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Impurity reveals distinct operational phases in quantum thermodynamic cycles
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We analyze the effect of impurity on the work output and efficiency of quantum Otto and quantum Carnot
heat cycles, modeled as a single quantum particle in an infinite square well potential, which is the working
substance. We solve this quantum mechanical system perturbatively up to first and second order in strength
of the impurity for strong- and weak-coupling regimes, respectively. We derive the analytical expressions of
work and efficiency for the strong-coupling regime to the first order in the strength parameter. The threshold
value of the strength parameter in weak coupling is obtained up to which the numerical result agrees with the
perturbative result for a repulsive and attractive impurity. To our surprise, an embedded impurity unlocks new
operational phases in the system, such as a quantum heat engine, quantum refrigerator, and quantum cold pump.
In addition, the efficiency of the quantum Otto heat engine is seen to reach Carnot efficiency for some parameter
regimes. The cooling power and coefficient of performance of the quantum refrigerator and quantum cold pump

are nontrivially affected by the impurity.
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I. INTRODUCTION

A classical heat engine performs work via classical thermo-
dynamic processes, while a quantum heat engine (QHE) does
the same using quantum thermodynamic processes. There has
been a long history of research in quantum thermodynamic
processes, as shown in Refs. [1-4]. QHE’s such as quan-
tum Carnot heat engine (QCHE), quantum Otto heat engine
(QOHE), and quantum Stirling heat engines (QSHE) have
been studied with different working substances, e.g., a par-
ticle in an infinite square well (ISW) potential [3], a particle
in the harmonic oscillator potential [3], spin systems [5-7],
stanene [8], strained-graphene [9], Dirac particles [10,11],
two-level system [12], multilevel system [13], a continuum
working medium [14], photon gas [15], etc. Different work-
ing substances are used, and different heat baths are used in
Refs. [16,17] for the QOHE. Reference [16] establishes an
efficiency bound for the QOHE, which surpasses the Carnot
efficiency bound. In another study Ref. [17] it is shown that
a QOHE operating between an effective negative temperature
and effective positive temperature is more efficient than when
both are at positive temperatures. In all these studies, a miss-
ing element has been the effect of impurity on work output
and efficiency of the quantum heat engines.

Recent works on the QSHE (Refs. [18-20]) use an impurity
in the strong-coupling limit for the insertion and removal of
a barrier to separate a box into two parts and then merge
the two compartments into one. It was observed in Ref. [20]
that Carnot efficiency is approached in the low-temperature
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case by insertion and removal of a barrier during the ther-
modynamic cycles of QSHE. Work output and efficiency are
calculated by varying multiple parameters of the box, includ-
ing the temperature of baths,. length of the box, the strength
of the impurity, and position of the impurity. The expectation
is impurities will reduce the power output, leading to more
scattering. However, in our study of the effect of an impurity
in quantum Otto and quantum Carnot thermodynamic cycles,
we find that the work output and efficiency are enhanced in
specific parameter regimes of strength and position of the im-
purity. Regions with negative work [7] are obtained, which are
interpreted as quantum refrigerators and quantum cold pumps
depending on the sign of the heat exchanged with reservoirs.

To summarize the main findings of this paper, the per-
turbative results for energies of the ISW up to second order
for weak coupling and up to first order for strong-coupling
strength parameters of the impurity are obtained. Next, the
agreement between the numerical and the perturbative spec-
trum is established for attractive and repulsive impurities.
Then, the work output and efficiency plots were obtained
over a range of strength, temperature, and length values in
the weak- and strong-coupling regimes. We notice an en-
hancement in work and efficiency due to the impurity for
both QOHE and QCHE. Based on the energy flow direction,
the negative work regions for both the cycles act as cold
pumps or refrigerators. We concentrate our study on Otto
and Carnot cycles, as they are widely used engines in the
classical world. Otto cycle is commonly used in automobile
engines. The outline of this paper is as follows. We begin
by solving the Hamiltonian for ISW with impurity by pro-
viding an exact solution for the energy eigenvalues via a
perturbative correction to first and second order in strong-
and weak-coupling regimes, respectively. We do compare the
weak-coupling perturbative result with the numerical result
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FIG. 1. The potential V (x) of ISW embedded with impurity at
position pL versus x. The length of the well is L and strength X of the
impurity.

obtained after solving the transcendental dispersion relation
for verification. In Sec. III, we show the detailed calculation
of the work output and efficiency for both the quantum Otto
cycle (QOC) and quantum Carnot cycle (QCC). We find out
what happens to work output and efficiency as we vary various
parameters of the system, including the strength of impurity,
length of ISW, the temperature of the bath, and position of
the impurity. In Sec. IV we analyze the work results via
tables which bring out the effect of impurity. We end with a
conclusion, highlighting the impact of impurity and some pos-
sible experimental realization. Following are some acronyms
that we will use throughout the paper: ISW, QHE, quantum
Otto cold pump (QOCP), QOHE, quantum Otto refrigera-
tor (QOR), quantum Carnot heat engine (QCHE), quantum
Carnot refrigerator (QCR), quantum Otto cycle (QOC), quan-
tum Carnot cycle (QCC).

II. THEORY

A. The model Hamiltonian and solution

The Hamiltonian with a particle of mass m in a one-
dimensional infinite square well (ISW) of length L and an
impurity at position pL (0 < p < 1) inside the well is given
by

H=Hy+H',

i 0 for0<x<L
with Hy = —— V2 + V(x), V(x) = SO
2m oo otherwise

and H' = —A8(x — pL). (1)

H' denotes impurity modeled as a §-function potential, with
p determining the position of the impurity inside the well and
A represents the strength of the impurity. A < 0 (> 0) implies
a repulsive (attractive) § function which behaves as a barrier
(well). Figure 1 shows the ISW potential with a repulsive
impurity.

B. The exact solution

The aim here is to find the solution of the time-independent
Schrodinger equation HW = EW, with the wave function W
satisfying the following three boundary conditions:

lim ¥(x)= lim W(x), ?)
x—>pL— x—pL+
dV(x) dv(x)  2ma
x—>pL+ dx B x—)lpL— dx - hZ ‘Ij(pL)9 (3)
\IJ(O) = "II(L) =0. (4)

ops . 252 .
For positive energies E = % > 0, the wave function so-

lution of the Schrodinger equation satisfying the boundary
condition in Egs. (2) and (4) has the form

Asin[k(L — x)]sin(kpL), forpL <x <L,
Asin(kx) sin[kL(1 — p)], forO<x < pL, (5)
0 otherwise,

Y(x) =

where A denotes normalization constant for wave function and
k= /2E.

Applying Eq. (3) and using the wave function obtained in
Eq. (5) gives us the dispersion relation, see also Ref. [21] as

(kL) f sin(kL) = 2 sin(kpL) sin[kL(1 — p)], (6)
where [ = ﬁ is a dimensionless parameter which is a mea-

sure of the strength of the impurity.

The energy spectrum resulting from the dispersion in
Eq. (6) are plotted in Figs. 2(a) and 2(b). These figures are
plotted for different values of the strength parameter (f),
and each figure contains both repulsive and attractive spec-
trum with the same magnitude of the strength parameter.
Figure 2(a) sets the parameter f near the strong-coupling limit
(|f| < 1) while Fig. 2(b) is set in the weak-coupling regime
(|f] > 0.5). For both the cases, we see that the separated re-
pulsive and attractive spectrum in Figs. 2(a) and 2(b) become
degenerate when the strength is close to the extreme strong-
coupling limit (| f| < 0.1) or weak-coupling limit (| f| > 0.5).
However, for an attractive impurity in a strong-coupling case,
we have negative energy, which is not observed in any other
case. In the next section, we will discuss the strong- and
weak-coupling limits in more detail.

_2;:1_25 with E <
0, and carrying out a similar procedure as above we obtain
Asinh[k (L — x)]sinh(kpL), for pL <x <L,
Asinh(kx) sinh[kL(1 — p)], for0 < x < pL,
0 otherwise,

Now for negative energies we have k =

W(x) =

)

and the dispersion relation, see also Ref. [21] as
(«L)f sinh(xkL) = 2 sinh(x pL) sinh[«L(1 — p)].  (8)

For the case of the attractive § potential (A > 0) the solu-
tions may have both positive and negative energies while for
the repulsive § potential (A < 0), the solutions will only have
positive energies since E > Vi, (Ref. [22]) is the requirement
to obtain a normalizable solution to the time-independent
Schrodinger equation where Vi, is minimum of the poten-
tial “H’ 4+ V(x).” For the repulsive case Vp,;, = 0 and hence
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FIG. 2. (a) kL vs position of the impurity p (for strong-coupling
case), plot for attractive impurity f = 0.02 (in blue), and plot for re-
pulsive impurity f = —0.02 (in red). (b) kL vs p (for weak-coupling
case) plot for attractive impurity f =1 (in blue) and repulsive
impurity f = —1 (in red). (c) kL vs p for four different strength pa-
rameters f = 0.44, 0.33, 0.2, and 0.1 (yellow, blue, red, and green).

(d) |EL;,\ vs p at three different strength parameters f = 0.1, 0.04, and
0.02 (green, red, and blue).

there will be no negative energy for all values of the strength
parameter f. The dispersion relations in Egs. (6) and (8) are
transcendental equations and can be solved numerically, see
Refs. [21,23]. We find that the numerical solutions to the
dispersion relation for negative energies in Eq. (8) exist only
for attractive impurity. Further, from Fig. 2(c) we observe that
negative energy solutions exist for attractive impurity only
when f < |0.5|. There are no solutions to Eq. (8) for f > 0.5
even for attractive impurity. Unlike the attractive § potential
without ISW potential where negative energy bound state
(Ep, = —% flz) exists at all strengths, here we have negative
energy solution possible only in a certain range of strength
parameter, i.e., | f| < 0.5 and this can be seen by looking at
the trend in Fig. 2(c). In Fig. 2(d) energy becomes flat at
E, = —E}, and maximum flatness is obtained at lower values
of f. In the extreme cases of strong coupling where f ~ 0,
one can use £ = —F}, independent of position of the impurity.

One also realizes that when impurity is near the walls,
see also Ref. [21], the eigenvalues should reduce to just ISW
eigenvalues (E, = ";;2?2). This situation can physically be
thought of as the impurity getting merged with the wall of
the ISW. From the dispersion relations in Egs. (6) and (8) it
can be clearly seen that E(k, p) = E(k, 1 — p) and E(x, p) =
E(x,1 — p). Thus, the spectrum is symmetric about p = 1/2
and ‘2—5| p=12 = 0. In the next subsection, we will look at
the perturbative analytical solution for different strengths and
check the agreement with numerical results.

1. The perturbative solution for weak-coupling
regime (|A| < 1or|f]| > 0.5)

In case of weak coupling (JA| < 1), the perturbative
eigenenergy correction up to second order can be derived
by using expansion of k (= ko + Ak; + A%k +...) and «
(= ko + Aky + A%ky + ...). This is not the same as Rayleigh-
Schrodinger perturbation theory expansion of eigenenergy
[E, = E” + AE{" + AE® +...] where we obtain recur-
sive formula for eigenenergy corrections. However, both the
methods will lead to the same result. It is difficult to find
closed form formula for the second-order eigenenergy cor-
rection using Rayleigh-Schrodinger perturbation theory since
it involves restricted summation over large number of states.
But we can easily get a closed form formula by k (and «)
expansion method, as shown in Ref. [24]. Applying the k
expansion to the dispersion relation in Eq. (6), we have

. 2mA .
asin(al) = 7 sin(apL) sin[a(1 — p)L], ©)]
where o = ko + Ak; + A2ky + - -

Using the power-series expansion of sin function in Eq. (9)
and collecting powers of A9 A, and A2, we get

ko sin(koL) = 0, (10)
2m sin®(kopL
gy = —2msinkopl) g (11)
" koL
K2 2mk
lo = ——- + 2221 (1 = 2p)sin(kopL) cos(kopL). (12)
ke K ko

We know ky # 0; otherwise zero-order solution will van-
ish. Thus, sin(koL) = O which implies ko = 7, (n = 1, 2,
...), this relation is further used in Egs. (11) and (12). The
first- and second-order eigenenergy correction is obtained
from

E _ R(ko + Aky + 22ky 4 - )?

n

2m ’ (13

with E(D and E® given by
2 2
ED = n kok17 E® = h_[
m 2m
Substituting ko, k;, and k, from Egs. (10), (11), and (12) in
Eq. (13), we can write eigenenergy up to second order as

" ,  4sin’(nmp)
2| T T

B2 (4sin*(nmp)

2mL? | n2mif?

ki +2koka]. (14

E.(p, )=

X [1+2n7(1 — 2p)cot(nnp)]}. (15)

This is the eigenenergy expression for weak-coupling at-
tractive (f > 0) and repulsive (f < 0) impurity § function.
Equation (15) in the limit f — oo (i.e., vanishing impurity)
reduces to ISW potential eigenenergy solution. The exact
same eigenenergy expression is obtained for the expansion
using «; this can be easily verified by replacing k& with ik
in the above calculation. An eigenenergy expression in the
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FIG. 3. Weak-coupling pertubative results. (a) kL vs p for the
attractive § function impurity with strength f = 1. The first six en-
ergy levels are plotted both numerically (red solid) and perturbatively
(black dashed). (b) kL vs p for the repulsive § function with the
strength parameter f = —1.

strong-coupling case where |A| > 1 can also be obtained us-
ing an expansion of the form k = ky + %kl + A%kz 4+ .- and
the details of the calculation for strong-coupling eigenenergy
results are presented in the next subsection.

The first-order pertubative results in Eq. (15) can be
verified by applying Rayleigh-Schrédinger time-independent
perturbation theory. The first-order energy correction is found
by treating H' as a perturbation in Eq. (1). The eigenfunctions
and eigenvalues of the infinite potential well in absence of an
impurity Ref. [22] are easy to get,

2 . [(nmx a2
lIIil('x) == — Sin I ’ En = A 71
L L 2mlL?
n=1,2,3,.... (16)

The first-order correction for both attractive and repulsive &
function impurity to the energy eigenvalues can be calculated
easily Ref. [25] and they are

[e.¢]

) , 2 . o (NTTX
EP = (W,[H'W,) === [ sin <T)6(x—pL)dx

= ED = _2 sin’(n7 p) (17)
n L ‘

This is the same first-order correction as was obtained in
Eq. (14) using the expansion method. Hence, the energy levels
E, of the ISW potential with an attractive (f > 0) or repulsive
(f < 0) é-function impurity up to first order are as follows:

. 2 2 2 4sin*(nm p)
~ 2mlL? f

n

], wheren =1,2,3, ....
(18)

Equation (18) is the same as Eq. (15) if we restrict to first
order. The perturbative relation of Eq. (15) is compared with
the numerical results of Eq. (6) in Fig. 3. We find both the
equations are in good agreement when |f| > 0.5. Figure 3(c)
shows the ratio of ground-state energy to the bound-state
energy (E, = —%f%) plotted varying position p of the
impurity for both attractive and repulsive impuirty strength,
and it can be seen that the numerical curve for attractive
and repulsive § function potential completely overlaps with
the perturbative curve for strength |f| > 0.5. But at values

10 < S
Eg
Ey
5
- >0 (Analytical)
e — >0 (Numerical)
7" f<0 (Analytical)

f<0 (Numerical)

FIG. 4. ‘% vs p where black (f > 0) and green solid lines
(f < 0) are the perturbative ground-state results for the attractive
and repulsive § function respectively which is plotted as a function
of position p of impurity. There are four colors green, red, blue,
and black. Green (f < 0) and black (f > 0) are plotted analytically
using perturbed ground-state expression, whereas red (f < 0) and
blue (f > 0) are plotted numerically. The lowest, middle, and the
topmost blue and red dots pair or black and green solid line pair are
plotted at the strength parameter | f| = 0.1, 0.5, and 1, respectively.

of strength parameter |f| < 0.5, the numerical result for the
attractive and repulsive § function deviates from the analytical
perturbative result. Figures 3(a) and 3(b) represent plots of the
first six energy levels as function of position p of the impurity
for attractive (repulsive) § function potential both numerically
and perturbatively where the strength parameter |f| > 0.5.
We see that the two results completely overlap with each
other, and hence we are free to use the perturbative results
if | f| > 0.5. The weak-coupling perturbative results are used
in the next section to calculate work output of QOC and QCC.
We notice that the eigenenergy relation in Eq. (15) is sym-
metric about p = 1/2 as it satisfies, E,(f, p) = E,(f, 1 — p)
and when p is close to zero the eigenvalues reduce to ISW
potential eigenvalue solution.

In Fig. 4 the lowest dotted pair does not match the solid line
pair, but the other two dotted pairs overlap with the solid line
pairs. We can conclude using this plot that the ground-state
perturbative results agree with the numerical results for the
strength parameter |f| > 0.5. Thus, all the weak-coupling
perturbative calculations will be performed in the regime
|fl = 0.5.

2. The perturbative solution for strong-coupling
regime (|\| > lor |f| < 0.1)

Impurity modeled as a barrier in a box was solved in
Ref. [20] for a strong-coupling case (f — 0) but with its
position fixed at the center of the ISW. In this paper, we gen-
eralize the impurity position to any arbitrary place in the ISW.
We derive the energy eigenvalue for the strong-coupling case
by applying perturbation up to the first order in the strength
parameter.

In extreme strong-coupling case (|A| > 1 or |f| < 0.1)
the expansion of k = ko + %kl + A—lzkz + - - - is applied to the
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dispersion relation [in Eq. (6)], and we obtain:
2mA

Bsin(BL) = e sin(BpL)x sin[B(1 — p)L], (19)

where B = ko + %kl + %kz + .... Calculating the power-
series expansion of sin and collecting powers of A' on both
sides,

sin(kopL) sin[ko(1 — p)L] =0, (20)

which implies either sin(kopL) = 0 or sin[ko(1 — p)L] = 0.
Choosing sin(kopL) = 0 gives kg = ;ﬁ—’z, wheren =1,2,3,...,

and then collecting powers of A?, we have

2
(ko — h—Tkl pL) sin(koL) = 0. Q1)

If sin(kgL) # O, then k; = 2’?;’;1. Thus the eigenenergy correc-

tion up to first order is given by
Rkttt )
- 2m

; (22)

n

2

or, E, [(kOL)Z + %(koL)(le) +-- } (23)

= 2mL?
substituting ky and k; in Eq. (23), we get the strong-coupling
eigenenergy up to first order in strength parameter (f) as
B (n’rn®  nfn

+ f . (24)
2mL2\ p? P
Choosing sin[kyg(l — p)L] =0 instead of sin(kopL) =0
means one needs to replace p by 1 — p in Eq. (24). In that
case, the strong-coupling eigenenergy is E,(f, 1 — p).

En(f’ P) =

C. Quantum thermodynamics

A combination of different quantum thermodynamic pro-
cesses and number of strokes in each cycle results in different
types of quantum heat engines, see Refs. [3,4]. Before starting
the calculation of work output and efficiency, let us discuss the
thermodynamics of these. The internal energy, see Ref. [3],
depends on the temperature in the case of classical ideal gas
and the number of degrees of freedom, but for the quan-
tum mechanical system it depends on other parameters. Total
energy is U = Tr[pH] where, for distinguishable particles,
the density matrix is p = Y, Puln)(n| = 3, Z2XCLE ) ()
and Z = Trlexp(—pBH)] is the partition function. Thus U =
>, P.E,, where P, is the occupation probability of the nth
eigenstate and E, is the nth eigenenergy of the working sub-
stance. We have dU = ), (E,dP, + P,dE,). The first law
of thermodynamics is dU = dQ + dW, where U is a state
function and Q, W are path-dependent functions and this has
caused the notational change in the differentials. Thus,

dQ =) EdP, and dW =) PdE, (25

At thermal equilibrium, we can write dQ = TdS. Equa-
tion (25) holds true for both equilibrium and nonequilibrium
case. In the rest of the paper, we will compute the work output
and efficiency of QOC and QCC (when the reversibility con-
dition is satisfied for the Carnot cycle). Our working substance
would be ISW with a Dirac § impurity. The particle mass m

TABLE I. The chart below defines various types of regimes pos-
sible for a quantum thermodynamic cycle on the basis of the signs of
work done and heat exchanged.

| Qout

Heat Engine Refrigerator Joule Pump Cold Pump
Qin>0: Qom<0q Q[n<0- Q(mt>0 Qin<0q Q(ml<0 Qin>0: Qam<0
W>0mn=4 |W<0,00P= s |W <0 cop="Lapi®llw <0, cop= Gl

is equal to the electron mass. Temperatures of hot and cold
reservoirs are denoted by 7j, and T...

D. Categorization of the system

Depending on the signs of Qi,, Qou and work done, the
cycle can be categorized into heat engine, refrigerator, Joule
pump, and cold pump as also shown in Ref. [26].

The categorization is summarized here in Table I. In our
calculations, we assume that if work is positive, then work
done by the system, and if it is negative, it is done by the
system. If heat exchanged is positive, then heat is absorbed by
the cycle; if it is negative, then heat is released. This catego-
rization helps us in realizing the significance of negative work.
We note that the system always operates as a heat engine if the
work done is positive.

E. Quantum Carnot cycle

Like the classical Carnot cycle, the quantum Carnot cy-
cle is reversible, involving quantum isothermal and adiabatic
processes. For a quantum Carnot cycle to exist, the energy
eigenvalues must satisfy a reversibility condition for all states,
see Ref. [13]. QCC, depicted in Fig. 5 (Temperature vs. En-
tropy phase diagram) has the following plot:

Temperature(T)
_I:' o C ;—Qin B
A Y
Tl- - -
o ‘* A
| Qout !
| |
Ent S
S(D) S(A)> ntropy(S)

FIG. 5. Temperature-entropy curve for QCC. B — A and D —
C are adiabatic processes and C — B and A — D are isothermal
processes.
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B — A and D — C are adiabatic strokes such that
P.(A) = P,(B), P,(C) = P,(D), (26)

which implies

S(A) = S(B) and S(C) = S(D). Q27)

Throughout the paper, we use the following notations for
convenience:

(1) pn, pc — position of the impurity during strokes
C - Band A — D in QOC.

(2) Ty, T. — Temperature of the hot and cold reservoir.

(3) fu, fo — strength of the impurity during strokes
C - Band A — D in QOC.

(4) Ly, L. — length of the ISW at C and D.

(5) kg — Boltzmann constant.

For all our calculations, the temperature of the cold reser-
voir is fixed at 7, = 1.5 K and work output as expressed in
millielectronvolt (meV) or micro electronvolt (ueV). Expres-
sions for heat exchanged are as follows:

Oin = TH[S(B) — S(C)] > 0, and
Qout = Te[S(D) — S(A)] < 0. (28)
Hence work output is
Wearnot = Qin + Qoul = (Th - Tc)[S(B) - S(D)], (29)
where S(i) is entropy here in i € {A, B, C, D}, and
exp[—BE, ()] . ,
NOEE Z’f S BED — I Z(), - (0)
and efficiency is
Wearn T
Ca otzl__c7 (31)
Qin Th
which matches with the classical expression for efficiency of

QCC. The reversibility condition, as derived in Ref. [3], is
given as

NCarnot =

T.
E,(A) — En(A) = E[E"(B) — Eu(B)]. (32)
Substituting the strong-coupling energy eigenvalue [Eq. (24)]

in the above equation, we get,
n? n*r?  nfrm m’n?  mfmw
ImL2 ool PR
MLy Py Pa D Py

T. K n*r?  nfrm m’n?  mfw
=7 2 rai el > T3 ’
1) 2mLB Pg Pp Pp Py
(33)

where L; and p; are length of ISW and position of impurity
at ith instant. The only case for which we will get the re-
versibility condition satisfied independent of the states m, n is
when we vary length of the ISW during the cycle and keeping
other parameters like position and strength constant during the
cycle. Thus, we have py = pp. This gives us

Ly T,
I

(34)

The reversibility condition thus can be satisfied by taking
appropriate values of length of ISW as shown in Eq. (34). The
cycle will be analyzed for numerous cases by varying different

parameters for the strength and position of the impurity. Let
us calculate the work output and efficiency of QCC when we
consider a particle in infinite square well without impurity.
In that case the energy eigenvalues have form E, (i) = y;n?,

where y; = The entropy of the working substance can be

8m L’
calculated by using Eq. (30), we get S(i) = % + kp ln(z W)
at ith instant. While deriving this, we used the approxima-
tion Y o>, exp(—BE,) ~ [, exp(—BE,)dn. Let S, and S, be
the entropies of the system during strokes BA and DC, re-
spectively, which implies S, = S(A) = S(B)and S, = S(C) =
S(D). So the work done during QCC for infinite square well
without impurity is

&%)

Bryn

(35)

Weamot = (T, — T.)(Sp — S¢) = kp(T;, — T2) In (

1. Work output and efficiency of the quantum Carnot cycle
in the strong-coupling regime of impurity

Using the energy eigenvalue in Eq. (24) and entropy in
Eq. (30), we calculate entropies for Carnot cycle up to first
order of impurity strength (f) in the strong-coupling limit.
We consider the case when length of ISW is varied during
the cycle between L; (length of ISW at instant C) and L.
(length of ISW at instant D). Denoting S(A) = S(B) = S, and
S(C)=S8(D) = S., we have

2Bnkp/ VB L+2
NI 2B

1 2
+ kp In P il
Bnyn

2Bckp/VeBe L T 2[31/2 Vc3/2 Sfelve)
NG 2B, ¢ omr pt

1 2
i = [ 22
Beve

The work done during QCC is

Sn = ST

2y fg(yh)}

and

S. =

WCarnot = (Th - Tc)(Sh - Sc) (36)

Substituting expressions for S, and S, in the above equa-
tion for work done we get

Weamot = (Th — Te) ——— 2k 2/2 h1/2
\/p 4
|:L+ ’31/2)’;, fg(J/h)}
28 732
1 v f8(ve)
_/33/2%1/2[ i ,31/2 ¢
2[36 73/2 p4

2
N pnm< &w)
2 Brvu
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Temperature(T)

T.

] Entropy(S)
S(A)

FIG. 6. Temperature-entropy curve for QOC. S(B) and S(D) are
entropies at temperatures 7;, and T, respectively. B — A and D —
C are adiabatic processes and C — B and A — D are isochoric
processes.

S(D)

and for efficiency,

Weamot _ (Tn = Te)(Sh — Se) I.

NCamot = = =1-—=, @7
T On Tu(Sh — Se) T,
. 22— f ) Bt 2 i
wherein g(y;) = — ", yi = 8:17, and B; = kbLT with i €

{c, h}. The coefficient of performance (COP) of QCR and
quantum Carnot cold pump then is
Oow  T(Sp—S) T,
|WCarn0t| |Th - Tc|(Sh - Sc) |Th - TL| .
(38)

COPCarnol =

F. Quantum Otto cycle

Four-strokes of a quantum Otto cycle involve two quantum
isochoric and two quantum adiabatic strokes. The quantum
analog of a classical Otto cycle for two-level and multilevel
systems is very well discussed in a series of papers, see
Refs. [3,13]. These papers arrive at the same T-S diagram
for both classical and quantum Otto cycles. A QOC depicting
Temperature vs. Entropy phase diagram is shown in Fig. 6.

The reversibility condition is not required for QOC. QOC
will be evaluated for our impurity model by changing vari-
ous parameters. In quantum isochoric processes, the energy
eigenvalue of the system remains constant. Since C — B and
A — D are quantum isochoric strokes:

EB)=E(C)=E™ and E(D)=E(A)=E™. (39)

B — A and D — C are quantum adiabatic strokes during
which the occupation probabilities of energy eigenstates re-
main unchanged, as a result we have

P, (A) = Py(B) and P,(C) = P,(D). (40)

The input and output heat can be calculated using Eq. (25)
by taking an integral over path B — A and path D — C re-
spectively, as was done in Ref. [3]. In the C — B stroke, the
entropy of the system increases, more heat is absorbed by

the system hence Qj, > 0, and, similarly, the entropy of the
system decreases during the stroke A — D, which results in
Oout < 0, that is, heat is released by the system. Following are
the expressions for heat exchanged for QOC:

B
On = [ Esdr, = Y EPIR(B) ~ PO > 0. 4D
C n

D
Qou = / E,dP, =Y EM[P,(D)— P,(B)] < 0. (42)
A

n

The work performed by QOHE [3] is then

Wouo = Oin + Qou = Y _ (E" — Eg™)[P.(B) — Py(D)],

(43)
and the efficiency for QOHE is

_ Oin _ > E(P,(B) — P,(D)
Wowo ), (E'iln _ E,(,)“‘)[Pn(B) —pD)

Let us analyze what happens when we have a ISW poten-
tial with no impurity such that the length of the ISW varies
from L. (length of square well during stroke A — D) to L
(Iength of square well during stroke C — B). The eigenvalues
and eigenfunctions for ISW potential are of form E,(i) =

2 . .
8(:’112. We use the approximation as stated

in Refs. [3,10] with Yo exp(—BE,) ~ [;° exp(—BE,)dn
and this gives an expression for work output and efficiency
for system without impurity, that is, ISW without a Dirac §
potential,

no (44)

yin* where y; =

Wouo ~ ( )( ! ! ) d - e
S 3] Bt . and now 1 — =,
one Bive  Beve oue Vi

(45)

2 .
where y; = 8:7 and i € {c, h}.

1. Work output and efficiency of the quantum Otto cycle
in the strong-coupling regime of impurity

Using the energy eigenvalue in Eq. (24) and heat equa-
tions in Egs. (41) and (42) we calculate Q;, and Q,y for Otto
cycle up to first order in the strength parameter (f) in the
strong-coupling limit. We consider the case when the position
of the impurity is varied during the cycle between as pj
(position of impurity during stroke A — D) and p,. (position
of impurity during stroke C — B),

0. = 2fy? [g(ph)ﬁ,i/2 B g(pc)ﬂc‘/z}
in pzn3/2 Dh De
1/1 P’ )
o= —=5) (46)
2 (ﬂh /3(,-[7%[
0u = V8B 2B,
out p§n3/2 e Ph
1/1 2
+-(—— ”h2>, 47
2\ B ,Bhpc
221\ B2 n? 1
where g(p;) = a5y V= and B; = oI such that

i € {c, h}. Using the expressions for Qj,, Qo We get the work

054112-7



PRAKASH, KUMAR, AND BENJAMIN

PHYSICAL REVIEW E 106, 054112 (2022)

done up to first order in strength parameter(f) as

2fy*? [g(ph)ﬂ,i/z B g(pc-)ﬁi/z] (i B L)
w32 Ph Pe P P

pf.—zﬁ)( 11 )
+( 2 Beri  Bup2) @5

To express efficiency n = Vg’—“ in a simplified manner, let

Wouo =

_ 2oy g(pc)ﬂg/z] and y = Bri=Beri o0 thus
Pe ’

- #2 Ph zﬂ/x ﬂ('
3
P X = YPc
Nowo = 1 — (—3) (—) (49)
pc yph — X
Similarly, the coefficient of performance, COP = \le;u‘lI for
QOCP and QOR is
3
Py(ype — 2x)
COPoyo = ; (50)

2x(p? = ) +ypupe(Py — P2)-
Unlike in strong coupling, we could not get closed-form ex-
pressions of work output in the weak-coupling limit due to

the nontrivial terms in the weak-coupling energy eigenvalue,
which makes the integrals in work diverge.

III. RESULTS

In this section, we plot work done and efficiency for QOC
and QCC when changing various parameters. This section is
divided into four subsections covering the cases of varying
strength, length, and position of the impurity during the cy-
cle for strong- and weak-coupling regimes. As the analytical
expression for work and efficiency could be found only for
strong coupling, we will numerically analyze the cases of
weak coupling. To generate the density plots of work done
and efficiency, we used our derived energy eigenvalues in
Egs. (24) and (18) and calculated the summations in Egs. (30),
(41), and (42). A Wolfram Mathematica file for generating
plots for the case of varying impurity strength during the cycle
has been uploaded to github.!

In the first three subsections, we discuss the results for
weak coupling, and then similar cases are briefly discussed
for strong coupling in the last subsection.

A. Variation of parameters

The variable parameters for our impurity model are the
strength of impurity (f), position of impurity (p), and length
of the ISW (L). It is important to note that the parameters will
be varied in two ways:

(1) Changing a particular parameter during the cycle de-
notes that the parameter changes its values while a cycle is
going on.

(2) Changing a parameter cyclewise denotes that the
particular parameter is constant during the cycle and then
changes its value in the next cycle.

Thus, we will have, in total, three possible cases,

"We have openly released our Wolfram Mathematica code in github
[27] for the case of varying the strength of impurity during the cycle.

Entropy(S)
A

S(B)|---4f—< B
v A

s(©)|-- -5 —c
| |
1 |
|

P-Strength(f)

fc h

FIG. 7. Quantum Otto cycle operating between a hot bath at fixed
temperature 7, and a cold bath at fixed temperature 7.. It has two
adiabatic (B — A and D — C) and two isochoric (C — Band A —
D) strokes. Strength changes during the cycle between f), and f..

(1) Changing strength during the cycle, with other param-
eters varying after every cycle (QCC does not exist for this
case as the reversibility condition is not satisfied).

(2) Changing length during the cycle, with other parame-
ters varying after every cycle (QCC exists for this case).

(3) Changing position during the cycle, with other param-
eters varying after every cycle (QCC does not exist for this
case as the reversibility condition is not satisfied).

QOC does not require any reversibility condition; it exists
for all three cases.

A. Changing strength of the impurity during
the cycle for weak coupling

In this subsection, the impurity’s strength (f) will be varied
during the cycle. In contrast, other parameters such as the
temperature of the hot reservoir (7}), length of the well (L),
and position of the impurity (p) will be constant during the
cycle. Figure 7 shows one complete cycle of QOC where we
vary the strength along strokes B — A and D — C for a fixed
length L of the well and fixed position p of the impurity.

The work performed in QOC [Eq. (43)] is

Wo = Y [E.(fi) = Ea(fIlP(B) — Pu(D)],  (51)

where E,(f,), E,(f.) are the nth energy levels associated with
the two isochoric processes since we know that no work is
done in an isochoric or isoenergetic process which implies
constant energy levels in accordance with Eq. (25). For adi-
abatic processes the heat exchanged is zero and hence we get
constant occupation probability for each energy level in accor-
dance with Eq. (25). When strength of the impurity is varied
during the cycle it is noted that the Carnot reversibility con-
dition is not satisfied, and hence QCC does not exist for this
case. Unlike QCC we do not require the reversibility condition
for the QOC [3]. We expect the work output to be symmetric
around, p = 1/2 since the eigenvalues are symmetric around
p=1/2asE,(f, p) = E,(f, 1 — p). The work output should
approach the work output of ISW without impurity if the
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(<)

FIG. 8. Density plots for work output in meV of QOC. (a) 7), =
25K, (b) L =25 nm, (¢c) p =0.5,(d) p=0.15.

impurity is very close to the wall. An impurity close to the
wall implies zero work. Entropy S varies between S(7;) and
S(T;). We tuned the strength fj,, f, and we found different
operational phases of the system existing for f, = 1, f. = —1.
In case of ISW without impurity if we keep the length of the
well fixed during one complete Otto cycle then Wy = 0 which
can be easily seen from Eq. (45) and this implies np = 0.

Figure 8(a) shows two operational phases, QOHE and
QOCP. The system works as heat engine for the impurity
position 0.35 < p < 0.65 and works as cold pump for 0.16 <
p <0.3 and 0.7 < p < 0.9. Similarly, Fig. 8(b) shows two
operational phases, QOHE and QOCP. In Fig. 8(c) there is
no negative work done, hence the QOC operates as QOHE.
In the Fig. 8(d) the system functions as QOCP. Figures 9(a)
and 9(b) are the efficiency plots of the QOHE corresponding
to Figs. 8(a) and 8(b). Figures 9(c) and 9(d) show COP for
cold pump corresponding to Figs. 8(a) and 8(b), respectively.
Note efficiency is plotted in Fig. 9(a) for the impurity posi-
tion 0.35 < p < 0.65 which is the region where the system
behaves as QOHE and similarly the COP of cold pump cor-
responding to Fig. 8(b) is shown in Fig. 9(c) for 0.16 < p <
0.24.

B. Changing length during the cycle for weak coupling

In this regime, Carnot reversibility condition is satisfied
while changing length of the ISW during the cycle. The
Carnot reversibility condition is given as E,(D) — E,,(D) =
%[En(C) — E,,(C)]. To satisfy the reversibility condition, the
equation we get after substituting the energy eigenvalue must
be independent of the energy eigenstates m, n. So after sub-

o . . - L
stituting the energy eigenvalue and simplifying, we get L—’; =
%. Thus, the Carnot reversibility condition can be satisfied
for all eigenenergies by choosing the appropriate length and

Heat Engine

0.20
0.15

Io.1o
0.05

p -
035 045 055 065

p p
(a) (b)

035 045 055 065

50

Cold Pump CoP

(XGLORL  Cold Pump

30 60

016 02 024 2 022 024
p
© I(od)

FIG. 9. Efficiency and coefficient of performance of QOC.
@T,=25K,(b)L=25n0m, (c) T, =25K, (d) L =25 nm.

temperature values, which fulfill the reversibility condition.
Hence, in this subsection, we see both QCC and QOC. A
QOC depicting Entropy vs. Length phase diagram is shown
in Fig. 10. Figures 11 and 12 are for QOC when length of
the ISW is changed during the cycle. A — D and C — B
depict quantum isochoric strokes and hence along them the
energy eigenvalue remains constant (dE,, = 0). For the energy
to remain constant, the length must be kept constant during
strokes A — D and C — B. Howeyver, this is not the case with
QCC, where length continuously varies throughout the cycle
without being constant for any stroke.

Entropy(S)
A
S(B)| - - T—< B
|
S(C)} - - >
ID I c
| |
| |
L Lh L engthiL)

FIG. 10. Quantum Otto cycle for varying length of ISW during
the cycle. There are two adiabatic (B — A and D — C) strokes and
two isochoric (C — B and A — D) strokes.
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W(peV) 10 W(meV)
-0.113
. 8 0.0292
-0.115 6 0.0290
-0.117 4 0.0288
2 0.0286
00 05 10 0119 00 05 10
p p
(a) (b)

FIG. 11. Density plots for work output of QOC. (a) Parameters:
L, = 100 nm and L, = 129 nm, 7}, = 2.49 K (fixed for all cycles),
after every cycle position and strength are changed. As the work
is entirely negative, the system works as a refrigerator. (b) Work is
expressed in meV. L, = 100 nm and L. = 163 nm, 7, = 5 K. As the
work is positive, the system works as a heat engine.

Now as derived in Egs. (43) and (29) we have work done
for Otto and Carnot cycles as

Wouo = Y _[Ex(Ly) = Ey(L)IP,(B) = Pu(D)],  (52)

n

with P, being the occupation probability and
WCarnot = (Th - Tc)[S(B) - S(D)], (53)

where S(i) is the entropy of the system at ith instant, i €
{B, D}. Applying these results, we get work and efficiency
plots for both QOC and QCC. Work output plots in Figs. 11(b)
and 12(b) show entirely positive work output, and hence the
system behaves as a quantum heat engine. Work output is
negative in Figs. 11(a) and 12(a). To determine the phase of
the system, we analyzed the signs of Qj, and Q,, for those
regions. We found that Q;, < 0 and Qyy > 0 from which we
conclude that the system operates as a quantum refrigerator.
Figure 13 depict the efficiency of QOHE and QCHE. We
note that a QCHE produces higher work output and higher
efficiency than QOHE.

- W(eev) 10 " W(meV)
0413 § 0.0374
f )
6 HeatEngine
-0.115 v 0.0370
' ‘
-0.117 i " Jo.36
‘ 2 ‘ ‘ 0.0364
0 05 10 ! 05
-0.119 00 "0 0.0366

P
(a) P
(b)

FIG. 12. Density plots for work output of QCC. (a) Parameters:
L, = 100 nm and L, = 129 nm, 7}, = 2.49 K (fixed for all cycles).
As work is negative, system works as a refrigerator. (b) L, = 100 nm
and L. = 163 nm, 7}, = 5 K. As work is positive, the system works
as a heat engine.

0.70 ...................................

n 08
w o QCEat Ty = 5K
64 — QOEatT, =5K

e
00 02 04 05 08 10
P

FIG. 13. Plot of efficiency versus position of the impurity in
QOHE and QCHE, calculated with L, = 100 nm and L. = 163 nm,
f =5 (fixed for all cycles), 7, = 5 K(fixed for all cycles).

C. Changing position of the impurity during
the cycle for weak coupling

It can be observed that the Carnot reversibility condition
is not satisfied for changing position of impurity during the
cycle. Hence we will analyze only QOC via varying position
during the cycle. In Fig. 14, we show the Entropy vs. Position
of entropy phase diagram for QOC. We calculate the work
output of QOHE in this case by using the Eq. (43), which
gives us:

Woto = »_[Ea(ph) = En(pe)I[Pa(B) — Pa(D)].  (54)

In Fig. 15(a) the system operates as QOHE when the length
of ISW is below 50 nm, the operational phase of the system
changes to QOCP as the length of ISW becomes greater than
50 nm. Similarly, in Figs. 15(b) and 15(c) the system operates
either as heat engine or as cold pump.

Entropy(S)
A

S(B)|- - - +—< B
A A

s(O)l- - - 1
P |
I 1
II% ;?“)Position of impurity(p)

FIG. 14. Quantum Otto cycle is shown working between 7, and
T.. B— A and D — C are adiabatic strokes while C — B and
A — D are isochoric strokes. Position of impurity varies between
pi and pe.
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FIG. 15. Density plots of work for QOC in meV. (a) Param-
eters: p, =0.1 and p.=0.8, T, =10 K (fixed for all cycles),
20 nm < L < 80 nm and the strength of impurity varies as 1 < f <
6. (b) pr, = 0.1, p. = 0.8, L = 40 nm (fixed for all cycles). (c) p, =
0.1 and p. = 0.8, f =5 (fixed for all cycles). (d) Parameters: p, =
0.1 and p. = 0.8, T, = 10 K (fixed for all cycles), 20 nm < L <
50 nm and the strength of impurity varies as 1 < f < 6.

D. Changing position of the impurity during
the cycle for strong coupling

Similarly to the weak coupling, we can evaluate our model
in strong-coupling regime. In this subsection we vary the
position of the impurity during the Otto cycle between p; and
pe as shown in Fig. 16. In Figs. 16(a) and 16(d), we observe
that systems operate either as heat engines or as refrigera-
tors. The previous subsection showed heat engine and cold
pump phases when the impurity position varied during QOC
for a weak-coupling regime. The efficiency of the heat en-
gines obtained for the strong-coupling regime is much higher
than those obtained in the weak-coupling regime, as evident
from Figs. 15(d) and 16(b). Like the impurity position, other
parameters of our system, such as length of the ISW and
strength of the impurity, can also be varied during the cycle
for strong coupling, and a similar analysis can be done for
them.

0.05¢
Refriger W(meV) 0.04' n

0003 0.847

/ 0.002 0.846

{ 0.845

, 0001 0.844

i ! 0.843

; I-o.oo1 0842

20
L(nm) Linm) :
(a)
0.080

0.075 coP _—

0070 0.0630 "

' 0.0625 g.os
0.065 0.0620  os
0.060" ‘ 0.0615 -0.10

70 75 80
L(nm) Linm)
(c) (d)

FIG. 16. Density plots of work and efficiency of QOC. Parame-
ters: (@) p, = 0.2and p. = 0.5, 7, = 10K, 20 nm < L < 80 nm and
the strength of impurity 0.01 < f < 0.09. (b) p, =0.2, p. = 0.5,
T,=10K. (¢) pp=0.2, p.=05,T,=10K. (d) p, =0.2, p. =
0.8, f =0.03.

IV. ANALYSIS

In this section, we analyze the density plots obtained under
Results. We discuss the different thermodynamic operational
phases seen in the system and their work output, efficiency,
and COP due to embedded impurity in the ISW.

A. Adiabatically varying strength of impurity during
Otto cycle in the weak-coupling limit

While adiabatically varying strength of impurity during the
QOC cycle, we observe heat engine and cold pump phases. In
Fig. 8(b), when the length of ISW is fixed at L = 25 nm, we
notice that a higher magnitude of work can be obtained by
increasing 7}, for particular values of length.

The maximum work output of QOHE and QOCP obtained
when the impurity strength is adiabatically varied during the
cycle is tabulated in Table II. W(COP,,x) and W (1max) are
the values of work done at maximum COP and efficiency. The
reason these quantities are significant is that the parameter
regimes where work output is maximum and where efficiency
or COP is maximum may not be the same for some cases.
In fact, wherein work output is maximum, efficiency or COP

TABLE II. Two different operational phases were revealed while varying strength of the impurity adiabatically. The table shows the
magnitude maximum work output in meV and maximum efficiency and maximum COP delivered by the system. Work done here is in meV.

QOHE QOCP
Adiabatically varying strength (f, = 1, f, = —1) Winax Nmax W (Nmax) W | imax COPax [W (COP 00|
T, =25K,10nm < L < 100 nm, 0.35 < p < 0.65 0.1 0.2 0.08 0.1 100 0.02
L=25mm,5K <7, <35K,0.35 < p <0.65 0.15 0.2 0.10 0.1 18 0.08
p=055K<T,<35K,20nm < L < 50 nm 0.15 0.2 0.05 0.125 35 0.05
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TABLE III. Comparing magnitude of maximum work output and maximum efficiency delivered by the system while acting as quantum

heat engine during QOC and QCC. Work done here is in ueV.

QOHE QCHE
Adiabatically varying length (L, = 100 nm, L, = 163 nm) Winax Nimax W (Mmax) Winax Nimax W (max)
I,=5K, 1< f<10,0<p<1 29.2 0.624 29.2 374 0.7 374
f = 0 (no impurity) 27.2 0.624 27.2 31.8 0.7 31.8

might be low or minimum and wherein work output is less
or even minimum, efficiency or COP can be maximum. Thus,
the values of W (COP,x) or W (nmax ) could be termed as the
effective work output when the thermodynamic cycle is the
most efficient.

We use Eq. (45) to find the work output of the heat engine
when we use ISW without impurity. If we compute work
using ISW without impurity such that the length of the ISW
is kept constant during the cycle, we get zero work output
and efficiency. The cold pump phase of the thermodynamic
cycle is absent when there is no impurity. Thus introducing
an impurity in the ISW has unlocked the cold pump phase in
QOC. It also produces nonzero work output in the quantum
heat engine phase as if the length is left constant in ISW
without impurity.

B. Adiabatically and isothermally varying length of ISW
during the Carnot or Otto cycle in weak-coupling limit

1. Adiabatically and isothermally varying length
of ISW during Carnot cycle

In contrast to varying strength or position of the impu-
rity during the cycle, the Carnot reversibility condition gets
satisfied only while the ISW’s length changes. Unlike QOC,
the length of ISW in QCC does not remain constant for any
of the strokes. Hence, in QCC length of ISW is varied both
isothermally and adiabatically. In Fig. 12(a), we find that the
system absorbs heat from the cold reservoir and releases heat
to the hot reservoir, which implies that the system operates as
a QCR. We obtain only heat engine and refrigerator phases
while varying the length of ISW during QCC.

2. Adiabatically varying the length of ISW during the Otto cycle

As the length of ISW remains constant during the isochoric
strokes in QOC, length can only be varied adiabatically during
the Otto cycle. We obtain negative work output from the signs
of Qi and Quy. We conclude that the system operates as
QOR. Further, in Fig. 11(b), work done is positive, implying
the system acts as a quantum heat engine. Hence, we obtain
only heat engine and refrigerator phases while varying the

length of ISW during the QOC. Figure 13 shows that QCHE
provides higher efficiency than QOHE. The maximum values
of work outputs, efficiencies of QOC and QCC obtained
while varying length of ISW during the cycle are tabulated in
Tables IIT and IV.

Tables III and I'V show that introducing an impurity has en-
hanced the work output of both QOC and QCC while keeping
the efficiency constant. If we compute work for ISW without
impurity [using Eq. (45)] such that the length of ISW changes
during the cycle (L, = 100 nm, L. = 163 nm), then we get
the work output of QOHE and QCHE as 27.2 and 31.8 ueV,
respectively, which are lower than the work output produced
by heat engine with impurity. The refrigerator phase of the
thermodynamic cycle is absent for ISW without impurity. The
maximum possible efficiency that can be achieved by any
thermodynamic cycle is given by the Carnot efficiency limit,
whichis 1 — % From Table IIT and IV we notice that for QOC
while varying iength (Ly = 100 nm, L. = 163 nm) of ISW we
could achieve efficiency near to the Carnot efficiency limit,
given by 1 — % =0.7.

Thus introducing an impurity in the ISW has unlocked the
refrigerator phase in the thermodynamic cycle and has also led
to the higher work output of the quantum heat engine than the
quantum heat engine without impurity and has helped QOC
achieve near Carnot efficiency.

C. Adiabatically varying position of impurity during
Otto cycle in weak-coupling limit

While adiabatically varying impurity position during the
cycle, we see both quantum heat engine and cold pump
phases.

In Fig. 15(a), we observe both the heat engine and cold
pump phases. The phase changes from heat engine to cold
pump when length of ISW crosses 50 nm, provided the po-
sition of impurity changes during the cycle as p;, = 0.1 and
p. = 0.8. In Fig. 15(b), we observe both the heat engine and
cold pump phases. Keeping the length of ISW constant at
L = 40 nm and changing the temperature of the hot reservoir
along with changing the impurity position during the cycle
helps us see the phase change from heat engine to cold pump.

TABLE IV. Comparing magnitude of maximum work output and maximum COP of the system acting as quantum refrigerator during QOC

and QCC. Work done here is in ueV.

QOR QCR
Adiabatically varying length (L, = 100 nm, L., = 129 nm) W | imax COP,ax |[W (COP)| [W | imax COP ax [W (COP 00|
T,=249K,1<f<10,0<p<1 0.119 1.506 0.119 0.119 1.500 0.119
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TABLE V. The table shows efficiency, coefficient of performance and maximum work output delivered by the system while acting as
quantum heat engine and quantum cold pump during the QOC. Work done here is in ueV.

QOHE QOCP
Adiabatically varying position (p;, = 0.1, p. = 0.8) Winax Nmax W (Mmax) W | imax COPax [W (COP 00|
T, =25K,20nm< L <80nm,1 < f <6 7.5 0.035 5.0 5.0 1750 0.5
L=40nm,5K<T,<35K, 1 <f<3 5.0 0.03 3.0 10.0 800 1.0
f=55K<T7,<35K,20nm < L < 80 nm 4 0.008 2.0 2.0 2000 0.4

The maximum work output of heat engine and cold pump ob-
tained while varying position of impurity adiabatically during
QOC are tabulated in Table V.

The cold pump phase of the thermodynamic cycle is absent
when we use ISW without impurity. Introducing an impurity
in the ISW has unlocked the cold pump phase in the thermo-
dynamic cycle. In Table V, we get large values of COP,,,x due
to large values of Q,, and small values of work done in the
cold pump phase.

D. Adiabatically varying position of impurity
in the strong-coupling limit

We can do a similar analysis in the strong-coupling
limit (|f] « 0.1), just like the way we did for the weak-
coupling case (|f| > 0.5). The energy eigenvalue for the
strong-coupling limit is derived in Eq. (24) up to first order
in strength, i.e., f.

All three cases can be analyzed for this case, including
the varying impurity position, length of ISW, and variable
impurity strength during the cycle.

In strong coupling, we vary impurity position during
the Otto cycle and study the density plots obtained. While
adiabatically changing the position of impurity during this
strong-coupling cycle, we see quantum heat engine and re-
frigerator phases. Interestingly, when impurity position varied
during weak coupling, we could detect heat engine and cold
pump phases only; however, when we varied position during
strong coupling, we see refrigerator instead of cold pump
phase. The Carnot efficiency limit gives the maximum achiev-
able efficiency of any cycle. From Table VI, we notice that
while varying the position of the impurity in the strong cou-
pling, we get the efficiency of QOC very near to the Carnot
efficiency limit, which is 1 — % = 0.85 and 0.96. Thus, the
impurity has helped attain the maximum possible efficiency
for the Otto cycle in strong coupling. Table VII compares
the changes obtained in operational phases of the ISW after
adding impurity with the no impurity case.

V. CONCLUSIONS AND EXPERIMENTAL REALIZATION

Adding an impurity to an ISW as the thermodynamic
system can unveil different thermodynamic phases like a
quantum heat engine, refrigerator, and cold pump. Introducing
the impurity has also resulted in higher work outputs for
QOHE and QCHE. We present the analytical perturbative
eigenenergy correction up to second order for an ISW with
impurity in weak coupling and up to first order with impurity
in a strong-coupling regime. We show that the weak-coupling
perturbative solution is in good agreement with the numerical
solution of the transcendental dispersion relation. We find the
threshold value for the impurity strength for which weak-
coupling perturbative results can be applied. We analyze this
system by varying the position of impurity, length of ISW,
temperature of reservoirs, and strength of the impurity. We
have considered all possible system variants while tuning all
possible system parameters. When the length of the ISW is
varied during the cycle, the Carnot reversibility condition gets
satisfied. Hence, we could compare work and efficiency for
both QCC and QOC. QCHE can generate a higher work out-
put and efficiency than QOHE. Further, we could also unlock
the quantum refrigerator phase in QCC and QOC.

A possible candidate to realize the model experimentally,
involves a laser-cooled trapped ion as a microscopic heat
machine Ref. [28]. In Ref. [28], not only is the potential
experimentally realized which mimics our model (ISW with
impurity), but also construction and demonstration of quan-
tum Otto engine is carried out experimentally. A trapped,
laser-cooled ion with the combined electro-static harmonic
potential of a Paul ion trap and a sinusoidal potential of
an optical lattice can be used to mimic an infinite square
well both with and without impurity. Further, we list a few
experimental candidates to realize the ISW with or without
impurity using quantum dots. In Ref. [29], the authors work
with hydrogenic impurities in GaAs-(Ga,Al)As quantum dots
to create a finite confining spherical potential well with depth
determined by the discontinuity of the band gap in the quan-
tum dot. Calculations were also performed for an infinite

TABLE VI. Maximum work done on the system (|W |,.x) and work done at maximum COP, both in meV, with maximum COP, i.e., COP .

when strength of impurity is varied adiabatically during Otto cycle.

QOHE QOR
Adiabatically varying position (p, = 0.2, p. = 0.5, 0.8) Winax Mmax W (Mmax) W | imax COP ax [W (COP 00|
T, =10K,0.01 < f <0.08,20nm < L < 80 nm 0.003 0.847 0.001 0.001 0.063 0.0002
f=0.03,5K<T,<35K,20nm < L < 80 nm 0.1 0.94 0.01 0.1 0.065 0.03
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TABLE VII. Heat engine, refrigerator, and cold pump phases in an ISW with and without impurity

With i it
fth tmpurity Without impurity
ISW with and without impurity Heat engine Refrigerator Cold pump Heat engine
Changing strength of impurity Present Absent Present Absent
QOC Changing length of ISW Present Present Absent Present
Changing position of impurity Present Absent Present Absent
Changing strength of impurity Absent Absent Absent Absent
QCC Changing length of ISW Present Present Absent Present
Changing position of impurity Absent Absent Absent Absent

spherical confining potential, similarly, in Ref. [30] a quantum
wire is realized into which an impurity of variable size is
introduced, which can be used to create quantum dots. The
quantum wells created in such systems can also be made to
interact experimentally, for example, as shown in Ref. [31] for
multiple quantum wells grown using PbTe or Pb;_,Eu,Te in
a molecular beam epitaxy. These low dimensional structures
depict quantum dot superlattices leading to strongly quantized
energy spectrum of electron. The super lattice quantum well
structure relies on high tunneling probability of the electron.
The electron is no longer localized inside an individual quan-
tum well, thus the wells can be made interacting. A way to
harness heat flow in such systems is shown in Ref. [32] where
a heat engine composed of serially connected two quantum
dots sandwiched between two metallic electrodes is proposed.
These works can be extended by trying out different types of
working substances in order to unlock the exotic properties of
quantum heat cycles, like in Ref. [33], a conceptual design for

quantum heat machines using a pair of coupled double quan-
tum dots is presented, with each pair containing as an excess
electron, as the working substance. All the afore-mentioned
works depict experimental techniques for creating systems
quite close to our model consisting of an ISW with impurity.
To summarize we say that presence of an impurity in a system
with ISW potential can open new operational phases in the
thermodynamic cycle and can also enhance the work output
and the cycle’s efficiency.
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