accounts for diffusion, the second term accounts for
probability loss at x due to resetting with rate r, and the third
term accounts for probability gain at x due to resetting at x/a
with rate r. Note that in this latter case, the probability flow
into the small interval [x, x + δ] comes from partial resetting
occurring at the small interval [x/a, x/a + δ/a]. This interval
is larger by a factor of 1/a, which explains why the resetting
rate in the third term is scaled by the same amount.

At the steady state, Eq. (2) reduces to

D
d2P(x)

dx2
− rP(x) + r

a
P(x/a) = 0, (3)

which we Fourier transform to obtain

−(r + Dk2)P̂(k) + rP̂(ak) = 0. (4)

The solution to Eq. (4) can be shown to be given by

P̂ss(k) =
∞∏
j=0

r

r + Dk2a2 j
, (5)

which is verified in Appendix A.
The result in Eq. (5) extends the result derived by Evans

and Majumdar for diffusion with (full) stochastic resetting. In-
deed, taking a = 0, we have P̂ss(k) = r/(r + Dk2), which can
be inverted to give Pss(x) = α0

2 exp(−α0|x|) with α0 = √
r/D

as found in [37]. More generally, for 0 < a < 1, the product
form of Eq. (5) implies that the steady-state position of the
particle Xss admits the following stochastic representation:

Xss =
∞∑
j=0

Xj, (6)

where {X0, X1, X2, . . . } are independent Laplace random vari-
ables.

To see this, we recall that the Fourier transform of a
Laplace distribution with variance σ 2 and density f (x) =

1√
2σ

exp(−√
2|x|/σ ) is given by

f̂ (k) = 1

1 + σ 2k2/2
. (7)

Comparing with Eq. (5) and due to the fact that the Fourier
transform of a sum of independent random variables is the
product of their Fourier transforms, we see that each Xj in
Eq. (6) is a Laplace random variable with variance

σ 2
j = 2Da2 j/r. (8)

We thus conclude that the steady-state position distribution
of diffusion with partial stochastic resetting can be expressed
as an infinite sum of independent, but not identical, Laplace
random variables. Note that all these random variables have
zero mean and that their variance drops exponentially with
the running index j, thus making their contribution to the sum
in Eq. (6) smaller and smaller.

In Fig. 2(a), we plot the solution for different values of the
partial resetting parameter 0 � a < 1. We do this by sampling
directly from the infinite sum of Laplace distributions that
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(b)

(a)

FIG. 2. Steady state and variance of diffusion with partial
stochastic resetting. (a) Steady-state probability distributions for
different values of the partial resetting parameter 0 � a < 1. Very
good agreement is seen between simulations for a = 0, 0.5, 0.9 (or-
dered top to bottom, marked by circles, squares, and diamonds,
respectively), and direct sampling from the theoretical steady-state
distribution of Eq. (6) (dashed lines). (b) The variance of the steady-
state distribution as a function of the partial resetting parameter
0 � a < 1. The theoretical prediction of Eq. (9) is plotted as a solid
black curve, and red circles depict results coming from simulations.
Throughout this figure, the diffusion constant and resetting rate were
set to D = 1/100 and r = 1/100, respectively.

is presented in Eq. (6), where here and in what follows we
approximate this sum by its first 100 terms. This result is
compared with direct numerical simulations of diffusion with
partial stochastic resetting. It can be seen that the steady-state
position distribution is centered around the origin. This is
clear by symmetry, and also by the fact that all the random
variables on the right-hand side of Eq. (6) have zero mean.
Thus, the first moment of the steady-state distribution van-
ishes identically.

We also observe that the steady-state distribution becomes
wider as a −→ 1, i.e., in the limit of weak partial resetting.
Indeed, utilizing the independence of the random variables in
Eq. (6), we find that the variance of the steady-state position
distribution is given by

σ 2(Xss) =
∞∑
j=0

σ 2
j = 2D

r

1

1 − a2
, (9)

which diverges at a = 1 as expected for free diffusion without
resetting [Fig. 2(b)]. Yet, note that a steady state of finite
variance is attained whenever a < 1.

(b)

(a)

FIG. 3. The steady-state distribution of diffusion with partial re-
setting transitions from Laplace to Gaussian. (a) The kurtosis from
Eq. (11) is plotted as a function of the partial resetting parameter
0 � a < 1. Very good agreement is seen between the theoretical
prediction (solid black line) and results coming from simulations
(red circles). Recall that the Laplace and Gaussian distributions
have kurtosis six and three correspondingly, which is indicated by
horizontal dashed lines. (b) The steady-state probability distributions
from Fig. 2(a) normalized by their standard deviations. A clear tran-
sition from the Laplace law to the Gaussian law is observed as a is
tuned from zero to unity.

While the third moment of the steady-state position dis-
tribution also vanishes by symmetry, the fourth moment does
not. To compute it, we observe that higher moments of the
random variables appearing on the right-hand side of Eq. (6)
can be computed directly from their distribution, which, com-
bined with their independence, gives

〈
X 4

ss

〉 = 12D2

r2

1

1 − a4
+ 3

(
2D

r

1

1 − a2

)2

, (10)

as we show in Appendix B. Combining Eqs. (9) and (10), we
obtain the kurtosis

Kurt(Xss) =
〈
X 4

ss

〉
σ 4(Xss)

= 6

1 + a2
, (11)

which transitions from the value of six to the value of three
as the partial resetting parameter a is tuned in the range [0,1]
[Fig. 3(a)].

The kurtosis and its dependence on the partial resetting
parameter implies that the steady-state distribution transitions
from the Laplace distribution which is obtained in the limit of
full resetting (a = 0) to a nearly Gaussian distribution that is
obtained close to the limit of no resetting (a = 1). This means
that the shape of the steady-state distribution can be controlled
by tuning the value of a. The transition between the Laplace
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and Gaussian forms is illustrated by scaling the steady-state
distributions from Fig. 2(a) by their standard deviations and
plotting them in Fig. 3(b).

We have already seen that the Laplace distribution emerges
in the limit of full resetting. To also see the Gaussian limit
analytically, consider the distribution of Xss/σ (Xss), i.e., the
steady-state position scaled by its standard deviation. The
Fourier transform of this random variable follows from Eq. (5)
and is given by

〈e−ikXss/σ (Xss )〉 =
∞∏
j=0

1

1 + Dk2a2 j

rσ 2(Xss )

. (12)

Fixing k and taking the limit a → 1, we have
Dk2/rσ 2(Xss) � 1, which yields the following approximation:

〈e−ikXss/σ (Xss )〉 	
∞∏
j=0

e− Dk2a2 j

rσ2 (Xss ) = e−k2/2. (13)

This proves the result as the right-hand side is simply the
Fourier transform of a Gaussian random variable with zero
mean and unit variance.

III. DRIFT DIFFUSION WITH PARTIAL RESETTING

We now turn our attention to the case of drift diffusion with
partial resetting. Under full resetting, it is well established that
drift diffusion attains a steady state [39,44]. However, here
partial resetting can be made arbitrarily weak by taking the
limit a → 1. As drift and partial resetting compete, one may
have expected that in this limit, resetting would be too weak
to confine the particle. Yet, we will now show that a confined
steady state always emerges.

We start with the master equation, which for drift diffusion
with partial resetting reads

∂P(x, t )

∂t
= D

∂2P(x, t )

∂x2
− V

∂P(x, t )

∂x

− rP(x, t ) + r

a
P(x/a, t ), (14)

where V is the drift velocity. At the steady state, this equa-
tion reduces to

D
d2P(x)

dx2
− V

dP(x)

dx
− rP(x) + r

a
P(x/a) = 0, (15)

which we Fourier transform to obtain

−(r + Dk2 − ikv)P̂(k) + rP̂(ak) = 0. (16)

The solution to Eq. (16) is given by

P̂ss(k) =
∞∏
j=0

r

r − iV ka j + Dk2a2 j
, (17)

which is verified in Appendix C.
The result in Eq. (17) extends the known result for drift dif-

fusion with (full) stochastic resetting [39,44]. Indeed, taking
the limit a → 0, we have P̂ss(k) = r/(r − iV k + Dk2), which

can be inverted to give Pss(x) = α0

2
√

1+λ2
0

e−(
√

1+λ2
0−sgn(x)λ0 )α0|x|,

with α0 = √
r/D and λ0 = V/(2

√
Dr) (Appendix D). More

generally, for 0 < a < 1, the product form of Eq. (17) implies

FIG. 4. Steady-state probability distributions for drift diffusion
with different values of the partial resetting parameter a = 0.1, 0.7,

0.85, 0.9, which appear from left to right in ascending order of mean
position. Very good agreement is seen between simulations (colored
histograms) and direct sampling from the theoretical steady-state dis-
tribution of Eq. (18) (dashed lines). Here, the drift velocity, diffusion
constant, and resetting rate were set to V = 3/100, D = 1/100, and
r = 1/100, respectively.

that the steady-state position of the particle Xss admits the
following stochastic representation:

Xss =
∞∑
j=0

Xj, (18)

where {X0, X1, X2, . . . } are independent random variables
coming from the same family.

To see this, observe that Eq. (17) asserts that the Fourier
transform of Xj in Eq. (18) is given by

P̂j (k) = 〈e−ikXj 〉 = r/(r − iVjk + Djk
2), (19)

where Vj = Va j and Dj = Da2 j . We thus conclude that the
steady-state position distribution of drift diffusion with partial
stochastic resetting can be expressed as an infinite sum of
independent, but not identical, random variables whose densi-
ties are given by

Pj (x) = α j

2
√

1 + λ2
j

e−(
√

1+λ2
j−sgn(x)λ j )α j |x|, (20)

where α j = √
r/Dj and λ j = Vj/(2

√
Djr).

In Fig. 4, we plot the solution for different values of the
partial resetting parameter 0 � a < 1. We do this by sampling
directly from the infinite sum presented in Eq. (18), which is
compared with direct numerical simulations of drift diffusion
with partial stochastic resetting. It can be seen that both the
mean and variance of the steady-state position distribution
grow as a −→ 1. Indeed, taking expectations in Eq. (18), we
find that the mean of the steady-state distribution is given by

〈Xss〉 =
∞∑
j=0

〈Xj〉 =
∞∑
j=0

Vj/r = V

r

1

1 − a
. (21)
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Similarly, utilizing the independence of the random variables
in Eq. (18), we find

σ 2(Xss) =
∞∑
j=0

σ 2
j =

∞∑
j=0

(
2Dj

r
+ V 2

j

r2

)

=
(

2D

r
+ V 2

r2

)
1

1 − a2
. (22)

Thus, we see that while the mean and variance both diverge in
the limit a → 1, they remain finite even when partial resetting
is very weak, and as long as a < 1. We also note that by
taking the special case of pure drift D = 0, we obtain the same
expressions for the steady-state mean and variance as those
that are predicted by Eqs. (68) and (69) of Ref. [62], when
the limit of a fixed (deterministic) resetting amplitude is taken
there.

We now show that in the limit a → 1, the steady-state
distribution is approximately Gaussian. To see this, consider
the distribution of (Xss − 〈Xss〉)/σ (Xss), i.e., the standardized
position. The Fourier transform of this random variable is
given by

〈
e− ik(Xss−〈Xss〉)

σ (Xss )
〉 =

∞∏
j=0

〈
e− ik(Xj −〈Xj 〉)

σ (Xss )
〉
, (23)

where we have used the stochastic representation of Eq. (18)
and the independence of the random variables there. Fixing
k and taking the limit a → 1, we have k/σ (Xss) � 1. Ex-
panding the exponents on the right-hand side of Eq. (23)
to second order and taking expectations yields the following
approximation:

〈
e− ik(Xj −〈Xj 〉)

σ (Xss )
〉 	 1 − k2σ 2

j

2σ 2(Xss)
	 e− k2σ2

j
2σ2 (Xss ) . (24)

It follows that in this limit,〈
e− ik(Xss−〈Xss〉)

σ (Xss )
〉 	 e−k2/2, (25)

which once again proves the result since the right-hand side of
Eq. (25) is simply the Fourier transform of a Gaussian random
variable with zero mean and unit variance.

IV. SHARP PARTIAL RESETTING

So far, we have assumed that resetting is conducted
stochastically with rate r. Another interesting case to consider
is that of resetting at constant time intervals of duration τ .
To tackle this common form of resetting [7,40,63–65], also
known as sharp resetting, we will present a probabilistic ar-
gument that circumvents the need to solve the corresponding
(generalized) master equation. The insight gained from this
approach to the solution will also prove useful in the next
section, where we present a bottom-up construction of the
time-dependent probability distribution of drift diffusion with
partial resetting at a constant rate r.

To this end, we once again start by writing the spatial
distribution of a particle which diffused freely for a time t that
is smaller than the sharp resetting time τ , i.e., t < τ . This is

simply given by the known Gaussian form

P(x, t ) = 1√
4πDt

e− x2

4Dt . (26)

At t = τ , partial resetting occurs, taking the particle from its
random position x to ax. Since the particle’s position at the
resetting moment comes from a Gaussian distribution with
density given by Eq. (26), the particle’s position immediately
after resetting, i.e., at time t → τ+, is also Gaussian with
density

P(x, τ+) = 1√
4πDa2τ

e− x2

4Da2τ , (27)

which is obtained by scaling a Gaussian random variable by
the partial resetting parameter a. Note that this is also the
probability distribution that describes a particle that diffused
freely for time a2τ . Thus, the combined effect of free diffusion
for time τ and consecutive partial resetting with parameter a
is equivalent to the effect of free diffusion for an effective time
τeff = a2τ .

As sharp resetting is conducted at fixed time intervals, this
process now repeats itself periodically. Namely, free diffusion
for time τ is followed by partial resetting with parameter a,
and so forth. Each diffusion period adds τ to the effective
diffusion time, and each resetting event multiplies the effec-
tive diffusion time by a factor of a2. Thus, for the effective
diffusion time, we have

0
D−→ τ

R−→ a2τ
D−→ a2τ + τ

R−→ a2(a2τ + τ ) · · · , (28)

where D stands for a diffusion period and R stands for a
partial resetting event. Asymptotically, this process converges
to a Gaussian cyclic steady state whose probability density is
given by

P(x, τeff ) = 1√
4πDτeff

e− x2

4Dτeff , (29)

where the effective diffusion time oscillates between a high
value τeff = ∑∞

n=0 a2nτ = τ
1−a2 , which is attained at the end

of every diffusion period, and a low value τeff = ∑∞
n=1 a2nτ =

a2τ
1−a2 , which is attained immediately after a resetting event
occurred. This cycle and the corresponding Gaussian distri-
butions at both of its ends are illustrated in Fig. 5.

V. TIME-DEPENDENT SOLUTION

In Secs. II and III, we have dealt with the steady state of
diffusion with partial stochastic resetting. We will now go on
to consider the temporal evolution of this process. Instead of
going for a brute-force solution of Eqs. (2) and (14), we will
offer a probabilistic analysis from which insight can be drawn.
This analysis will be based on the results established in the
previous section.

We start with a diffusing particle, which is also subject
to partial stochastic resetting that is conducted at a constant
rate r. Assuming that there were exactly m resetting events in
the time interval [0, t], we denote their occurrence times by
{t1, . . . , tm}. Using the same arguments presented in Sec. IV,
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FIG. 5. The temporal behavior of diffusion with sharp partial
resetting is governed by an effective diffusion time τeff whose own
time evolution is in turn governed by the process described by
Eq. (28). At long times, the effective diffusion time cycles between
a low value and and high value, as shown in the figure. Immediately
after resetting occurs, the position distribution is Gaussian with an
effective diffusion time τeff = a2τ

1−a2 . Resetting then takes exactly τ

units of time to occur. Thus, right before resetting occurs, the position
distribution is Gaussian with an effective diffusion time of τeff =

τ

1−a2 . In this figure, the diffusion constant and the partial resetting
parameter were set to D = 1 and a = 0.8, respectively.

we obtain an effective diffusion time of

τeff(m) = t − a2m[1 − a2]
m∑

n=1

tna−2n, (30)

which is obtained by applying the process in Eq. (28) with
t1 as the diffusion time until the first resetting event, t2 − t1
as the diffusion time between the first and second resetting
events, and so on in a similar manner until the observation
time t is reached. A detailed derivation of Eq. (30) is given in
Appendix E.

It follows that the probability distribution to find the par-
ticle at position x at time t—given that exactly m resetting
events occurred at times {t1, . . . , tm}—can be written as

P(x, t, τeff(m)) = 1√
4πDτeff(m)

e− x2

4Dτeff (m) . (31)

To obtain the unconditional probability distribution of the po-
sition at time t , the above result must be averaged with proper
weights over all possible resetting time epochs {t1, . . . , tm}
and over all the possible numbers of resetting events.

Since resetting is conducted at a constant rate r, the prob-
ability to have m resetting events in the time interval [0, t] is
given by the Poisson distribution

Pr(m, t ) = (rt )me−rt

m!
. (32)

Averaging Eq. (31) over m using Eq. (32) gives

∞∑
m=0

(rt )me−rt

m!
√

4πDτeff(m)
e− x2

4Dτeff (m) , (33)

which can be Fourier transformed to give

∞∑
m=0

P̂m(k, t, τeff(m)) ≡
∞∑

m=0

(rt )m

m!
e−rt−Dk2τeff (m). (34)

The effective time τeff(m) is defined in Eq. (30) as a func-
tion of the observation time t and the resetting time epochs
{t1, . . . , tm}. We now recall that the basic properties of the
Poisson process assert that if m resetting events occurred, their
statistics is uniform in the range [0, t]. We thus have

P̂m(k, t ) =
∫ t

0
dtm

∫ tm

0
dtm−1 · · ·

×
∫ t2

0

m!

tm
P̂m(k, t, τeff(m))dt1, (35)

and note that the m! accounts for equally likely permutations
which were lost by assuming t1 < t2 < · · · < tm < t in the
integrals above.

Calculating the integrals in Eq. (35) and Laplace trans-
forming P̃m(k, s) = ∫ ∞

0 P̂m(k, t )e−st dt , we find (Appendix F)

P̃0(k, s) = 1

r + Dk2 + s
,

P̃1(k, s) = r

(r + Dk2a2 + s)
P̃0(k, s), (36)

P̃2(k, s) = r

(r + Dk2a4 + s)
P̃1(k, s),

from which we deduce the time-dependent probability distri-
bution in Fourier-Laplace space,

P̃(k, s) =
∞∑

m=0

P̃m(k, s) =
∞∑

m=0

1

r

m∏
j=0

r

r + Dk2a2 j + s
. (37)

The steady-state solution of Eq. (5) can be obtained by
taking the long-time limit of the above results. Formally, this
is done by using the Final Value Theorem, limt→∞ f (t ) =
lims→0 s f̃ (s); see Appendix G for details.

While the mean of the time-dependent distribution van-
ishes, Eq. (37) can be used to obtain the time-dependent
variance (Appendix H),

σ 2(X (t )) = 2D

r(1 − a2)

(
1 − e−r(1−a2 )t

)
, (38)

which is plotted in Fig. 6. This variance converges exponen-
tially to the steady-state variance of Eq. (9). Interestingly, the
rate of convergence is proportional to 1 − a2, which asserts
that convergence times will be long in the limit a → 1.

We note that the products appearing in Eq. (37) are similar
to the product that appears in Eq. (5) for the steady state.
There are, however, two differences: (i) an additional s in
the denominator of each term that appears in the products
of Eq. (37); and (ii) the products of Eq. (37) being finite
rather than infinite. Following this observation, one can guess
the time-dependent solution of drift diffusion with partial
resetting from its steady state that was found in Eq. (17).
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FIG. 6. The time-dependent variance of diffusion with partial
resetting for different values of the partial resetting parameter a.
Very good agreement is seen between simulations for a = 0, 0.3, 0.5
(marked by circles, squares, and diamonds, respectively), and the
theoretical result of Eq. (38) (solid lines). Throughout this figure,
we set r = 1/τ = 1/100 and D = 1/100.

This reads

P̃(k, s) =
∞∑

m=0

1

r

m∏
j=0

r

r − iV ka j + Dk2a2 j + s
, (39)

and it can be readily verified that this probability distribution
solves

P̃(k, s) = rP̃(ak, s) + 1

r − iV k + Dk2 + s
, (40)

which is the rearranged Fourier-Laplace transform of Eq. (14).
This is shown in Appendix I.

VI. CONCLUSIONS

In this paper, we extended the Evans-Majumdar model
of diffusion with stochastic resetting [37]. Rather than full
resetting, we considered a case where the particle is returned
only part way back to the origin, such that upon resetting,
x → ax with 0 � a < 1. We found that this resetting proto-
col always results in a steady state whose Fourier transform
we gave in closed form. This, in turn, allowed us to show
that the steady-state distribution can be understood as an
infinite sum of independent Laplace random variables with
increasingly smaller variance. Moreover, we showed that the
steady-state distribution interpolates smoothly between the
Laplace steady-state distribution, which is found for full re-
setting (a = 0), and a Gaussian distribution which is obtained
in the limit a → 1.

We then extended our analysis to drift diffusion with partial
resetting, where we have shown that a steady state emerges
even when partial resetting is very weak. The latter can once
again be expressed as a sum of independent random variables
with increasingly smaller variance. Similar to the no-drift
case, the steady state of drift diffusion with partial resetting
also undergoes a transition between a non-Gaussian steady
state with exponential tails and a Gaussian steady state, as
the partial resetting parameter a is tuned from zero to unity.
An interesting application of this result is the possibility to

mimic the effect of different confining potentials with partial
resetting, for example in an optical tweezers setup, as was
used in [34]. Here we obtained probability densities which
are equivalent to those of a particle diffusing in harmonic and
linear potentials, as well as a nontrivial interpolation between
these densities. Other effective potentials may be obtained by
considering more sophisticated versions of partial resetting,
e.g., via resetting kernels, which are discussed below.

Having established the steady-state properties of diffusion
with partial resetting, we turned to investigate its time evolu-
tion. To do so, we first considered a sister problem: diffusion
with sharp partial resetting, i.e., partial resetting that is con-
ducted periodically at constant time intervals. We analyzed
the time evolution of this process and showed that it leads
to a cyclostationary steady state. The insight gained from
this analysis was then carried over to the original problem
where resetting is conducted stochastically at a constant rate.
In particular, rather than solving the time-dependent master
equation directly, we presented a probabilistic analysis which
allowed us to construct the solution step by step from the
bottom up. In this way, we were able to obtain an analytical
closed-form expression for the Fourier-Laplace transform of
the time-dependent probability distribution describing diffu-
sion with partial resetting with and without drift.

The model considered in this paper falls into a broader
class of models which can be described by the following
master equation:

∂P(x, t )

∂t
= D

∂2P(x, t )

∂x2
− V

∂P(x, t )

∂x

− rP(x, t ) + r
∫ ∞

−∞
K (x′, x)P(x′, t )dx′. (41)

Here, the top row describes diffusion with drift, and the sec-
ond row the effect of resetting at a constant rate r. Specifically,
the first term in the second row accounts for the probabil-
ity loss due to resetting at x, and the second term for the
probability gain due to a resetting transition that takes the
particle back to x from other locations. The kernel K (x′, x)
describes the rules of the game by defining a probability
distribution over all possible positions x given the position
x′. In this paper, we focused on a specific resetting kernel,
K (x′, x) = δ(x′ − x

a )/a. A different choice of resetting kernel
may lead to fundamentally different results, e.g., the absence
of a steady-state distribution. Questions such as this have
been studied in a similar system, where the resetting kernel
was taken to be time dependent rather than space dependent
[57–61]. It was shown that motion under these conditions is
bound only if the memory kernel decays fast enough with
time, otherwise the mean-squared displacement of the particle
diverges. In the future, it would be interesting to consider the
general case where the resetting kernel depends both on time
and space.

Note added. We note that steady-state and first-passage
properties of the model considered herein were studied in par-
allel and independently by Pierce [67]. Previously, the same
author obtained the steady-state distribution for the model
[68], where he considered a stochastic description of bedload
sediment transport, but using different methods from those
employed in this work.
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APPENDIX A: CORROBORATION OF Eq. (5)

At the steady state, the master equation boils down to

D
d2P(x)

dx2
− rP(x) + r

a
P(x/a) = 0. (A1)

Recalling some Fourier transform identities,

F
(

df (x)

dx

)
= ik f̂ (k); F

(
f

(
x

a

))
= a f̂ (ak), (A2)

we obtain

−(r + Dk2)P̂(k) + rP̂(ak) = 0. (A3)

Substituting Eq. (5) into the left-hand side of Eq. (A3), we
find

L.H.S. = −(r + Dk2)
∞∏
j=0

r

r + Dk2 · a2 j

+ r ·
∞∏
j=0

r

r + Dk2a2 · a2 j

=
∞∏
j=1

r

r + Dk2 · a2 j

(−r(r + Dk2)

r + Dk2
+ r

)
= 0, (A4)

which proves that Eq. (5) is indeed a steady-state solution of
diffusion with partial resetting.

APPENDIX B: MOMENTS OF THE STEADY-STATE
DISTRIBUTION, VARIANCE, AND KURTOSIS

The moments of the steady-state distribution of diffusion
with partial resetting can be found by using the following
relation:

〈
X m

ss

〉 = (−i)m dmP̂ss(k)

dkm

∣∣∣∣
k=0

, (B1)

where P̂ss(k) is given by Eq. (5). In Eq. (6), we have shown
that Xss can be written as an infinite sum of independent
Laplace random variables {X0, X1, X2, . . . }, such that

〈e−ikXj 〉 ≡ P̂j (k) = r

r + Dk2a2 j
. (B2)

Taking derivatives, we find

dP̂j (k)

dk
= − 2a2 jDrk

(a2 jDk2 + r)2 , (B3)

d2P̂j (k)

dk2
= 2a2 jDr(3a2 jDk2 − r)

(a2 jDk2 + r)3 , (B4)

d3P̂j (k)

dk3
= −24a4 jD2rk(a2 jDk2 − r)

(a2 jDk2 + r)4 , (B5)

d4P̂j (k)

dk4
= 24a4 jD2r(5a4 jD2k4 − 10a2 jDrk2 + r2)

(a2 jDk2 + r)5 , (B6)

resulting in the following moments:

〈Xj〉 = 0, (B7)

〈
X 2

j

〉 = 2Da2 j

r
= σ 2(Xj ), (B8)〈

X 3
j

〉 = 0, (B9)

〈
X 4

j

〉 = 24D2a4 j

r2
. (B10)

Using the fact that the variance of the sum of independent
random variables is equal to the sum of their variances, we
can immediately find the variance of the steady-state position.
This is given by

σ 2(Xss) =
∞∑
j=0

2D

r
a2 j = 2D

r

1

1 − a2
. (B11)

To find the fourth moment, we observe that〈
X 4

ss

〉 = 〈(X0 + X1 + · · · )4〉

=
∞∑

i=0

〈
X 4

i

〉 + 3
∞∑

i=0

∞∑
j=0

〈
X 2

i

〉〈
X 2

j

〉 − 3
∞∑

i=0

〈
X 2

i

〉2

= 24D2

r2

1

1 − a4
+ 3

∞∑
i=0

〈
X 2

i

〉 ∞∑
j=0

〈
X 2

j

〉 − 12D2

r2

1

1 − a4

= 12D2

r2

1

1 − a4
+ 3

(
2D

r

1

1 − a2

)2

, (B12)

where we have once again used independence and the fact that
moments of odd order vanish to either simplify or kill mixed
terms. Given the fourth moment, the kurtosis follows from its
definition,

Kurt(Xss) =
〈
X 4

ss

〉
σ 4(Xss)

=
12D2

r2
1

1−a4 + 3
(

2D
r

1
1−a2

)2

(
2D
r

1
1−a2

)2

= 6

1 + a2
. (B13)

APPENDIX C: CORROBORATION OF Eq. (17)

At the steady state, the master equation boils down to

D
d2P(x)

dx2
− V

dP(x)

dx
− rP(x) + r

a
P(x/a) = 0. (C1)

Similarly to Appendix A, we Fourier transform and obtain

−(r + Dk2 − ikV )P̂(k) + rP̂(ak) = 0. (C2)

Substituting Eq. (17) into the left-hand side of Eq. (C2), we
find

L.H.S. = −(r − iV k + Dk2)
∞∏
j=0

r

r − iV ka j + Dk2a2 j
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+ r ·
∞∏
j=0

r

r − iV ka · a j + Dk2a2 · a2 j

=
∞∏
j=1

r

r + Dk2 · a2 j − iV ka j
(−r + r) = 0, (C3)

which proves that Eq. (17) is indeed a steady-state solution of
drift diffusion with partial resetting.

APPENDIX D: STEADY STATE OF DRIFT DIFFUSION
UNDER (FULL) STOCHASTIC RESETTING

Here we simply recall the result for drift diffusion un-
der (full) stochastic resetting which can, e.g., be found in
Ref. [44]. The probability density reads

√ r
D

2
√

1 + V 2

4Dr

exp

[
−

√
r

D
|x|

(√
1 + V 2

4Dr
− V · sgn(x)

2
√

Dr

)]
,

(D1)

which simplifies to

Pss(x) = 1√
4D
r + V 2

r2

e−
√

r
D + V 2

4D2 |x|+ V
2D x

. (D2)

This expression is of the shape of c · exp(−a|x| + bx), which
has a known Fourier transform [66],

F (c · exp(−a|x| + bx)) = 2ac

a2 − (b + ik)2
. (D3)

Substituting a =
√

r
D + V 2

4D2 , b = V
2D , and c = 1√

4D
r + V 2

r2

, we

obtain

Pss(x) = 2

√
r
D + V 2

4D2√
4D
r + V 2

r2

1
r
D + V 2

4D2 − (
V
2D + ik

)2

= r

r − ikV + Dk2
, (D4)

which is the same as Eq. (17) in the limit a → 0.

APPENDIX E: DERIVATION OF Eq. (30)

Similarly to Sec. IV, we will describe the process as dif-
fusion with an effective diffusion time τeff. However, note
that the time intervals between partial resetting events are
no longer constant. To obtain the effective diffusion time at
time t , we recall that resetting occurred at times {t1, . . . , tm},
which are all smaller than t . The time intervals between re-

setting events are thus of lengths {t1, t2 − t1, . . . , tm − tm−1},
and one must not forget that free diffusion also occurs at the
last time interval (tm, t] which comes after the final reset-
ting event. It follows that the effective diffusion time evolves
according to

0
D−→ t1

R−→ a2t1
D−→ a2t1 + t2 − t1

R−→ a2(a2t1 + t2 − t1)

D−→ a2(a2t1 + t2 − t1) + t3 − t2, . . . . (E1)

These terms can be rearranged to give

0
D−→ t1

R−→ a2t1
D−→ (a2 − 1)t1 + t2

R−→ (a4 − a2)t1 + a2t2

D−→ (a4 − a2)t1 + (a2 − 1)t2 + t3 . . . ,

D−→ t +
m∑

n=1

(a2m+2−2n − a2m−2n)tn, (E2)

which in turn yields the effective diffusion time

τeff(m) = t +
m∑

n=1

(a2m+2−2n − a2m−2n)tn

= t − a2m[1 − a2]
m∑

n=1

tna−2n, (E3)

that appears in Eq. (30).

APPENDIX F: DERIVATION OF Eq. (36)

We start by calculating P̂m(k, t ) which we will Laplace
transform in the second stage. For m = 0, the effective diffu-
sion time is equal to the observation time. Thus, τeff(m) = t ,
which gives

P̂0(k, t ) = e−(r+Dk2 )t . (F1)

For m � 1, we follow Eq. (35). For example, for m = 1, we
obtain

P̂1(k, t ) =
∫ t

0

1

t
rte−rt e−Dk2(t+(a2−1)t1 )dt1

= r
∫ t

0
e−rt e−Dk2(t+(a2−1)t1 )dt1

= re−(r+Dk2 )t
∫ t

0
e−Dk2(a2−1)t1 dt1

= −re−(r+Dk2 )t

Dk2[a2 − 1]

(
e−Dk2(a2−1)t − 1

)
. (F2)
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Similarly, for m = 2, we obtain

P̂2(k, t ) =
∫ t

0
dt2

∫ t2

0

(rt )2e−rt

t2
e−Dk2(t+(a2−1)(t1a2+t2 ))dt1

= r2e−(r+Dk2 )t
∫ t

0
dt2

∫ t2

0
e−Dk2(a2−1)(t1a2+t2 )dt1

= r2e−(r+Dk2 )t
∫ t

0
dt2

[
e−Dk2(a2−1)(t1a2+t2 )

−Dk2(a2 − 1)a2

]t2

t1=0

= −r2e−(r+Dk2 )t

Dk2(a4 − a2)

∫ t

0
dt2

[
e−Dk2(a4−1)t2 − e−Dk2(a2−1)t2

]

= r2e−(r+Dk2 )t

(Dk2)2(a4 − a2)

[
e−Dk2(a4−1)t − 1

a4 − 1
− e−Dk2(a2−1)t − 1

a2 − 1

]
. (F3)

Next, we Laplace transform the above expressions to find

P̃0(k, s) = 1

r + Dk2 + s
(F4)

and

P̃1(k, s) = −r

Dk2[a2 − 1]

[
1

r + Dk2 + (a2 − 1)Dk2 + s
− 1

r + Dk2 + s

]

= −r

Dk2[a2 − 1]

[
1

r + a2Dk2 + s
− 1

r + Dk2 + s

]

= −r

Dk2[a2 − 1]

(1 − a2)Dk2

(r + a2Dk2 + s)(r + Dk2 + s)
= r

(r + a2Dk2 + s)(r + Dk2 + s)
. (F5)

Similarly, for m = 2, we find

P̃2(k, s) = r2

(Dk2)2(a2 − 1)a2

[
1

a4 − 1

(
1

r + Dk2a4 + s
− 1

r + Dk2 + s

)

− 1

a2 − 1

(
1

r + Dk2a2 + s
− 1

r + Dk2 + s

)]

= r2

(Dk2)2(a2 − 1)a2

[
1

a4 − 1

(1 − a4)Dk2

(r + Dk2a4 + s)(r + Dk2 + s)
− 1

a2 − 1

(1 − a2)Dk2

(r + Dk2a2 + s)(r + Dk2 + s)

]

= r2

Dk2(a2 − 1)a2

[
1

(r + Dk2a2 + s)(r + Dk2 + s)
− 1

(r + Dk2a4 + s)(r + Dk2 + s)

]

= r2

Dk2(a2 − 1)a2

Dk2(a4 − a2)

(r + Dk2 + s)(r + Dk2a2 + s)(r + Dk2a4 + s)

= r2

(r + Dk2 + s)(r + Dk2a2 + s)(r + Dk2a4 + s)
. (F6)

APPENDIX G: RECOVERING THE STEADY-STATE
DISTRIBUTION FROM THE TIME-DEPENDENT

SOLUTION

We use the Final Value Theorem,

lim
t→∞ f (t ) = lim

s→0
s f̃ (s), (G1)

where f̃ (s) is the Laplace transform of f (t ). In our case, we
have

P̂ss(k) = lim
s→0

sP̃(k, s). (G2)

Plugging in the time-dependent distribution of diffusion with
partial resetting from Eq. (37), we obtain

lim
s→0

sP̃(k, s) = lim
s→0

∞∑
m=0

s

r

m∏
j=0

r

r + Dk2a2 j + s
. (G3)

Defining N = r/s, we rewrite the above expression as

lim
N→∞

1

N

N∑
m=0

m∏
j=0

r

r + Dk2a2 j + s
≡ lim

N→∞
1

N

N∑
m=0

F (N, m),

(G4)
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where

F (N, m) =
m∏

j=0

r

r + Dk2a2 j + r/N
. (G5)

We now observe that

lim
N→∞

F (N, m) =
m∏

j=0

r

r + Dk2a2 j
≡ F (m), (G6)

and that

lim
m→∞ F (m) =

∞∏
j=0

r

r + Dk2a2 j
= P̂ss(k), (G7)

where in the last step we simply recalled the definition of the
steady-state distribution in Eq. (5). Now, since the average of
the first n elements in an infinite series that converges to a
limit also converges to the same limit, we have

lim
N→∞

1

N

N∑
m=0

m∏
j=0

r

r + Dk2a2 j + s

≡ lim
N→∞

1

N

N∑
m=0

F (N, m) = P̂ss(k). (G8)

This proves that the steady-state solution of Eq. (5) can be
obtained by taking the long-time limit of Eq. (37).

APPENDIX H: TIME-DEPENDENT VARIANCE

In Laplace space, the second moment of the time-
dependent probability distribution is given by

〈X 2(s)〉 = −d2P̃(k, s)

dk2

∣∣∣∣
k=0

. (H1)

We define

f ( j) = r

r + Dk2a2 j + s
, (H2)

and write the time-dependent solution for diffusion with par-
tial resetting as

P̃(k, s) =
∞∑

m=0

P̃m(k, s) = 1

r

∞∑
m=0

m∏
j=0

f ( j). (H3)

The first derivative of P̃(k, s) can be written as

dP̃(k, s)

dk
= 1

r

∞∑
m=0

[(
m∏

j=0

f ( j)

)(
m∑

j=0

f ′( j)

f ( j)

)]
, (H4)

where f ′( j) ≡ df ( j)/dk. The second derivative of P̃(k, s) can
be written as

d2P̃(k, s)

dk2
= 1

r

∞∑
m=0

[(
m∏

j=0

f ( j)

)(
m∑

j=0

f ′( j)

f ( j)

)2

+
(

m∏
j=0

f ( j)

)(
m∑

j=0

f ′′( j) · f ( j) − f ′( j)2

f ( j)2

)]
. (H5)

The first and second derivative of each f ( j) is given by

f ′( j) = − 2rDka2 j

(r + Dk2a2 j + s)2 ,

f ′′( j) = − 2rDa2 j

(r + Dk2a2 j + s)2 + 2rDa2 jk[4(r + s)Da2 jk + 4D2a4 jk3]

(r + Dk2a2 j + s)4 , (H6)

and, after substituting k = 0,

f ′( j)
∣∣
k=0 = 0,

f ′′( j)
∣∣
k=0 = − 2rDa2 j

(r + s)2 . (H7)

Substituting these derivatives into Eq. (H5) results in

d2P̃(k, s)

dk2

∣∣∣∣
k=0

= 1

r

∞∑
m=0

[
m∏

j=0

(
r

r + s

)](
m∑

j=0

− 2rDa2 j

(r + s)2 · r + s

r

)

= −2D
∞∑

m=0

(
r

r + s

)m+1 m∑
j=0

a2 j

r(r + s)

= − 2D

(r + s)2

∞∑
m=0

(
r

r + s

)m 1 − a2(m+1)

1 − a2

= − 2D

(r + s)2

1

1 − a2

∞∑
m=0

(
r

r + s

)m

− a2

(
ra2

r + s

)m
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= − 2D

(r + s)2

1

1 − a2

(
1

1 − r
r+s

− a2

1 − ra2

r+s

)

= − 2D

(r + s)2

1

1 − a2

(
r + s

s
− a2(r + s)

(1 − a2)r + s

)

= − 2D

1 − a2

(
1

s(r + s)
− a2 1

(r + s)(r(1 − a2) + s)

)
, (H8)

which we invert to find the time-dependent variance of diffusion with partial resetting,

σ 2(X ) = 〈X 2(t )〉 = L −1

(
−d2P̃(k, s)

dk2

∣∣∣∣
k=0

)
= 2D

r(1 − a2)

(
1 − e−r(1−a2 )t), (H9)

which is Eq. (38) in the main text. Note that for t → ∞, this expression reduces to the variance found for the steady state
of diffusion with partial resetting [Eq. (9) in the main text].

APPENDIX I: CORROBORATION OF Eq. (39)

Substituting Eq. (39) into the right-hand side of Eq. (40), we find

R.H.S. = 1 + r
∑∞

m=0
1
r

∏m
j=0

r
r−iVaka j+Da2k2a2 j+s

r − iV k + Dk2 + s

= 1 + r
∑∞

m=1
1
r

∏m
j=1

r
r−iV ka j+Dk2a2 j+s

r − iV k + Dk2 + s

= 1

r − iV k + Dk2 + s
+

∞∑
m=1

1

r

m∏
j=0

r

r − iV ka j + Dk2a2 j + s

=
∞∑

m=0

1

r

m∏
j=0

r

r − iV ka j + Dk2a2 j + s
, (I1)

which is exactly P̃(k, s) in Eq. (39).
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