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Planted XY model: Thermodynamics and inference

Siyu Chen®,"" Guanhao Huang ®,""" Giovanni Piccioli®,>"+" and Lenka Zdeborova’
! Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2Ecole Polytechnique Fédérale de Lausanne (EPFL), Statistical Physics of Computation Laboratory, CH-1015 Lausanne, Switzerland

® (Received 20 September 2022; accepted 14 October 2022; published 7 November 2022)

In this paper we study a fully connected planted spin glass named the planted XY model. Motivation for
studying this system comes both from the spin glass field and the one of statistical inference where it models
the angular synchronization problem. We derive the replica symmetric (RS) phase diagram in the temperature,
ferromagnetic bias plane using the approximate message passing (AMP) algorithm and its state evolution
(SE). While the RS predictions are exact on the Nishimori line (i.e., when the temperature is matched to the
ferromagnetic bias), they become inaccurate when the parameters are mismatched, giving rise to a spin glass
phase where AMP is not able to converge. To overcome the defects of the RS approximation we carry out
a one-step replica symmetry-breaking (IRSB) analysis based on the approximate survey propagation (ASP)
algorithm. Exploiting the state evolution of ASP, we count the number of metastable states in the measure,
derive the 1RSB free entropy and find the behavior of the Parisi parameter throughout the spin glass phase.
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I. INTRODUCTION

In statistical physics, XY models describe a system in which
the spins are unit norm vectors living in R?, or equivalently
unit norm complex numbers x; = €. They are also character-
ized by an Hamiltonian which is invariant under global phase
shifts, thus displaying a symmetry identifiable with U(1).
Early studies have focused on ferromagnetic lattice models
with short-range interactions, described by the Hamiltonian
Hxy(0)=1J Za’j) cos(6; — 6;). This line of work culminated
with the discovery of the Kosterlitz-Thouless transition [1].
Disordered models have also received attention [2]. The most
studied way of introducing disorder is through Gaussian cou-
plings, giving a Hamiltonian Hpyxy(0) = ij Jij cos(0; —
;) [2]. The model studied in this paper is a different version
of disordered XY model motivated by the statistical inference
problem of angular synchronization [3], which consists of re-
trieving a vector of angles 6; € [0, 2] from measurements of
their offsets 6; — 6;. The full definition is given in Sec. II. This
problem arises in many applications, for example time syn-
chronization in distributed networks [4,5], alignment in signal
processing [6], computer vision [7], and optics [8]. Angular
synchronization was first introduced in [3] and solved using
spectral algorithms and semidefinite relaxation techniques [9].
In [10] the authors found the replica symmetric solution via a
replica and cavity computation. From the algorithmic point of
view, a version of approximate message passing (AMP)[11]
was developed for a general class of problems including the
angular synchronization [12]. Formulating the angular syn-
chronization problem in the language of XY Hamiltonians [see
Eq. (4)], one obtains a planted version of the XY model. In
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planted systems, the couplings between spins depend on a
special configuration 6*, and the Gibbs measure is nothing
but the conditional distribution of 6* given the couplings
[13]. The inference problem then corresponds to recovery
of 6* from the couplings. Another variant of the XY model
studied in the literature which admits a planted interpreta-
tion is the Gauge glass, an XY spin glass with Hamiltonian
Hoe =J Zi,jeE cos(6; — 0; — ¢;;), where E is the set of edge
interactions. The randomness is contained in the angles {¢;;}
and possibly in E. This model has been first studied in the
random setting with ¢ drawn i.i.d. from a uniform distribution
in [14] and later generalized to the planted case, where {¢;;}
are drawn from a zero mean von Mises distribution [15]. Pre-
vious works on the gauge glass have mainly studied the model
on the Nishimori line [16] [17] i.e., a line in the temperature-
coupling diagram, where calculations greatly simplify. This
model was further studied in its discretized version in [18] for
a mixture distribution that interpolates between ferromagnetic
and uniformly distributed couplings and with interactions on
a sparse random graph. Finally, the short-range gauge glass
model has also been extended to the quantum setting in [19]
and has further physical relevance [20]. The model considered
in this work, Hamiltonian (4), is closely related to Hgg. Our
choice fell on the model defined by Eq. (4) because of the con-
nection to angular synchronization. Due to the invariance of
the Hamiltonian under a joint transformation of the couplings
and the spins, we are able to map the partial recovery tran-
sition in the inference case, into an order-disorder transition.
Moreover, for appropriate choices of the parameters (specifi-
cally for A < 1, defined below), the model has a fully random
behavior, thus connecting with the literature on spin glasses.
Our work draws a bridge between the angular synchroniza-
tion and the studies of disordered XY models in the statistical
physics literature. We consider the fully connected disor-
dered model associated with angular synchronization, and we
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investigate the properties of the Gibbs measure given by the
posterior. In the inference case, one is usually interested in
characterizing the error in the retrieval of the signal. Instead,
we focus on the phase diagram spanned by the inverse temper-
ature and the ferromagnetic bias. Specifically, we concentrate
on the region outside the Nishimori line, which is not studied
in related models [15]. Furthermore, we go beyond the RS
analysis of [10,12] and perform a one-step replica symmetry-
breaking study. Our theoretical analysis is complemented by
algorithms which provide an instrumental way to study sin-
gle instances of the model. We use this as an opportunity
to characterize the behavior of AMP, and its 1RSB version
Approximate Survey Propagation [21]. The respective state
evolutions give us the RS and 1RSB phase diagrams. The
paper will maintain a schizophrenic attitude, aiming to con-
nect with both the physical XY Hamiltonian and the inference
problem that motivated it.

The rest of the article is structured as follows: in Sec. II
we introduce the model from the inference point of view
and we show the equivalence between the inference and the
order/disorder formulation. In Sec. III we study the RS phase
diagram, with special attention to the outside of the Nishimori
line. In Sec. IV we perform a 1RSB analysis, using the ASP
algorithm and its state evolution. Section V is dedicated to
discussion and conclusions.

II. DEFINITION OF THE MODEL

We start by introducing the models in the language of sta-
tistical inference, where it is known as U (1) synchronization,
an instance of angular synchronization [3,9,12]. The problem
consists of retrieving a complex signal x* = (x], x3, ..., xy),
where each x} is uniformly distributed on the unit circle, inde-
pendently of other coordinates. In other words, x} = ¢/ with
0} ~ Uniform([0, 27r]) i.i.d. We will refer to x* as the ground
truth or the planted signal. A set of N> complex measurements
{Y;;}1<i, j<n s produced according to the rule

) M—
Y;; Z\/NX;)C;+VVU, (1)

where W is a Hermitian matrix (i.e., W;; = W,;) whose ele-
ments above the diagonal are all independent and distributed
as Wi; ~ N(0,1/2) +iN(0, 1/2). We also set ¥; =0, Vi €
[N]. The parameter A plays the role of the signal to noise ratio,
while the scaling 1/+/N ensures that the problem of recover-
ing x* is neither trivial (very large signal-to-noise ratios) nor
impossible (very small signal-to-noise ratios) [22]. The goal
of the inference problem is to recover x* from the knowledge
of Y, e

We can write the posterior probability of x given Y. In
doing so, we assume that the parameter A is unknown, hence
we study the family of probability measures with varying pa-
rameter A possibly different from A. We stress that Y is always
generated using A. When A = A computing the marginals of
the posterior leads to Bayes optimal inference; in the statistical
physics language we say that the Nishimori condition is met.
The consequences of this condition are extensively studied in

[13]. We first write the likelihood
- 2
P x) =]] Le AR ©)
x) = —exp | —|Y;; — 4 =xix;| |.
i<j 7 b ! N !

Then, by applying the Bayes theorem, we get the posterior
measure

P(Y|x)P
P(|Y) = %
N 2
1 1
T R T R
“ o0 TPy NZ e(Y;Xix;) |- )

i<j

In order to obtain the final expression, the prior as well as the
terms in the expression of the likelihood that do not depend
on x, were absorbed into the normalization. To reconnect with
the statistical physics setting, we write the posterior in terms
of a Hamiltonian

P(xIY) = _ H(x,Y,i), 4
x|Y) 7. )L)e 4)
. by _
H(x,Y,h)=2 NZRe(Yijx,»xj). 5)
i<j

To highlight the connection with the gauge glass model
Hee =J Zi,jeE cos(6; — 6; — ¢;;), the Hamiltonian can also

be written as H = 2@ ij |Yij] cos(6; — 0; — ¢i;), where
Y;j = |Y;jle'?s and x; = €. The model defined above is char-
acterized by two main symmetries. The first being the U (1)
symmetry, from which the model takes its name. It consists
of the invariance of the Hamiltonian under a global phase
shift, that is, H(xy,...,xy) = H(exy, ..., e®xy) for any
¢ € [0,2m]. As a consequence, we are able to recover the
planted signal only up to a global phase. The second symmetry
is more subtle but allows us to transform the planted model
into an ordered one. This feature is not unique to U(1) syn-
chronization: for example, the planted SK model enjoys the
same property, and can be transformed into a ferromagnetic
model where the ferromagnetic bias is proportional to the
signal to noise ratio in the original problem [13]. The U(1)
synchronization Hamiltonian is invariant following simulta-
neous transformation of x and Y. Given an arbitrary vector
z2=1(z1,...,2v) = (¥, ..., %), we transform

xj=x7 =9, (©)
Y =Yiziz;. @)

To obtain a ferromagnetic model in the variables x’, we pick
z; = x;. The planted configuration is then transformed into
an ordered one x}’ = x!x*; = 1. For large 1, configurations x
sampled from the measure will align with x*. Thus, x’ will
align with (1, ..., 1) (always up to a global phase shift).
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Due to this symmetry we can study without loss of gener-
ality the problem with x* = (1, 1, ..., 1), and our results will
extend to the case where x* is sampled uniformly over the unit
circle. Therefore, without loss of generality, we can restrict
our analysis to the problem with measure (4) and random

couplings
[ A
Yij = ]V + VVij, (8)

where W has the same distribution as in (1). We call this
particular instance the planted XY model. The parameter A
plays the role of a ferromagnetic bias, while the parameter
is an inverse temperature.

III. THE RS PHASE DIAGRAM

In this section, we derive the RS phase diagram of the
planted XY model. This is the phase diagram under the approx-
imation that the Gibbs measure can be represented as a Bethe
measure. To obtain the phase diagram we use AMP, a gener-
alization of the Thouless-Anderson-Palmer equations [11,23],
and its state evolution, which is equivalent to the replica
symmetric solution. Our analysis also provides a case to
characterize the strengths and limitations of AMP. AMP is
a general purpose iterative message passing algorithm which
outputs an approximation to the marginals of the desired
probability distribution: in our case the posterior P(x|Y).
While we expect AMP to give exact results on the Nishimori
line (A = 1), in the case of mismatched parameters (A # ),
it can be inaccurate and fail to converge due to the emer-
gence of replica symmetry breaking (RSB). The derivation
of AMP and its state evolution from Belief propagation are
presented in Appendix B. Here we present the final AMP
equations

py A J
=5 T = g8 g o
N Py N ki oh

h 1, (|2h])
A1) %) 1

N = h s h = — ,
K n7) = G

(10)

where I is the modified Bessel function of the first kind
of order k and g—Z(h) =1—|n(h)|>. % is the estimator of
the mean of the marginal; that is, %; estimates Ey[x;]. One
of the elements which distinguishes AMP from other it-
erative algorithms is the ability (in the N — oo limit) to
track its dynamics through the state evolution equations. In
particular, we have closed evolution equations for the two

observables

. .
—_— A. —_— A. 2
m = ﬁ ?:1 Xis q = N ?:1 |-xl| , (11)

representing respectively the alignment of the marginals with
the planted configuration and how concentrated each marginal
is. When doing inference, one is interested in the mean
square error (MSE) of the estimator. The MSE can be ex-
pressed as MSE = 1 4+ g — 2m. In the language of statistical
physics, m is the order parameter that represents how biased

the system is towards the ordered state. The SE equations
ead

m™D =K, [n(h®)], (12)

" = E [In(h")*], with (13)

WO = i 4 figor 2, (14

where z ~ N (0, 1) +iN (0, 1) is a complex normal random
variable. Last, we are also able to compute the Bethe ap-
proximation to the free entropy f = 1lv log Z. The Bethe free
entropy is derived in Appendix G, its expression is

. - A .
Drs(h, A) = —vVadm? + qu —Ag

FE, logllyIV2im +/iq/2zD), (15

where z is defined as above and m, g are determined by iterat-
ing SE until convergence. In Appendix G, we also show that
the stationary points of ®gg with respect to A, A are the fixed
points of the SE equations. This confers another interpretation
of the SE equations, the one of an iterative method to find the
stationary points of the free entropy. We perform extensive
numerical experiments with the goal of studying our model
through the lenses of SE and AMP.

A. On the Nishimori line

We start by restricting ourselves to the Nishimori line
) =h. For a large class of models, including ours, it was
proven that the RS solution is exact in the large size limit
[24]. From the inference point of view, this corresponds to
the case where we know how the data Y is generated, and
we can perform Bayes optimal inference, in the sense that A
matches L. As a consequence of this fact, one can establish
the relation m = ¢ [17] [13]. AMP’s analysis on the Nishimori
line has been partially conducted in [12] for a class of models
that includes ours. Moreover, a free entropy equivalent to
ours has been obtained in [12] and in [10] via the replica
method and proven to be correct in a more general setting in
[24].

Figure 1 illustrates the behavior of SE and AMP on the
Nishimori line. On the left panel, the converged values of m
and g, from both SE and AMP are plotted as a function of
A. First we observe the agreement between AMP and SE,
i.e., SE’s fixed points have the same m, g as the points to
which AMP converges. Next we see that, as one would ex-
pect, m = g at convergence. In the center panel, SE is run
from initial conditions m'= = 0, ¢'=° = 1072, corresponding
AMP initialized randomly near O (in principle one would
like to use m'=" =0, ¢"=" = 0 but numerical errors arise
when initializing with too small ¢), and m'=% =1, ¢'=0 =
1 [i.e., initializing #=9=(1,1,...,1) in AMP], known as
informed initialization. The two iterations converge to the
same value of m, showing that the SE fixed point is unique
in m. The right panel provides a free entropy interpretation
of this phenomenon. The m dependent free entropy clearly
has only one maximum, hence SE inevitably lands on it. In
other models with multimodal free energies [22], the local
maximum to which SE (and hence AMP) converges might
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FIG. 1. Numerical results for AMP and SE on the Nishimori line. All plots show the values of m, g at convergence. (a) Comparing m and
q from AMP to verify that m = ¢ and verifying that they both agree with SE (continuous line). The initial condition for AMP is uninformative
(m'=% = 0). (b) The two curves represent the value of m to which SE converges with respective initial condition m'=" =0, ¢"=° =1 and
m'=0 =1, ¢'"=° = 1, the fact that they’re equal shows that there is a unique fixed point of SE. (c) Bethe free entropy as a function of m; the red
cross on each curve marks the unique stationary point to which SE converges; the uniqueness of the SE fixed point is a direct consequence of

the free entropy having exactly one stationary point.

not be the absolute one. Being the RS free entropy ®gs
exact on the Nishimori line, the uniqueness allows us to con-
clude that AMP computes the true marginals when N — oo.
Beside AMP’s behavior, Fig. 1 shows that m undergoes a
second-order phase transition at A = 1: for A < 1 we say the
model is in the paramagnetic phase, because m = 0 and there
is no correlation with the planted signal. Instead for A > 1 the
system develops a ferromagnetic order.

B. Contiguity to the random XY model

One important consequence of the previous analysis is the
existence of a phase where the effect of the planted signal
disappears. When A < 1, the signal is completely washed out
by the noise, and the data Y are indistinguishable from random
noise; in other words, it is as if ¥ = W. This in turn implies
that for A < 1, all high-probability quantities are independent
of A (this is referred to as contiguity of probability distri-

1.0 i
A=2, A\=2
= 0.5 A —
0.0 : : |
0 10 20 30 40
t

butions in the statistics literature [25]). To put it differently,
whenever A < 1, the planted nature of our model is lost and
we look at a spin glass with purely random couplings. In the
rest of the article, we will refer to the & < 1 case as the fully
random phase.

C. Replica symmetric phase diagram

Moving to the general case where A is possibly different
from A, we aim to explore the full phase diagram painted by
SE. We begin by verifying again the agreement between the
fixed points of AMP and SE, also during the dynamics. In
Fig. 2 AMP is initialized from a random configuration x'=°
with entries of unit norm (thus ¢'=° = 1 and m'=" = 0). It is
evident that SE accurately tracks AMP, apart for some finite
size effects.

In Fig. 3 we plot the full phase diagram in the A, A plane.
We can identify several phases:

(b) 1.0

m

1.0 -
A=2, A=1
= 0.5 1 .
=~
00 T T T
0 10 20 30 40
t

FIG. 2. Comparison between AMP (N = 1000) and SE, for (a) on and (b) outside the Nishimori line. The red line represents the behavior
of SE while each of the 40 gray lines is an independent AMP run. State evolution tracks accurately both m and ¢. All the runs are initialized
with a configuration where each spin’s value is picked uniform over the unit circle.
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FIG. 3. Phase diagram obtained from SE. The dashed line in both panels is the Nishimori line. (a) The light blue region is paramagnetic
phase, where m = g = 0. It is delimited by the curve A = min(1, A~"). The pink bottom right region is the spin glass phase (evaluated by the
RS solution), here m = 0 while ¢ > 0. The upper curve delimiting the spin glass phase (evaluated on the RS level) converges to A = 4/ for
A — oo0. In the top right we find the ferromagnetic region where both m, g are strictly positive and the RS solution is stable. The remaining
slice between the ferromagnetic and spin glass phase is called the mixed phase. (b) The yellow area, which encompasses the spin glass phase
and the mixed phase, is the region where the RS stability parameter c¢ is negative and thus AMP does not converge, or equivalently the RS

solution is unstable.

RS unstable phase: The yellow area in the right
panel is the region where AMP does not converge. The
nonconvergence of AMP is synonym of the replica symmet-
ric solution being unstable and the RSB being required to
correctly model the measure. The equivalence between the
convergence of AMP and the stability of the RS phase is
further discussed in Sec. IV B.

Paramagnetic phase: corresponding tom = 0, g = 0. The
boundary of this region can be found analytically (see
Appendix C) and is given by the curve A = min(l, A").
Throughout the paramagnetic phase, AMP will output the
noninformative estimator X = (0, 0, ..., 0). This corresponds
to the estimated marginals being uniform on the circle.

Ferromagnetic phase: defined as the intersection of the
region where m > 0, g > 0 and the RS stable phase. The
marginals produced by AMP are partially aligned with the
planted state (or partially ordered). Moreover the RS solution
correctly describes the structure of the Gibbs measure.

Mixed phase: where m > 0, g > 0 but the RS solution is
unstable. This region corresponds to the slice between the
ferromagnetic and spin glass phase.

Spin glass phase: where m = 0, g > 0. In the spin glass
phase, AMP’s marginals are polarized towards a random value
which is uncorrelated with the planted configuration. In this
phase, AMP also encounters convergence problems, and the
RS solution is unstable. In Appendix C we show that the upper
boundary of the spin glass phase, dividing the m = 0 from the
m > 0 region, can also be expressed analytically in an implicit
form. Notice that since we are in the RS unstable phase, the
RS prediction for this boundary is not reliable, thus RSB is
needed to evaluate the correct boundary between the spin glass
and the mixed phase.

More quantitative information about the values of ¢ and m
is found in Fig. 4. In this figure, the top row represents the

phase diagram obtained via AMP, while the bottom row was
obtained from SE. First, we notice that across all transition
lines, both m and ¢ are continuous. Looking at the panels
showing ¢, we see that g is always increasing in A. This can be
explained by interpreting A'/2 as an inverse temperature, then
it is clear that spins should be more and more polarized with
decreasing temperature. From a mathematical perspective
according to (9), A1/2 controls the norm of /' and hence that
of %.

D. Convergence of AMP

It is known that on the Nishimori line the RS ansatz is exact
[13,24], hence AMP estimates the marginals of P(x|Y) exactly
in the large size limit. The same cannot be said about the
rest of the phase diagram. Therefore we need to distinguish
between the true behavior of the model and that of the algo-
rithm. For example, AMP’s shortcomings are evident when
the iterations fail to converge. In the left panel of Fig. 5,
we plot the convergence time of the algorithm across the
phase diagram. For small enough 4, when A is increased, we
always encounter a phase in which AMP does not converge.
AMP’s convergence has important links to RS stability. In the
Sherrington-Kirkpatrick (SK) model, it was proved in [26]
that the RS stability line delimits the region where AMP
converges. This property is general and also in our case, the
1RSB analysis will confirm that convergence of AMP and sta-
bility of RS coincide. We can thus state that AMP converges
iff the RS solution is stable. Analytically, we study AMP’s
convergence by looking at stability under a random per-
turbation h®) > h® + §h®, with Sk = e, with ¢ ~
Unif([0, 27 ]). By propagating the perturbation through the
AMP equations (more details are provided in Appendix D),
we obtain that the perturbation norm grows according to the
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FIG. 4. Heat map representing m and ¢ for (a) AMP (N = 500) and (b) SE as a function of X, X

law Egy[[[8hCHD 1] = (1 — O ) Esu[ 8971, with

AMP

A 1
()
Cawp = 1 — 3 E |:N E |Yik|2:| (16)
' k

i=1

< [ (1) (o (1) =+ [ ()]
(17)

where the expectation is with respect to the randomness in
the perturbation and 7,(r) = %25—23 AMP will converge if
the norm of the perturbation decreases in time (camp > 0),
and will oscillate otherwise. This quantity can also be tracked

using state evolution

, A :
cp = 1= SEIn (D) + D, (1A) + Il (ADPL - (18)

= hg®
h =V Aim® + - % z~N(O, 1) +iN(0,1), (19)

where m®, g) are obtained by running SE. Since canp con-
verges to csg in probability in the N — oo limit, we will refer
to both quantities as ¢. The right panel in Fig. 3 depicts in
yellow the region where AMP is not convergent. The area
where ¢ < 0 coincides with the union of the mixed and the

spin glass phases. We conducted further experiments about
AMP’s convergence properties. In the left panel in Fig. 5
we plot the number of iterations (capped at 300) after which
AMP converges. We verify that the region of nonconvergence
coincides with the one predicted from camp and csg, displayed
in the center plots. Finally, the right panel shows the quantity

. O a1 2 .
AR = L3180 — 2Y7V), representing the rate of change

of the estimator. We see that in the ¢ < 0 region, A%’ does
not decay to zero, because the dynamics keeps oscillating.
Contrary to AMP, SE is not affected by convergence problems
and correctly tracks the observables m and g, even when &)
does not converge.

In conclusion, AMP and SE correspond to a replica sym-
metric approach in solving the planted XY model. Under this
assumption the Gibbs distribution is well described by a sin-
gle Bethe measure (or state). In the RS unstable phase, this
approximation may not hold and an analysis based on replica
symmetry breaking is needed.

IV. 1RSB ANALYSIS

To overcome the shortcomings of the RS approach and
AMP, we must carry out a more refined analysis which takes
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FIG. 5. Convergence properties of AMP. To measure the rate of change of the estimator, we introduce the quantity AR’ =

%\/ > |fcf') — fcf’_”lz. We consider AMP’s iterations to have converged when A%’ < 107>, (a) Convergence time of AMP over the A, ) plane.
The convergence time is capped at 300, each pixel represents the average convergence time over 25 independent runs. (b) Heatmap of canmp
computed at the final time, each pixel represents the average convergence time over 25 independent runs (c) Heatmap of csg computed when
SE has converged. (b—e) We pick two points in the A, & plane (marked by white crosses in the center panel) and plot A%' for 40 independent

AMP runs. When A" does not decay to zero, AMP does not converge.

into account replica symmetry breaking. Methods such as
BP or AMP basically “fit” the Gibbs measure onto a Bethe
measure [13]. When this ansatz turns out to be correct, we say
the model is in a replica symmetric phase and AMP converges,
giving an accurate estimate of the marginals. Otherwise, the
Gibbs measure @ can break into a multitude of Bethe mea-
sures which we index by o, ie., u =23, Zyu, [27][28].
The total partition function is then Z =" Z,, where Z, is
the partition function of a single Bethe state (computable by
exponentiating the fgeme Of the single state). Message passing
algorithms will exhibit a multitude of fixed points, each cor-
responding to one of the states. Replica symmetry breaking
allows us to account for this structure of the Gibbs measure.

In the first step of the construction, called one-step RSB
(1RSB), we postulate the existence of a function X(f), called
the complexity function [29], with the property that the num-
ber of states with a free entropy f, = 11\, log Z, close to a value
of f is, at the leading order, ¢"*), The best approximation to
the free entropy of the system, at the 1RSB level then reads
(30]

~ 1 ) 1 -
®rsg = NlogZeNfa _ ﬁlOg/df NEDHN
o

= sup [Z(N)+fl=Z(F)+F (20)

fE()20

Here f* is the free entropy of each of the equilibrium states,
and it is determined by the condition

= S e0 ®H+H
Y(f)=—-1 i
:{f ) le(f).>0 o)
fo otherwise

with f; the largest root of the equation X(f) = 0. We will
call ®rsp the true 1RSB free entropy. By introducing the
positivity constraint on X in (21), we are discarding the un-
physical solutions with X(f) < 0. The negative complexity
would in fact mean that there is an exponentially (in N) small
probability of finding a state with the given free entropy.

From ASP we will obtain the related quantity, which we
call replicated free entropy

Pirsp(s) = SI;P[E(f) +sf1=ZIf O] +s(s),  (22)

where f* satisfies X'(f*) = —s. Notice that from (22) we
have the characterization f*(s) = Na‘%. We also remark that
we can access X(f) by computing it parametrically in s:

E(f*(s)) = Pirsp(s) — sf7(s). (23)
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The next goal is to find ®rsp, starting from the newly found
¥ and f*. One difference between ®rsp and ®rsp is the
relaxation of the positivity constraint on X. This implies that
naively setting s = 1 might not give ® gsg. Instead we obtain
®irsg = Z[f*(s.)] + f*(s,) for a well chosen s, :

if Z[f*(D] =

. (24)
if 2[5 (1)] < 0

{1
Sy =
—%'(fo)

and justify this choice in Appendix E. Basically, s, is the value
of s for which the replicated free entropy best approximates
the Gibbs measure [31].

A. Approximate survey propagation

In this section, we derive the ASP algorithm. Survey
propagation (SP) is a message passing algorithm developed
originally in the context of random constraint satisfaction
problems [32]. The approach has then been extended to sev-
eral other inference and optimization problems [31,33]. ASP,
through its state evolution, also allows us to compute the
1RSB replicated free entropy exactly in the N — oo limit.
Appendix F provides the details of the derivation, here we
only go over the key steps.

In this work we follow the derivation of ASP introduced
in [21]. We introduce a replicated system com osed of s
independent replicas. We indicate with x; = (x fs))

J

the replicated variables. First, we write BP for the replicated
system {x@}_|

M (i) = [ ] i, (25)
z—)U Kt j
mjji(x;) = — fdxjmjeij(xj)
ij—i

X exp|: \/7ZRC _(a) (“) j| (26)

Then we relax BP by parametrizing the messages with their
means and covariances

(x) = 2, 27)

A~ 2 .
(@=(b) Riijl* + Aisij  ifa#b
(xi %) = {

, 28
1 ifa=>b 8

with () being the average with respect to m;_,;;. A is a
measure of how coupled the replicas are: when A = 0 the
replicas are independent and we recover the BP equations for
s independent replicas. The crucial assumption of the IRSB
approximation is that all pairs of replicas (a, b): a # b have
the same A. % instead plays the same role as in AMP. Finally,
we remove the dependence of the messages on the target
node and correct for it by introducing the Onsager term. Once
again, this is possible only due to the fully connected nature
of the model. After accomplishing these steps, we arrive at the
ASP equations

py dx,
. . k-
T = NZYikx,i ”D,P (29)
k=1
=3 Z |Yal* A, (30)
k=1
—VHh? s=1[ Li+Vih
o Jo dh e 21T, + ViRDP ™ [ QIT; + Vik))] ah
! Jo dhe VTP L QIT; + Vi) ’
2 s—
A= Jc dhe V1L QIT; + Vil 2L Q2| T; + Vik|)])? P 32)
Jo dh e VI 2IT; + Vih P ’
[
with 4 dT , computed numerically via finite differences. It can " N
be shown that by setting s = 1, one recovers AMP. The ASP g7 = E[XT, VHI], (36)
equations are equipped with thelr SE, which allows us to track " R
the scalar quantities m, g and A == 1 Y_; Al. SE reads AT =E AT,V 41 (37)

— Vi’ +.Jiq )2z, 33)

The functions x(7, V) and A(T, V, g) are the same as in (29),
but without indices and with |%;|*> replaced by g. Finally, in

Vi = A, (34) (38) and (39) we compute respectively the 1RSB replicated
free entropy for ASP and the corresponding free entropy of
m' T = E[&(T", V)], (35) the states selected by s:
J
< = s2h N s(s — DA
®irsp (A, &, 8) = —sV Arm? + qu —si(g+A) — %(A +g)*
A SRS . :
+E;|log| — [ dh exp(—=AA|R)LQ|T + LARD] ) |, (38)
T Jc
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IPirsp(s, A, &)

Frs A ) = ———270 — N adm? 4 shg? — A+ A) —

as

Jo dhexp(—2 AR loglly2IT + AARDIU2IT + A AR

e

The derivations are found in Appendix G. In both the free en-
tropy and SE, z ~ A(0, 1) + iN(0, 1). Analogously to AMP,
the stationary points of the replicated free entropy ®rsg with
respect to m, g, A are fixed points of the ASP equations; a
derivation of this fact is provided in Appendix G. By manipu-
lating the equations, it can be shown that there are two ways to
recover the RS solution: either by setting s = 1 or by having
A =0.

B. Numerical results

Iterating Eqs. (29) and (33) presents some challenges
due to the multiple integrations involved at every time step.
Nonetheless we manage to compute, to satisfactory numerical
precision, all the key quantities in the problem: the complexity
¥, the IRSB free entropy ®gsz, the equilibrium free entropy
f* and s,. We start by verifying that ASP and SE behave
as expected. Figure 6 illustrates some ASP numerical exper-
iments conducted at A = 0.5, A =2, s = 5, = 0.166, where
the model is fully random (no ferromagnetic bias), and at
A=2,1=1.08,s=s, =0.221, located in the mixed phase.
Both points are located in the RS unstable region. First, we
remark that SE tracks ASP apart from some finite size effects.
Moreover we observe that Ax does not always go to zero,

(a) A=0.5, \=2, s = s, =0.166
1

S \

10° 10! 102 10
t

Jo dhexp(=2 AP Q[T + 2ARDF

]. (39)

(

thus ASP does not always converge in the RS unstable phase.
Figure 6 also confirms the existence of the RSB phase, char-
acterized by A > 0, contrary to the RS phase where A = 0.
For the rest of the analysis, we will present results obtained
exclusively from SE. To capture the behavior of SE, we study
the algorithm along two trajectories in the A, A plane.

Figure 7 fixes A = 2 and plots several quantities as a func-
tion of A. First we notice that for A < 1, s,, A, m and also g
(not shown) are constant. In fact, in this region, the model is
equivalent to a random one. Recall that the AMP convergence
threshold is at )\COH\,()A» = 2) = 1.105, indicated by the upper
limit of the grey band. We indeed observe that A undergoes
a second-order transition (upper center plot) exactly at Acony-
Moreover for A > Aqony the IRSB free entropy becomes equal
to the RS free entropy (bottom left plot). In this region, the
complexity function ¥ also becomes null and s independent,
results in the vanishing of s, (top left plot). These results con-
firm that AMP convergence and RS stability are equivalent.

We then see that in the whole range of A, s, < 1. This
indicates that there is no dynamical-1RSB phase [34][35],
where the measure would be dominated by an exponential
number of states. On the 1RSB level, the measure is either
dominated by a single Bethe state in the RS phase (A > Acony)

(b) A=1.08, \=2, s = s, =0.221
1
g
1
jw)l -
o=
0 T T 25 T
1
<
2
—
o+ —
100 10! 102 102
t

FIG. 6. ASP and its state evolution at two different points in the A, A plane. For each run we plot m, g, A, and A%’ as a function of iteration
time. The red curves indicate the evolution predicted by SE. Each of the 50 transparent lines is an independent ASP run with N = 2000. (a) We
run ASP deep in the spin glass phase A = 2, A = 0.5, s = 5, = 0.166; recall that here our model is equivalent to a fully random one with A = 0.
(b) ASPistun at A = 2, A = 1.08, s = 5, = 0.221. This point is located in the mixed phase. In both cases SE tracks ASP accurately enough,
the finite discrepancy in the case of A = 1.05 is caused by the finite-size effect near the RS instability transition located at A = 1.105.
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FIG. 7. A =2 and variable A. The gray band represents the mixed phase from the RS phase diagram (i.e., goes from the m = 0 instability
up to the AMP convergence threshold). We plot, as a function of A, (a) the value of s that best approximates the true free entropy (s,), (b) the
overlap between two replicas in the same state (A), and (c) the overlap with the ordered configuration (). The point at which A(s, ) becomes
nonzero marks the RS instability transition, this is seen to coincide with the AMP convergence threshold. As shown in the top right plot, ASP
attains m > 0 for smaller values of A compared to AMP. (d, e) The complexity curves X(f*) and X(s). The curves are characterized by a
physical and an unphysical branch (shown in transparency only for A = 0.9) which extends up to s = 0. At the RS instability threshold X(f)
collapses to a point and X(s) becomes constant. (f) The difference between the RS and 1RSB free energies; the two become equal at the RS

instability threshold. (g) The stability coefficient casp of ASP.

or, in the 1RSB phase, by a sub exponential number of Bethe
states. This fact implies that ® rsg(X, A) = f*(s., A, A). Put
differently, in the IRSB phase, the free entropy of the system
will be given by the point where the complexity curve X(f)
touches zero. Nonetheless, below Aqony, X (center panel) is
positive on a interval of values of s, attesting the presence
of an exponential number of metastable states. Approaching
Acony from below, X(f) shrinks until it becomes a point at
the RS stability transition, correspondingly X(s) approaches
a zero function. The complexity curves also have an unphys-
ical branch, only shown for A = 0.9. The unphysical branch
begins when f* becomes decreasing in s, and continues down
to s = 0. One might ask why, for A > Acony, the value of s, is
not reported. The answer lies in the definition of s, as the point
where the complexity curve 2(s) touches zero. From panel (e)

we see that for A > Aony (€.g. brown curve), X(s) = 0 for all
s, so s, 1s ill defined.

The behavior of m (top right) is also interesting: the lower
margin of the gray stripe corresponds to the value of A at
which AMP starts correlating with the ordered state, i.e., when
mamp > 0. We see that ASP achieves positive m even when
AMP is not able to, almost achieving the theoretical threshold
at A = 1. From an inference point of view we can say that ASP
recovers the signal at smaller SNR.

Let us shift our attention to Fig. 8. We fix A = 0.5 (fully
random phase) and vary . Recall that for A < 1 the measure
is RS. For increasing A, A increases, signaling that the states’
width decreases. As in the previous figure, when approaching
the RS region the complexity curves X(s) become flatter,
becoming the identically zero function at A = 1, and Z(f)
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FIG. 8. A = 0.5 and variable . For A < 1 the system is in the RS phase. We plot, for various values of ):, (a) the value of s that best
approximates the free entropy (s,) and (b) the overlap between two replicas in the same state (A). The error bars reflect the error in the
computation of s,. Notice how A — 0 when approaching the RS phase. (c, d) The complexity curves for different values of A, as a function
of both f* and s. The unphysical branch is shown in transparent trait only for A = 3. The inset in the left plot magnifies the region near
f* = f*(s.). Approaching the RS phase, () collapses to a point, while X(s) approaches a constant. (¢) The ASP stability coefficient cagp.

becomes a point at f*. When this happens, the free entropy
becomes independent of s, giving back the RS solution, which
corresponds to s = 1. From the point of view of X(f), smaller
values of A translate into fewer metastable states in the mea-
sure, approaching eventually the RS picture with only one
state, the paramagnetic one.

Finally we discuss the stability of ASP in both Figs. 7 and
8. In a way analogous to AMP we study the convergence of
ASP by analyzing the stability of its iterations under a random
perturbation. Given the complexity of the update functions,
we perform this analysis numerically by perturbing the vector
T’ by a small quantity. We introduce casp such that if casp > 0
the perturbation norm shrinks in time. If instead casp < 0, the
perturbation grows in time and ASP is unstable. The bottom
right panels in Figs. 7 and 8 show where casp is positive.
Notice, for example, that in Fig. 7 ASP converges in the mixed
phase, where AMP failed to converge. An expression for casp
is provided in Appendix D.

V. DISCUSSION

In this work, we studied the planted XY model defined by
(4) and (8). Our model enjoys multiple connections, both with
spin glasses and inference problems. In the inference setting,
it corresponds to the angular synchronization problem, instead
from the statistical physics point of view, it can be seen as an
XY, mean field spin glass with a ferromagnetic bias. The two
problems are related by a change of variables. We first obtain
the RS phase diagram where we recognize several regions,
a paramagnetic phase where the spins are each uniformly
distributed on the circle, a ferromagnetic phase where a partial

global order arises (spins approximately point in the same
direction) but the replica symmetric solution is stable, a mixed
phase where replica symmetry is not stable and magnetization
is positive, and a spin glass phase in which each spin is
partially frozen in a random direction.

To mitigate the instability of the RS solution, we resort
to the ASP algorithm. ASP is the 1RSB version of AMP,
allowing one to model the existence of multiple states in the
Gibbs measure, each state corresponding to a fixed point of
AMP. In the 1RSB formalism, we obtain a better estimate of
the free entropy, and we can also count the number of states
with each free entropy through the complexity function X(f).
All the estimates are obtained through the state evolution of
ASP.

One question remains open: Is the 1RSB approach exact
or are further levels of RSB required? There are two failure
modes of 1RSB: either several 1RSB states form a cluster
together, or each 1RSB state breaks into a multitude of smaller
states [31,36,37]. Studying ASP’s convergence allows us to
detect the first kind of instability. We can then conclude that
the 1RSB ansatz is incorrect in at least part of the phase
diagram (i.e., where ASP does not converge or equivalently
where casp < 0). In this phase likely the full-RSB ansatz
would be needed to provide the exact solution. In the re-
gion where ASP converges and casp > 0 one would need to
evaluate the 2RSB solution to conclusively decide about the
exactness of the 1RSB, this is left for future work. Interest-
ingly in this respect the XY model behaves differently from
SK where ASP never converges throughout the phase diagram
[21] and the FRSB solution describes the entirety of the RSB
phase. Should the 1RSB solution be exact, the XY model
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would represent a case of a system where continuous RSB
(i-e., A is continuous at the RS instability threshold) coexists
with a 1RSB phase.

The code and data used to produce the plots in this work
are available on Zenodo [38].
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APPENDIX A: CIRCULAR DISTRIBUTIONS

In this Appendix we recall some basic facts about proba-
bility measures on the unit circle, and their connection to our
setting. In the following we will always assume that x = e/
is a complex variable of unit modulus. Let x ~ P(x), then we
define the raw moments of x as

m, = ?g dxe™ P(x). (A1)
T

In analogy with the linear case one can define the circular
mean and variance respectively as m; and 1 — |m;|. We shall
explore a family of circular distributions that appear in the
analysis of the planted XY model.

Suppose x belongs to the following family of probability
measures spanned by the complex parameter h = |h|e™®:

1 —
(1) = SR, (A2)
2rlo(|h])
where I; is the modified Bessel function of the first kind
of order k. The real part can now be written as Re(xh) =
|h] cos(8 — ¢), thus yielding a von Mises distribution [39] for

J

mijj(x;) =

1 [ _ A _ A -
= ‘(fdxi 142 ﬁ Re(Yijxixj) + ﬁ Re (Yiixizsz‘) + N'Y’J|2 + O(N 3/2) mi_,ij(xi)

Zij—j

1

From the first to the second line we used that Re(z)? =
%(Re(zz) + |z]%). Then from the second to the third line we
dropped the O(N~!) terms since these are subdominant in

i i
fdx,- 1+ 2,/ ~ Re i) + 2 Re(Y;jx%ix;)* + ON %) [ mi;j(x;)

A ~ _
= > 1+2,/NRe(Y,-ij,-jxj)+0(N Hl=

the variable 6:

P@O) = ————lMes0=9), (A3)
2 lo(|hl)
The moments of P are
L,(|h)
m, = Ep[x"] = . (A4)
g I(1hl)

In fact,

2 )
2l (hlym, = / S0 Jhlcos()
0
2
= / [cos(nf) + i sin(nd)]e!<os®
0

2
= / cos(nf)e!" <@ = 271 (|h]). (A5)
0
The last equality follows from the definition of I,.

APPENDIX B: AMP AND STATE EVOLUTION
DERIVATION

We shall now briefly recall the derivation of the AMP
algorithm. While there are several ways to do so, we choose
an approach similar to [22] based on manipulating the belief
propagation equations. Belief propagation for the planted XY
model reads

1
mi_ij(x;) = 7 l_[ My (X;), (BD)
=] i
1 by _
m,‘j_”‘(x]‘): 7 dxiexp 2 ﬁRe(Yijx,-xj)
ij—>
X M (X)), (B2)

where all the integrals are on the unit circle in the complex
plane. This is a set of N? functional equations: it would
be impossible to use them in practice on a computer. The
first step to obtain AMP consists of relaxing BP: this means
finding a parametric form of the messages under which the
BP equations can be closed. We first expand the exponent in
Eq. (B2):

(B3)

(B4)

| A _
exp | 2 ﬁRe(n,x,-ﬁi,xj) +ONN"YH. (B5)

(

the N — oo limit and we performed the average introducing
Xiij = Ep,_;[x:]. The normalization constant can be com-

puted Z;;_, ; = 2mly(2+/ ):/N|Y,-j)%,-_>,-j |) By substituting the last
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expression in (B1) we get

1 [ % _
exp | 2,/ = Re | x; YiiXiki
Zi_>ij p N [Z, kirk— ki

ki, j

mi_j(x;) =

= —¢€X [2 Re xl'Ei j— )]7 (B6)
2rlo(hsy) ¥ ~

where in the last line we defined 4;;_, ; = \/;Zk;éi,j YiuXioki-
We have finally arrived to the relaxed BP equations:

~

A
()
hi;’»j = N Z Ylkxk%kz’ (B7)
ki, j
h I (|2h])
A1) ® — 1
xl’_)” = (r) [X,] = T}(l’ll;_)]) T](h) = mm (BS)

For the computation of E,,_ [x;] we refer to Appendix A.
To complete the derivation of AMP we now remove the de-
pendence of the target variable by expanding the relaxed-BP
equations. First, define the single-site fields as

hi = hijsj + A/NYiiiji = AN Y Yadion.  (B9)

k#i

Similarly we introduce the variables X, which, at convergence,
represent AMP’s approximation to the system’s marginals:

n("),

and the goal is to replace variables indexed on edges with the
new variables indexed on vertices: to do so we have to keep
track of the error

D = (B10)

~(t) o) _ (r=1)
xk%kl_xk - (hkl%l)

20")
M iy | *
= _B_Z(hg 1))\/;Y 20 +OWNTh

9 A
=" a_Z(hff‘”)\/ SHaE T+ o, B1D)
|

For a detailed explanation of the form of d7/0h see below.
Plugging this into 4" we have

=25 Tl

ki

\/>ZY1" &0 _ \/Z gZ(ha D=1

ki
X Y )
TN
k;ﬁl k#i
(B12)

Equation (B10) together with (B12) constitute the AMP algo-
rithm.

a. Derivation of the Onsager term

In this section we derive the form of g—;’l Notice that 7 is
not an analytic function, so its derivative cannot be expressed
as a complex number, instead it takes the form of a 2 x 2
Jacobian. Writing n(h) = n(x + iy) = u(x, y) + iv(x, y), the
directional derivative of 1 along z is a—" = Re(2)[0 u(x,y) +
idxv(x, y)] + Im(z)[d,u(x, y) + id,v(x,y)]. Decomposing z
along the directions respectively orthogonal and parallel to 4,
and with the notation » = |h| we obtain the following alterna-
tive expression:

h\h
nth+z) —n(h) = |:Z—Re<|h| >|h|]n’( )

4 Re (L)—a ()] + 0z,

|h| "/ |hl
(B13)
where we have defined n,(r) = }% In the computation of

the Onsager term we have

h(t) \/721/ 7] h(f l) \/721/ h(t 1)

k#i k#i

I D
_p h}({z n ]T/Yikxft N

Let us fix k in the second summation and look at one term: to
A t —

lighten the notation rename ht Dy h, Yu = Y, Dy
x. Applying (B13) we have

(B14)

Y| nkh) — h—\/EYx —ﬁY[?x—Re(z%c)h} ()+ﬁ Re(z )ha(r (r)) + O(1/N)
= N VN TIATTE AR Y )

h
IY|?x+Y — Re
|h]

5] =]

1
{5x|Y|2{ar[rnr<r)] + 0N} + ——

h
<|h|Yx> (9, Lrn ()] — m(r)]} + O(1/N)

2

T (B15)

{3 [rn.(r)] — nr(r)}} + O(1/N),
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where in the last step we expanded Re(z) = %(z + 7). Sub-
stituting this back into (B14) and summing over k, one sees
that the second term is negligible because Y? is a zero mean
random variable. Moreover the by the properties of the Bessel
functions we have the identity %{8,.[1"17,(;’)] +n}=1-
[7(r)]?. To conclude (B12) holds with

= (")

n'Y) = (B16)

an

1. State evolution heuristic derivation

One of the elements which distinguishes AMP from other
iterative algorithms is the ability (in the N — oo limit) to
track its dynamics through the state evolution equations. In
particular we will derive closed equations for the two observ-
ables

1 & e
N 2. - 212
m—NZx, q—N_Z|x,|, (B17)
i=1 i=1
representing respectively the alignment of the marginals with
the planted configuration and how concentrated each marginal
is. We start by deriving an iterative equation for m):

N
v ||y
i=1 =

D —

1 N
=y L
i=1
1 - "
=2—/dz eV aim® +\/Aq" /2 2). (B18)
T JC

In the second passage we defined z; = \/; Zk | Wik ~
N(0, 1) +iN(0, 1), and in the end we replaced the sum over
i with an integral, since N — oo and z;s are assumed to
be independent. The whole derivation revolves around the
assumption of independence between ) and W. This is of
course not the case, because ¥ will depend on W through
previous iterations, however the Onsager term in the itera-
tions reestablishes asymptotic independence as explained in
[11,40]. Similarly for g we have

1 A
s =iy al
i= 1 k=1

1 = A
= 2_/ dz =3 [y (Vadm® +\[ig0 2 2.
T Jc

(B19)

2. Simplification of state evolution

We can further simplify SE equations. The use of this is
to reduce the number of integrals to be done numerically. We

start by simplifying f,:

1 1 = )
_f dZ e_flzlzn )\‘)\‘m_i_ _qz
2 C 2

T om Va(x)? + igy?/2
x iy a(x)? +Agy2/2) |

where we split z = x + iy and we introduced a(x) = v am +
VAg/2x. In principle f,, could be complex; however, the
imaginary part is zero. By changing variables according to

X =ax), y =+/Agq/2y we get

fm(m’ 11) =

(B20)

1 =
Jm(m, q) = dxdy exp [—X—Lf + (- W\)\m)zl]
q
X
Xﬁﬁ(vxtﬁ‘yz)
VX2 +
= / dr/ dx
n)\q —r
‘e [ L f } S
X r
P ?» gV x 1/r? —x2}7
2 w2 [ 2 A
= A—er / dr rexp |:—r—:|11 <2T\/:r)77(r),
rq 0 Aq gV
(B21)
where in the second line we changed variables to

X, r—\/)c2+y2 and in the last passage we used that
f dx e™ ﬁ = mrli(ar). An analogous procedure also

yields a simplified equation for g:

Am? o0 r2
Jo(m, q) = —e ¢ / dr rexp |:—A—:| (B22)
Aq 0 rq
m (A \_. o,
xIp\ 2—,/ =1 |7(r)".
gV A

APPENDIX C: FIXED POINT ANALYSIS

(B23)

We write SE equations in vectorial form as

=™ g = Q) = (' ). fyn', ).
(ChH
We say X is a fixed point if f(¥) = %. Let ¥ be a fixed point and
denote A = x — X. Then at the linear order in f A will evolve
as

A=) o S@A =y @AY ()
J
In order to characterize the behavior of A (and hence study

the stability of X¥) we must then look at the Jacobian. In the
following we study this Jacobian for multiple fixed points.
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1. m=0,g=0

We first evaluate the stability with respect to m:

fm 0 dZe Z\Z\ (\/7111)

e =0
(m 7=0) am 21
V.

\/ﬁn%m -

We now examine the stability with respect to ¢. For this
purpose define i = |n|:

m=0

(C3)

m=0

Yigm=0
q

q=0
a 1
E)q 2

a o0

dz e” ‘2| x 7( )»q/2z)2

q=0

dr re” n( Aq/2 r)

=0

\/7/ drrie” 727]( Ag/2 1)

x i'(y/ hq/2 r)

1/ / drrie” '777 0)/2g/2
f dr rie” %
4 Jo

q=0

>

(C4)
In the second to last passage we use the fact that ¢ — 0 to
expand 7 to the first order. Also remember that 7'(0) = 1.

So the m = ¢ = 0 fixed point is stable if A < 1 and Ax < 1.
This region is delimited by the curve A = min(1, A~') shown
in Fig. 3.

2.m=0

In the spin glass phase we expect that m = 0 while g > 0.
To find the boundary with the phase where both m and g are
positive we need to compute the stability of m = 0 for the
value of g given by the converged state evolution.

ShIHD = \/7 Zsz [1(h® + 8h") — n(n")] + 2

~

A o
N Z YikJn(h/(:))‘Sh;:) + N)AC,(I b Z |Yie|?
k k

- \@Z Viedn(1)oh + ON~'1%).
k

In the second passage we introduced the notation r =

|h,(c’_1)| and the function Z—Z(|h|) = g—,’i(h). Moreover we used

Starting from (B21) we compute 9 f,,,/dm for general g:

f’" = —2\— fm(m q)+ f / dr r*i(r)
x ‘5[1 <2@\/Z ) ny (ﬂﬁ )} (C5)
e 0 4 ):r 2 4 i}” .

By setting m = 0 one obtains

M| _ 247

om |, = qzi3/2

Am

00 2
dr r*ij(r)e 7. (C6)

APPENDIX D: CONVERGENCE OF AMP AND ASP

In this Appendix we study the algorithm convergence cri-
teria for AMP and ASP given parameters (X, X, s). First, we
examine the case for AMP. We introduce some quantities
that will be required for the analysis. For convenience we
will sometimes treat complex numbers and functions as vec-
tors in R2. z = (Re(z), Im(z)). Accordingly we will represent

(@) = G160 s 1) = (n.(r), yn, (), with z =x + iy,
15L,(2r)

r=+x2+y?and n,.(r) = T hon- Since 7 is not an analytic
function, its derivative cannot be expressed a a single complex
number, but the whole 2 x 2 Jacobian Jn is required. We find

X2 Xy
e (r) + S0l(r) 2 (r) } o
RG] () + l(r)

Finally we will need the following fact: let M = {M; ]}, j=1 b
a2 x 2 matrix and || - ||, be the Euclidean norm in R2. Then

2 cos6]|?
dGHM[ . ] _
sin O , 2

Inix,y) = [

1
—(My1 + Mz + Moy + Ma).

2

We perturb the vector 2) with an infinitesimal vector
sh® e CN, where coordinates are i.i.d. uniformly dis-
tributed on a circle of radius € [i.e., Sh,(f) = e, ¢>,E’ )~
Unif([0, 27])]. Let &) = h® 4+ 8h® be the perturbed vector.

If the perturbation grows in time, then AMP will not con-
verge since every fixed point would be repulsive. Define the
norm of the perturbation to be |64 12 = 1iv Zszl |8h|?. In this

way we have [|84)]|> = €2. Using (9) and (10) we get

_’\(f I)Z|Y |2|: h(f l)+8h(l 1)) ZZ(h(l l)):| (D3)
~ (t=1)
d (0n hy )
—\ = R oh D4
|:8r<8h(r)> e<|h;; D] BD
(D5)

(

the fact that |h + §h| — |h| = Re(‘h|8h)+0(|8h|2).1nthelast

passage we exploited the fact that Re(:-8h) has zero aver-

[h
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age with respect to the randomness in &4, thus the Onsager
term will give a N~!/2 contribution, which can be neglected.

J

We now compute the norm of the perturbation at time
t+1:

~ 2
I
Jsn O = 5 32 5 [ v )on| + 5 ©6)
i k
= iz lZu/- 2\ |an(h)sn® - LSy ya | (KO)VI (R )shOshD + (D7)
=N N | mn, k “I‘NZNszdnk nn, k 1+N
k i k, 1kl i
2 SR S (S + - 2
- k k k [ k 1 -
N k Nk,l:k;él \/ﬁ \/ﬁ
x f dh / d8h Pagp(h, 8h)|Jn(h)Sh|* (D3)
+i¢ﬁ/dh1 dhy dShy dSh, dA P2 (hy, ha, Shy, Sha, A)AJn(h) (i) 8hy 51, + % (DY)
O 2 1 6 | s 1
© eZA/th(h)E/d@l]n(h)e’9|2+)n/ﬁ/dh1dhszP(z)(hl,hz,A)AJn(hl)Jn(hz)—(zn)z
x / d6,do,e?e =) (D10)
C3  (d) 25» x? : Xy 2 y2 2 c3
— 22 | dhP)| | 1,(r) + =1, 2(=n, A1)+ =1, — (D11
= S [ anpay <n (") + rn,(r)) +2(=n0) +(n (r)+ rn,(r)> +o5 01D
py , c
=2 / dh P[0 + 1)+ r(OF] + . (D12)

In (a) we used that with high probability ll\,zl |Yie|> =
1+O(N-'?), and we renamed ~ > YuYy = A /V/N,
where Ay, has zero mean and variance of order 1. In (b)
we introduced the empirical Sioint distribution of 8k and h:
Penp(h, 8h) = % 3", 8(h — h{")8(8h — 8h{), and the analo-

gous quantity for the cross term Pe%)p(hl, hy, 8hy, 6hy, A) =
AT kst 81 — Y8 (hy — B™Y8(8hy — 8h)8(8hy —
8hl(’))8(A — Aw)- In (c) we replace the empirical averages

PO with the distribution averages P, P® making
respective errors of O(N~'/2) and O(N~!). Moreover, since
h® and 8h® are independent, in the limit of N — oo,
Pemp(h, 8h) — P(h)P(8h) and PP (hy, hy, 8hy, 8hy, A) —

emp
PP(A, hy, hy)P(8h))P(8hy).  P(h)
by SE’s prediction that h=vaim+,/4z, with
7z~ N(,1)+iN(0, 1), while P(8h) is, coordinate wise,
the uniform distribution on the circle of radius €. In (d)
we used (D2) and (D1), with A = x + iy, r = |h|, while the
second term in the previous line vanishes. cy, ¢z, ¢3 are all
constants with respect to N.

To conclude, the perturbation norm obeys [|Sh¢+D|* =
(1 — cO)ISh® |, with

A
W=1- EEZ[mW + [n,(RD + |2l (1RDT?],  (D13)

- hg®
h = vahm® +,/q7z, 2~ N0, 1) +iN(0, 1),

(D14)

Pemp,

here is determined

(

with m®, g® obtained iterating SE. This result is valid with
high probability with respect to éh,Y. To study the con-
vergence of single instances of AMP it is useful to derive
the average (with respect to 8h) growth of a perturbation,
when N is finite. Following an analogous derivation we obtain

Esal[I8h+D1*] = (1 — ¢Qup)EsallI8h %], with

1
|:1v > |Yik|21|
i=1 k

o< [ (1) - (o (1) =+ [0 ()]
(D15)

)ALN

2

0

Camp = 1 —

In the case of ASP we follow a similar derivation: we per-
turb T} — T + €' with 6; uniformly distributed on the unit
circle and check how the perturbation propagates to the next
time step. Because of the complexity of the expression [which
involves deriving (F29) with respect to 7], we evaluate the
convergence criteria numerically via finite differences. Given
m, g, A, and s from SE we have the following expression:

R(T + €€, A) — (T, A)
Eeie

casp=1— )A»]Ez,0|:

2
}, (D16)

where € is sufficiently small and, coherently with (F31), T =

Narm 4 v/iq/2z, with z ~ N(0, 1) 4+ iN(0, 1). Finally 6 is
uniformly distributed [0, 277 ].
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APPENDIX E: CORRESPONDENCE OF 1RSB FREE
ENTROPY AND REPLICATED FREE ENTROPY

We pick

1 if X[f*(1)] =0
=X'(fo) X[ <0

such that ®gsg = [ ()] + f*(s,) for the chosen .. Let
us verify that this choice is correct: Suppose f* (s*) = f*, then
the argument goes through because P rsp = X( f*) + f * =
E[f*(s*)] + f*(s.). Hence, we have to show only f*(s,) =
fu. If Z[F*(1)] > 0, then s, = 1 and f* = f*(1). Instead, if
2(f*) < 0, we will have f* = fy. But with the new choice
of 5., f* will satisfy X'(f*) = Z'(fo), hence also gmng
f*(s.) = fo. Therefore f*(s,) = f..

Sy = (E])

APPENDIX F: DERIVATION OF APPROXIMATE SURVEY
PROPAGATION AND ITS STATE EVOLUTION

We derive the ASP algorithm as follows. First, we start
from the belief propagation (BP) equations for a replicated
model consisting of s independent replicas. We then put for-
ward an ansatz for the messages, parametrizing them by their
means and covariances. Propagating the ansatz through the BP
equations, we are able to obtain a closed set of equations for
the parameters. This procedure is general and applicable to
other statistical physics models with a Boltzmann probability
measure, but we will stick to the explicit form of Hamiltonian
for our problem for clarity.

The BP equations are

mi (%) = HP &) ] [rwii®D FD)
1—>zj a=1 k)
mij—i(X;) = /d)?jmj—nj(fj)
ij—>i
a X
—(a)_ (a)
X exp 22 NRe(Y,]x“ a) , (F2)
a=1
where X; = (x(l) .(2), . ..,xl@) refers to the variable x; in

different replicas, and Py (xl.(“)) =34 (|xi(“)| — 1)/27 is the prior
distribution.

R 1
mij—)i(xi) - Z// /dx]mj—)l](x )CXP Z
ij—i

A N
+ Ns(l —Ajsij = IRjsil7) — N

.1 /A - A )
== 1+2 Re( X i Z (a)) + N|Y[j|2(Aj~>ij + 182417
ij—i

—Re

o1 @ i . A
= Zij%i €xp 2\/>Re<Ylej—>U Z ( )) - ﬁ [Yti ]2—>lj]

The ansatz for the messages is a Gaussian distribution
parametrized by the covariance of variables within and among

replicas
| 1= %imii?
/dhexp [—-—| el }
Zjij 2 AL

x [Texp |:—%|h—x;“)|2i|. (F3)
a=1

mj—ij (X)) =

The ansatz produces the following correlation functions:

(") = R (F4)

@) . 2
e’ )a;éb Ajoij + Xl (F5)
(X_Ea)fﬁa)> =1 Dby the unit norm constraint, (F6)

where (-) denotes the average with respect to the distribu-
tion described by (F3). The precise form (F3) is of little
importance, our analysis will make use only of the correlation
identities defined above. The next step is to expand

,]x(a)x(a)) (F7)

exp Z

=1 +2,/ ZRe (% x7) (F8)

+N|n,»|22x<“>x“’)x<“> o), (F9)
a,b

and express m;;_, ;j(X;) in terms of the estimator X;_,;; and
covariance A ;_,;;. In the following computations the symbol
= will mean that the two sides are equal up to terms that
vanish in the N — oo limit:

Re (Yl]—(a) (a))

2

1

a=1

ol (5

2

Y P A i) (F11)

5
@
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Where all constants not depending on x; have been absorbed into Z;;_,;. Moreover we dropped the last term in (F10) because it
is subdominant in N. Moving to the first BP equation (F1) we have

(HP (x\) ) (F12)

miij(X;) =

l—>lj

X exp 2\/§ Re | | Y Yadii Z‘“‘)

ki, a=1

X" Z Vi Mg - (F13)

ki, j

—(a)

At this point it is convenient to have only the linear term of ) X;* in the exponent so that we can factorize over different

replicas. To achieve this, we apply the Hubbard-Stratonovich trick:

/ dx ge—0<\x|2—2ReD@D = P, o
C T

Pickingy = Y, x“ and 6 = £ Zkﬁj Vi |> Ar_ix We get

/thexp —|h|2 Z|Y:k| Ajik

k;ﬁt J

miij(X;) =

i—ij

Xl_[ Px (x{) exp | 2Re x(a)\/ D Yakeoi +x(a)h D 1Yl A ; (F15)

k#i, j k;ét j

where & is a complex variable and the integral is computed over the entire complex plane. The advantage of writing the message
in the form of (F15) is that one can use it as a measure to explicitly evaluate the correlation functions, and since now the replicas
are properly factorized, evaluation then follows readily. We define the following functions for brevity:

Py(xi, h, Tisij, Visij) = Px(x;) exp [2Re(Ti j%; + Vieijhxi)], (F16)
l—>lj = ﬂ ZYthk—nk» (F17)
k]
Vinij = Z 1Yie* Akt (F18)
k#}

with which the message is concisely expressed as

1
Zisij

mi_ij(X;) =

/ dh e Vil an(xi(”), h, Tisij, Vi—>ij). (F19)
C

a=1

At this stage, the equations are closed, and we have at hand the following expressions:

Jodhe V=i [ [ dxiPy(xi by Tii, Vieip)]' ™ [ dxixiPy(xis by Ty Vi)
Jo dhe Vs [ dxiPy(a, b, Tisij, Viei))]

() = 2imiy = : (F20)

b .o
(%) = Ay + 1Rini]

- fC d/’leiv"ﬁ"flh‘z[fdxl'P (x;, h, Tiaij» i%ij)] |fdxlle (xi, h, E*)lj’ l*}l,/)'
fC dhe™ H"‘h‘z[fdxlp (Xh h T;—n]v l—)l])]

Note that A;_,;; is strictly nonnegative as ensured by the Cauchy-Schwarz inequality. It is important to keep in mind that A;_,;;
has to be nonnegative for the integral in (F19) to converge.

After the TAPyfication procedure, consisting in removing the dependence on the target node in m;_,;; at the price of
introducing an Onsager term, we arrive at the iterative ASP algorithm with marginal distributions. Here we denote the various
quantities computed at iteration ¢ with a superscript ¢:

= Z \/7 thk - At ! Z Ik|2 (F22)

Vi=3)" NWZA% (F23)
k

(F21)
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Jodhe [ [ dxPy(x, b, T}, V)]

fdxxP (x,h, T, V)

)’EH_I

’ Jedhe P [ dxPy(x. T V)]
Jedhe "] [ dx Py b T V)]

, (F24)

| [ dxxBy (e b T V[

A§+l + |5€t'+1|2 —

Jedhe V[ [ dx Py(x, b, T2, V)]

5 . (F25)

The integrals are not new. The prior restricts the range of integration to be on the unit circle and then the integrals evaluate to

modified Bessel functions of the first kind ;, defined by

L(x) = in /0 ” d0 cos (k0) exp (x cos 0). (F26)
Explicitly,
o Jeane M Ein vl (G eI+ vin) -
! Jedhe VI [LQIT! + VinD] '
piet g i Jedne TR+ v I @I+ Vi) o

Jo dhe V2|77 +

+Via))]

The form is not quite convenient for us to implement an algorithm since one of the parameters 7; is of complex nature, and
integration with such a parameter is more expensive computationally. We notice, however, that the phase of 7; can be factored
out, if we write 7; = |T;|e”% and change the integration variable 4 accordingly to e, so conveniently we have

5&{+l _

o Je de M [ @IIT )+ ViR

[ QI |+ ViRD]

‘ Je dhe VTP LT + ViRDT
Jo dh eI UIT | + VERDY 2L QIITY | + Vih)T

) (F29)

At+1 + |Al+1|2 —

The integrals now depend on two real parameters, V! and
|T|, suitable to approximate with interpolation method (see
Appendix H). To continue, we need another approximation
in which we take dX;/dT; to be real. The justification is

. . . . di.
as follows. Since the gradient direction of iR along 67} =

\/%Yk,-afc,-—i—O(l /N) is mostly uncorrelated to 7; due to

large system size N, we can take the average (%)gm

E@n [hmmﬁo 5 ] over a uniformly distributed angle 657, to
be the value of £ dT , which will be always real.

The state evolutlon is then written as follows. Consider in
the general case where the estimated A is different from the
true value of A:

5‘ o N )Aclﬁ i
=;%&w%=ﬂ%;ef)

i - -
)y Widtons = Vadm' +/ig'/2z.

(F31)
Vi =AiA, (F32)

m' T = E [R(T, V"], (F33)
= E IR, VO, (F34)
AT =E AT, V' 4], (F35)

Je dhe VI I QIITY |+ VERDT

(F30)

(

where z is a complex variable distributed as z ~ AV(0, 1) +
iN(0, 1). Here we have simplified the expression with A’ =
% >, AL In deriving 7} we have referred to the expression
before TAPyfication such that we can use the variable %_, ;,
whose correlation with the noise Wy, we ignore [40].

APPENDIX G: FREE ENTROPY COMPUTATION

We compute the Bethe free entropy for the general case of
s # 1, following the recipe provided in [13,31]. Then setting
s =1 we will recover the RS free entropy. The replicated
1IRSB free entropy (22) is simply the Bethe free entropy in
the s-replicated graphical model. To obtain a consistent ex-
pression of the free entropy, we will resurrect some necessary
terms that were absorbed as normalization factors for the pos-
terior distribution and messages. Particularly, the following
form of the posterior measure is used:

P(x|Y) = —exp 2\/722Re

i<j a=1

b
l]x(a)x( )

s

S MCAITRI) ) XL

i<j a=1 i=1 a=1
(GD)

where Py = §(|x;| — 1)/(2m) is the prior distribution, which
for simplicity we keep in implicit form. Notice also that since
in practice the prior Py forces the spins to be of norm one, the
second term in the exponential is just a constant. Exploiting
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the fact that our measure factorizes according to a pairwise graphical model we write

N
N®gsg = logZ = Zlogzi — Z log Z¥, (G2)

i=1 i,jii<j

/dx, Px(x,)l_[/dx] exp _Sﬁ ~|—2\/72Re Y,,x(“) (a)) mjii (%)), (G3)

Zij = /d)_é,d)_fj exXp —S— + 2“ ZRC ,jx(a)x(“) mj*)j,‘()_éj)m,‘*)ij()_é[). (G4)

First, we find Z'. We use the moment identities (F4) to perform the inner averages over m j—ij- When averaging we take a step
very similar to (F11) but without absorbing the integration constant terms into the normalization factor:

. 5
zZ' = exp [ZSN| | (1- j*>l] |x_]4>lj| ):| H/dxz Py (X;)
j

J#
X exp _Sﬁ +2\/ Re( ijXj—ij Z_(a)> |Y53|Aj—>ij
a=1

s 2
(a)
>
(@)

a 5\ N — |Y1|2A~>l y 2
= exp [_Sk + Zsﬁmjlz(l —Ajij— |)%j»ij|2):| e ij — / dh e~ X5 Wl Bjmijlh
j

(G5)

C

N & K
A
o o 3@
x / dx; Py (%;) exp jE_I:ZRe ,/N Yiikjmij + — } Ak ;_lxi (G6)
@ R 2 - 2 | Vi ~Vilnl? s
=exp| —si+ E s—Y1"T (A = Ajnij — X517 | = | dhe™ ™ [IhQ2|T; + VR, (G
s N T JC

where in (a) we used the trick (F14) and in (b) we took the unit norm prior into account.
The expression for Z" can then be simplified: we proceed by expanding the exponential, performing the averages and then re
expressing the result in exponential form. With that we have the final set of equations to compute the Bethe free entropy:

. . A Vi 2
Z'=exp [—sk + Y sVl = A - |)%,~ﬁ,v,-|2>} - / dhe™"" [l 21T, + Vih)Y, (G8)
; N ’ T JC
; I
ZY = €Xp —S]v + 2s NRC(Yijxiﬁijxjﬁij)
)AL ) A 2 s 2 I 25 2
+SN|Yij| (14 6= D(Aisij + Rieij ) (Ajoij + 18j501%) = s18imif PR i1°) |- (G9)

In the special case of s = 1, we start computation from (G3) and (G4), bearing in mind that there is only one replica, therefore
cross terms of the form )", x(“x disappear. Consequently, terms involving A also disappear. The expression for Z) and Z*/
are then both greatly simplified:

i 2 A 2 s 2
Z')=1 = exp [—A + ; P = 18] )}h(zmn, (G10)
i )A» )AL S o )A‘ 2 PN PARS 2
ZY|=1 = exp -~ 2y ﬁRe(Yijxi%ijxjﬁij)ﬁD/iﬂ (I = 1Xis 17150517 |- (GID)
From the expressions for Z' and Z(/), using (G2) we have the single-instance free entropy ®rsg(Y, 4, 4, 5). To compute the free

entropy we just plug in the values of {%;_,;;} and {A,_,;;} to which the ASP algorithm converges. In the N — oo limit we expect
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D rsp (Y, 5\, )A», s) to concentrate around its mean value ®gsg (A, )A», s) = Ey[Prsg (Y, i, ):, s)]. We prove this concentration for
some of the terms appearing in ®gsp:

N N N
1 Y| v
NDYUP:N+NZ|%|2+WRe(Z%>wl, (G12)
1 214 2 \/— 1 Y a2
5 2 VP 1%l = ﬁq+ Z|vv,,| il + 2057 ZRe(W,])IxHUI ~ NZIij =q, (G13)
- p
,/ ZRe (YiikimijRjif) = N2 ZRe (Rimijkjmif) N3/2 ZRe (WijZimsij%j1)) (G14)
i<j i#j i<j
v 1 =
o Re k| = Ex/kkmz. (G15)
i,j

Here ~~ indicates convergence in probability with respect to W. We also recall that (£,_;;, A;;;) — (£;, A;). Moreover we
assume that the correlation between W;; and %;_,;; is asymptotically canceled by the Onsager term, so we can consider them
independent. Similarly, we can express other terms using m, g and A. For the terms that involve T; and V; (or A; in the case of
AMP), we can use their values obtained by state evolution. In the end the averaged replicated free entropy and the free entropy
of the states selected by s are respectively

Drrsp(s, A &) = —svAAm? + 32 S (s> =208 +9) = (s = (A +q)")

AA =
+E, |:10g (— / dhexp(—AA LDV AAm + /g )2z + )»Ah|)]‘y>:|, (G16)
N P Sy Ay A 2s — D
s R = %) Vidm 4 =g+ Ay = ETDE A 4y
E Jcdh exp(—=AA [~} 1og[Iy(2|T + AARDII(2|T + AAR])]* G17)
‘ Jo dhexp(=AA|R2) [ 2IT + LARY ’
(
and correspondingly from (G10) we get the following expres- the parameters are m and ¢,
sion for AMP:
ddrs — —o/%im L E, [Bmggdx exp 2Re(hx)]i|
. \/»A , A, om 21y (2)h|)
Drs(M, A) = —VArm™ + =(¢~ — 2q) d -
= = 2R
2 :—2\/kkm+2\/kARe{]Ez[5£ x; eIsz[h e(x)]“
E-[log(lo(21V/ 24m + /Ag/22))], 7ho@InD
(G18) = —2vVAim + 2V MARe{E.[ %]}, (G19)
dPrs N D4 E 3y § dx exp [2Re(hx)]
where ®rg denotes the Bethe free entropy when s = 1. In- dg (¢=1 ‘ 21y (2|hl)
Ferestmgly also setting A =0 in (G17) one recovers Pgs, A ¢ dx zx exp [2Re(hx)]
independently of the value of s. =Ag—1D+ ReiE,
V2Aq 2 ly(2|h|)
dx |x|* exp [2Re(hx
=g 1)+xRe{EZ[5£ x Ix[” exp [2Re(fn))
1. Recovering state evolution equations for AMP and ASP 2 1o(2|h|)
In this section we show that the fixed points of the SE | 9§ dx X exp [2Re(hx)]|?
equations are stationary points of the replicated free entropy. - [27 Io(2|h]) ]2
To verify this, we check the first derivatives of the Bethe free s
entropy with respect to parameters of the system. For AMP, =Mg—-D+ )‘EZ[l — I ] (G20)
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These two derivatives vanish under the SE equations given in Eq. (12). When deriving ®gg with respect to g, we have used
Stein’s lemma and taken derivatives with respect to z; and z;. Note that the quantity / here is consistent with the expression in
Eq. (14).

For ASP, similarly, we have the derivatives of ®peme With respect to m and g, computed in a similar manner,

D - dhe V"3 [1oQ2IT + Vi)
Bethe —2S\/Hm+EZ f(c e ! (o2 DI
om Jc dhe VL, 2T + Vh]))

i E Jodhe V"L QIT + VAN QIT + VAN~ 25vV2ARe[(T + Vh)%o]
SV AT B e dheVIP[Iy2IT + VAP

= —2svVAhm + 25V AARe{E,[%]}, (G21)
9D
% = s*Ag — sh — sh(s — (A +q)

q

ot Jodhe VPP Io2IT + VAP~ [ dxRe[zx] exp 2Re[(T + Vh)X]
Vo e Je dhe VPG IT + VADF
= squ —sh—sA(s — 1)(A+¢q)
Jodhe VW IoQIT + VAIP2[LQ2IT + VA
Jo dhe VWP [o2IT + VAT

—+—s)\Re{IElZ |:(s -1

| f(C dhe’”h'z[lo(ZIT + VAN 'L QIT + Vi) 2
tlhos Jedhe VIP[Io2IT + VA
= squ —sh —sA(s — D)(A 4+ q) + sARe{E,[(s — 1)(A +¢q) + 1 — sq]. (G22)

In addition, we also have the derivative with respect to A, which measures the overlap between different replica. To make the
computation simpler, we first perform a change of variable to the integral that appears in ®peghe,

AA = A
— | dh exp(—AA|h|2)[10(2|v AAm 4+ \/Aq /220 .AR|)] = —/ dh exp (—Alh?)
T Jc T Jc

X oIV M + /3q)2z + A ARD. (G23)

The integral can be seen as the expectation value of the function (Lo(2|V 2hm 4+ /Aq/2z + A/ Ah|)]* under two Gaussian

distributions of the real and imaginary part of /, with mean x = 0 and variance o> = 5

0 DPpethe s sA— A+ + EZ[BAE;,{[] dx exp 2Re[(T + Vh_)ﬂ)s] }]
A Ex{[[ dx exp QRe[(T + VR)TI'}
=—sA—sA(s—1)(A+qg)+
i ;—%Eh{lo(mT + Vh|y*~! [ dxRe[hx]exp (2Re[(T + Vh)x])}
+E,
I E{lloQIT + VDT
=—sA—sA(s—1)(A+¢q)+
AR ']Eh{sk(s — DIQIT + VADTF 2L QIT + VA1 + sAllo2|T + Vh|)]5}]
il En{lloQ2lr +VhDI'}
= —sk —sA(s — D)(A + q) + E;[sA(s — D(A + g) + sA], (G24)
[
where we again used Stein’s formula on the real and imagi- APPENDIX H: NUMERICAL DETAILS

nary parts of A.

. . . 1. Int lating int 1 functi
At the equilibrium point, the first derivatives should vanish, nterpolating mtegral functions

and we retrieve the state evolution equations: We encounter many integral functions in the updating
. steps, especially in the ASP case where the integral dimension
m = E.[x], (G25) s larger compared to AMP. Therefore, we use numerical
interpolation of integrals (F29) and (F30) to speed up both
q= Ez[lfclz], (G26) the ASP algorithm and state evolution. After try and error, the
interpolation (linear) on grid [s, log,,(T"), log,,(V)] that we
A =E[A] (G27)  are working with is
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log,,(T") in range [—7, 2] with 800 evenly spaced points

log,((V) in range [—7, 2] with 800 evenly spaced points

s in range [0, 1] with any grid configuration that one needs,
and the grid extensively used to generate plots shown in the
paper is chosen in the range [0, 1] with evenly spaced points.

Such an interpolation grid was shown to give SE results
with precision on the order of 107>. The most important
parameters here are the resolutions of 7 and V, and also their
range that should cover all the parameter space of 7 and V
during any iteration run. Such a precision is the best we can do
with reasonable file size and computation speed. The achieved
precision is good enough for retrieving most of the quantities
we study in this paper, but generally not enough to resolve
complexity functions at the level of 1078,

2. Resolving complexity functions

Because the complexity functions encountered in the
manuscript can be as small as on the order of 1078, the
interpolation setting mentioned above is not enough to resolve
them. To obtain enough numerical precision to resolve com-
plexity functions, we use the following strategies.

All the derivative operations are done analytically so only
numerical integration is performed to ensure enough preci-
sion. The evaluations of Eqgs. (G16) and (G17) are not done
through interpolation, since they only need to be evaluated
once, and it is not possible to achieve reasonable precision
beyond 1073 with interpolation methods. Instead, they are nu-
merically integrated directly using quadrature methods, with
precision beyond 1073, To obtain free energy fixed points with
enough precision, we first run SE with interpolated function
until it converges at the error level of 107> due to its fast
computation speed. Then we run SE with direct integration
using quadrature method for 100 more steps (much slower but
can finish in a reasonable amount of time, targeting a precision
of fixed points on the level of 107%), reducing the error further
and approach closer to the true fixed points. The comparison
with the AMP result indicates that this SE run method using a
combination of interpolated functions, and numerical integra-
tion of Egs. (G16), (G17), (F29), and (F30) using quadrature
methods, can generally achieved 10~® numerical precision on
the results shown in Figs. 7 and 8, correctly revealing the
complexity functions on the order of 1078.
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