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Residual entropy of the dilute Ising chain in a magnetic field
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The properties of the ground state of the simplest frustrated system, the dilute Ising chain in a magnetic field,
are rigorously investigated over the entire range of concentrations of charged nonmagnetic impurities. Analytical
methods are proposed for calculating the residual entropy of frustrated states, including states at phase bound-
aries, which are based on the Markov property of the system and involve solving a linear optimization problem
for energy and a nonlinear optimization problem for entropy. These methods allow obvious generalizations
for one-dimensional pseudospin models with anisotropic interactions. We calculate the composition, entropy,
and magnetization for the ground state phases. We prove the absence of pseudotransitions in the dilute Ising
chain, since the residual entropy of states at phase boundaries is always higher than the entropy of adjacent
phases. The concentration dependencies of magnetization at the phase boundaries are obtained, and unlike linear
dependencies for adjacent phases, they have nonlinear behavior. Field-induced transitions between ground states
and entropy jumps associated with them are also considered, and in particular, it is shown that the field-induced
transition from an antiferromagnetic state to a frustrated one is accompanied by charge ordering.
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I. INTRODUCTION

The basis of the unusual behavior of low-dimensional spin
and pseudospin systems is the absence or difficulty of long-
range order formation. This causes the appearance of phase
states and properties that owe their origin to the special role
of fluctuations in these systems. On the other hand, the ex-
istence of exact solutions, especially for a large number of
one-dimensional models, allows us to assess the prospects
for obtaining the desired characteristics in simulated physical
systems. Thus, following the experimental discovery of the
striking features of the magnetic behavior of azurite [1,2],
a significant number of works devoted to one-dimensional
decorated Ising models appeared. These models are char-
acterized by alternating Ising spins and blocks consisting
of spins connected by the interaction of Heisenberg type.
Along with the azurite diamondlike chain [3–19], double-
tetrahedral chain [20–24], ladders [25–27], and tubes [28,29]
are considered. These models demonstrate a lot of fascinating
phenomena and reproduce features of real materials, including
cuprates and vanadates [26], and the heterobimetallic and
polymeric coordination compounds [30–33].

One of the intriguing features of decorated Ising chains
is the possible presence of frustrated phases in the ground
state. These phases are similar to the spin ice states in sys-
tems with higher dimensions and exhibit various interesting
peculiarities of both magnetic response and magnetocaloric
properties. The possibility of enhancing the magnetocaloric
effect in frustrated systems was considered in Refs. [34–37].

Another striking feature due to the presence of frustrated
phases in the ground state of one-dimensional systems is
pseudotransitions. They exhibit in the form of a stepwise de-
pendence of entropy on temperature similar to the behavior in
phase transitions of the first kind, and a sharp peak in specific

heat, which resembles the behavior in phase transitions of the
second kind. Unlike conventional phase transitions, pseudo-
transitions result in an abrupt change in the type of disordered
state of a one-dimensional system at a finite temperature, so
such thermodynamic characteristics as entropy and specific
heat, as well as magnetization and susceptibility, remain con-
tinuous functions, although they have very sharp features.
The universal nature of the pseudotransition is confirmed by
the possibility of defining pseudocritical exponents [38] hav-
ing the same values for substantially different systems. The
pseudotransition temperature is uniquely determined by the
system parameters, such as exchange constants and magnetic
field, and this suggests possibilities for both fundamental and
practical applications of this phenomenon.

To predict the existence of a pseudotransition in a sys-
tem, it is critically important to know the exact values of
entropy in the ground state for all values of the system pa-
rameters, and, in particular, at the boundaries between the
ground state phases in the phase diagram. According to the
Rojas rule [39,40], a pseudotransition in the system is realized
near the phase boundary with a frustrated state if the residual
entropy at the phase boundary is equal to the entropy of
the frustrated state. Such a situation is relatively rare, which
causes the narrowness of the range of model parameters for
the existence of a pseudotransition.

The source of the frustration in magnets, besides geometry,
can be impurities. The simplest model of such a system is
a dilute Ising chain with charged mobile impurities. Without
taking into account the external magnetic field, the model has
an exact solution [41,42]. Its various properties are studied
in detail in Refs. [43–45], and in the most general form the
exact solution is given in Ref. [46]. Taking into account the
magnetic field, the standard transfer matrix method makes
it possible to consider the thermodynamic properties of the
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model using a numerical solution of a system of nonlinear
algebraic equations. In this way, the entropy and magnetic
Grüneisen parameter of the model were studied at finite tem-
peratures [47]. The properties of the ground state, especially
the concentration dependencies, in this case can only be un-
derstood at a qualitative level from the numerical solution at
low temperatures.

In the present paper, we propose an analytical method for
calculating the residual entropy of a dilute Ising chain in a
magnetic field for all possible values of the model parameters,
which is based on the Markov property of the model [48].
Exact analytical expressions for the residual entropy depend-
ing on the concentration of impurities are obtained. For a
given phase of the ground state, the entropy calculation is
based on solving a linear optimization problem for the ground
state energy. For states at phase boundaries, it is neces-
sary to solve an additional nonlinear optimization problem
for entropy. The proposed method allows to make obvious
generalizations for one-dimensional pseudospin models with
anisotropic interactions, like the Ising, Potts, Blume-Capel,
and Blume-Emery-Griffiths models. The obtained exact ana-
lytical dependencies of the residual entropy allow us to study
in detail the nature of the ground state of a dilute Ising chain
in a magnetic field, conditions for the existence of pseudotran-
sitions, and various transitions in the ground state caused by a
magnetic field. In particular, at certain parameters, a peculiar
magnetoelectric effect occurs when a change in the exter-
nal magnetic field causes a charge ordering of nonmagnetic
impurities.

The present article is organized as follows. In Sec. II, the
ground state phase diagrams of the dilute Ising chain with
a fixed concentration of impurities in an external magnetic
field are obtained and explored. In Sec. III, we present our
main results, which are obtained using rigorous methods for
calculating the residual entropy, the state compositions, and
magnetization for the ground state phases and states at the
phase boundaries. The transitions induced in the ground state
by magnetic field and related effects are considered in Sec. IV.
Finally, conclusions are presented in Sec. V.

II. ZERO-TEMPERATURE PHASE DIAGRAM

Phase diagrams at zero temperature of the dilute Ising
chain without a magnetic field are presented in Ref. [48] in
the “interaction constant”–“chemical potential” planes. Qual-
itatively, the ground state accounting for a magnetic field is
considered in Ref. [47]. In this section, we present a rigorous
procedure for obtaining the ground state phase diagrams of
the dilute Ising chain with a fixed concentration of impurities
in an external magnetic field. Found results will be used in the
following section.

The Hamiltonian of the model can be written in the follow-
ing form:

H = −J
N∑

j=1

σz, jσz, j+1 + V
N∑

j=1

P0, jP0, j+1 − h
N∑

j=1

σz, j . (1)

We use the pseudospin σ = 1 operator, where the spin doublet
states and impurity correspond to the pseudospin z projec-
tions σz = ±1 and σz = 0, respectively, J is the exchange

constant, V > 0 is the effective [48] intersite interaction for
impurities, and P0 = 1 − σ 2

z is the projection operator on the
impurity state. We assume that the concentration of nonmag-
netic charged impurities n = 〈∑ j P0, j〉/N is fixed.

For a given n, the energy of a dilute Ising chain in a mag-
netic field can be expressed in terms of the sum over the bonds.
We introduce Na,b as the number of bonds with the left site in
state a and the right one in state b, so that

∑
a,b Na,b = N , and

determine the concentrations of bonds xa,b by expressions

xa,a = Na,a

N
, xa,b = Na,b + Nb,a

N
, a �= b, (2)

where
∑

a,b xa,b = 1. Here and further, for sums containing
xa,b, we assume that summation is performed over unordered
pairs of indices. The functions xa,b depend in general on
temperature, and all other parameters of the model and are
expressed in terms of the pair distribution functions for the
nearest neighbors. The ground state energy per site, ε = E/N ,
is the linear function of xa,b:

ε = −J (x1,1 + x−1,−1 − x1,−1) + V x0,0

− h
[
x1,1 − x−1,−1 + 1

2 (x0,1 − x0,−1)
]
. (3)

We introduce the concentration of spin sites, ns = 1 − n =
1
2 − m, as well as the deviation from half filling m for the
concentration of impurities, m = n − 1

2 . The concentration of
impurities can be expressed in terms of variables xa,b as

n = x0,0 + 1
2 (x0,1 + x0,−1). (4)

Taking into account Eq. (2), the problem of finding the
minimum energy of the ground state takes the canonical form
of the linear programming problem⎧⎪⎪⎨

⎪⎪⎩

ε(xa,b) → min,

xa,b � 0,

x0,0 + 1
2 (x0,1 + x0,−1) = n,

x1,1 + x−1,−1 + x1,−1 + 1
2 (x0,1 + x0,−1) = ns.

(5)

Here, the energy is the objective function, and solutions of
problem (5) correspond to vertices, edges, or faces of the
feasible polytope of variables xa,b.

The solutions in the vertices of the feasible polytope are
listed in Table I. They define the regions for the ground state
phases in the diagram shown in Fig. 1. The multiplier before
h in energy gives the magnetization

M = x1,1 − x−1,−1 + 1
2 (x0,1 − x0,−1). (6)

Solutions 1–3 exist for all n, 0 � n < 1. In the absence of
impurities, at n = 0, ferromagnetic (FM) ordering (solutions
1 and 2) and antiferromagnetic (AFM) ordering (solution 3)
are realized, and they are separated by the critical field |h| =
−2J (the spin-flip transition field) as shown in Fig. 1(a). The
presence of mobile charged impurities qualitatively changes
the ground state of the system. If n �= 0, solutions 1 and 2
describe phases in which macroscopic domains of ferromag-
netically ordered spins directed along the field are separated
by domains of nonmagnetic impurities. In this case, x0,0 �= 0
and xσ,σ �= 0, σ = ±1, while x0,σ = 0 in the thermodynamic
limit. FM phases 1 and 2 have the lowest energy at J > V > 0,
h �= 0. The magnetization of the FM phases are equal to the
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TABLE I. The composition {xa,b} for solutions at vertices of the
feasible region for problem (5). The necessary condition for the
existence of the solution is shown in the second column, and the state
energy in the third column.

State Constraint ε x0,0 x1,1 x−1,−1 x0,−1 x0,1 x1,−1

1 −(J + h)ns + V n n ns 0 0 0 0
2 −(J − h)ns + V n n 0 ns 0 0 0
3 Jns + V n n 0 0 0 0 ns

4 m < 0 2Jm − hns 0 −2m 0 0 2n 0
5 m < 0 2Jm + hns 0 0 −2m 2n 0 0
6 m < 0 −2Jm − hn 0 0 0 0 2n −2m
7 m < 0 −2Jm + hn 0 0 0 2n 0 −2m
8 m � 0 2V m − hns 2m 0 0 0 2ns 0
9 m � 0 2V m + hns 2m 0 0 2ns 0 0
10 m � 0 2(J + h)m + hn 0 −2m 0 2n 0 0
11 m � 0 2(J − h)m − hn 0 0 −2m 0 2n 0

concentration of spin sites, M = ns. AFM phase 3 is real-
ized if J < −V − |h|, and consists of alternating macroscopic
domains of antiferromagnetically ordered spins and impurity
domains. The magnetization of the AFM phase is zero.

Solutions 4–7 in Table I exist only for the weakly diluted
spin chain, 0 < n < 1/2, and their energies do not depend
on V . This case is shown in Fig. 1(b). Solutions 4 and 5
correspond to the minimum energy at −|h|/2 < J < V , h > 0
and h < 0, and solutions 6 and 7 have minimal energy at
−V − |h| < J < −|h|/2, h > 0 and h < 0, respectively. The
equalities x0,0 = 0 and x0,±1 = 2n indicate that a dilute AFM
or FM state is realized, where (anti)ferromagnetic clusters of
different sizes, including the single spins, are separated by
single nonmagnetic impurities. As will be shown later, these
states have nonzero residual entropy, so phases 4 and 5 can
be called frustrated ferromagnetic (FR-FM), and phases 6
and 7 are frustrated antiferromagnetic (FR-AFM). When the
concentration of n = 1/2 is reached, a charge-ordered state
occurs in which spin and impurity sites alternate. For this
state, the energy does not depend on the interaction constants,
J and V . Note that while in FR-FM phases the magnetization
equals the concentration of spin sites, M = ns, and decreases
with increasing n, in the FR-AFM phases M = n. Concentra-
tion dependencies of magnetization are shown in Fig. 3.

Solutions 8 and 9 in Table I exist only for the strongly
diluted spin chain, 1/2 � n < 1, at −V − |h| < J < V [see
Fig. 1(c)]. In these states, xσ,σ ′ = 0, σ, σ ′ = ±1, and x0,0 =
2m, that corresponds to frustrated paramagnetic (FR-PM)
phases, where single spins directed along the field are sepa-
rated by impurity clusters of different sizes, and so M = ns.
The expressions for the energy of these phases do not contain
the exchange interaction constant J .

The energy of solutions 10 and 11 is always higher than the
minimum energy at h �= 0, but, as will be shown later, these
solutions are part of the states at the phase boundary h = 0.

III. RESIDUAL ENTROPY OF A DILUTE ISING CHAIN
IN A MAGNETIC FIELD

Using the Markov property of the dilute Ising chain [48],
we write down the probability of the state (a1a2 . . . aN ) of a

FIG. 1. The ground state phase diagrams of a dilute one-
dimensional Ising model in a longitudinal magnetic field in the
(h, J )− plane for (a) a pure spin chain, n = 0; (b) the weakly diluted
spin chain, 0 < n < 1/2; and (c) the strongly diluted spin chain,
1/2 < n < 1. The framed numbers correspond to the solutions given
in Table I. The arrows show transitions τi in the ground state which
are induced by a change in the external magnetic field. The tran-
sitions τ1–τ4 are caused by an increase in the magnetic field from
zero to some finite value. The transitions τ5 and τ8 occur when the
magnetic field decreases from values larger to values smaller than the
frustration field or the spin-flip field, respectively. Transitions τ6 (τ7)
and τ9 (τ10) appear when the magnetic field increases (decreases)
from the frustration field or the spin-flip field, respectively. These
transitions are discussed in detail in Sec. IV.

closed chain of N sites (N � 1):

PO(a1a2 . . . aN ) = P(a1|a2)P(a2|a3) . . . P(aN |a1) =
=

∏
ab

P(a|b)Nab . (7)

Here P(a|b) is the conditional probability that the ith site is in
state a, provided that the (i+1)th site is in state b. The value
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of P(a|b) is uniquely related to the sort of bond. If a = b, we
obtain

xa,a = P(aa) = P(a)P(a|a) ⇒ P(a|a) = xa,a

P(a)
. (8)

Probabilities of P(a) are equal to the concentrations of the
corresponding states and satisfy the equation

P(a) = xa,a + 1

2

∑
b�=a

xa,b. (9)

Given the equality of the two directions along the chain, we
get that for a �= b, the equality Na,b = Nb,a = 1

2 xa,bN must be
satisfied, as well as the equality P(ab) = P(ba), from which
follows

xa,b = P(ab) + P(ba) = 2P(ab) ⇒ P(a|b) = xa,b

2P(b)
. (10)

As a result,

PO =
∏
ab

P(a|b)Nab = pN
0 , (11)

where

p0 =
(

x0,0

P(0)

)x0,0
(

x1,1

P(1)

)x1,1

×
(

x−1,−1

P(−1)

)x−1,−1
(

x2
1,−1

4P(1)P(−1)

)x1,−1/2

×
(

x2
0,1

4P(0)P(1)

)x0,1/2(
x2

0,−1

4P(0)P(−1)

)x0,−1/2

. (12)

Equation (11) is valid for any temperature, but at zero tem-
perature it also provides a way to explicitly calculate entropy.

The ground state energy is completely determined by the
values of xa,b, according to Eq. (3). We will assume that the
microcanonical distribution is valid for the ground state, that
is, all states with a given energy have equal probabilities. The
sum of these probabilities is 1, which makes it possible to find
the statistical weight � of the ground state,

P[E (xa,b)] = 1 = � PO, (13)

and residual entropy,

s0 = ln �

N
= − ln p0. (14)

Taking into account Eq. (12), we obtain

s0 = −
∑
a,b

xa,b ln xa,b + P2 ln 2 +
∑

a

P(a) ln P(a), (15)

where probabilities P(a) are defined by Eq. (9), in particular,
P(0) = n, and the total concentration P2 of pairs of different
states is introduced:

P2 = x1,−1 + x0,1 + x0,−1. (16)

Equation (15) allows us to find the concentration depen-
dence of the residual entropy with a known composition
{xa,b} for the ground state. To solve this problem within the
framework of the standard approach, it is necessary to find
the largest eigenvalue of the transfer matrix, determine the
parametric dependence of entropy on concentration using the

chemical potential as a parameter, and find the limit at zero
temperature. For a dilute Ising chain in a magnetic field, this
can only be done numerically [47], while Eq. (15) provides an
exact analytical result.

Using the solutions in Table I, we obtain expressions for the
residual entropy of phases 1–9. FM and AFM solutions 1–3
have zero entropy. Solutions 4–9 have nonzero residual en-
tropy for all impurity concentrations, except for the marginal
ones, n = 0, 1

2 , and 1. The entropy of the FR-FM (numbers
4 and 5) and FR-PM (numbers 8 and 9) solutions has the
same dependency on |m|, demonstrating a kind of symmetry
of impurity and spin states in the FM case:

s0 = −2|m| ln (2|m|) −
(

1

2
− |m|

)
ln

(
1

2
− |m|

)

+
(

1

2
+ |m|

)
ln

(
1

2
+ |m|

)
. (17)

For a given concentration, this value is greater than the en-
tropy of the FR-AFM solutions (numbers 6 and 7),

s0 = −|m| ln |m| −
(

1

2
− |m|

)
ln

(
1

2
− |m|

)
− 1

2
ln 2.

(18)
The dependencies of the residual entropy on m for solu-

tions 1–9 are shown in Fig. 2(a). The obtained dependencies
are consistent with the results for entropy at low tempera-
tures, which were obtained by numerically solving a system
of nonlinear algebraic equations within the framework of
a grand canonical ensemble [47]. Within the framework of
the method presented here, it is possible to explore the
behavior of functions analytically. Function (17) has max-
ima s0,max = − 1

2 ln
√

5−1√
5+1

≈ 0.481 at m = ± 1
2
√

5
≈ ±0.224,

and function (18) has a maximum s0,max = 1
2 ln 2 ≈ 0.347 at

m = − 1
4 .

At the phase boundary, the energies of adjacent phases
are equal, so the boundary state should be a superposition
of these phases, unless this leads to an increase in energy.
We define coefficients cν to be the variational parameters in
linear combinations xa,b = ∑

ν cνx(ν)
a,b, where xa,b are unknown

concentrations of the boundary state, and x(ν)
a,b are the found so-

lutions for adjacent phases. The coefficients cν are determined
from the principle of maximum entropy. Using Eq. (15) for s0,
we obtain a nonlinear optimization problem:⎧⎨

⎩
s0(cν ) → max,

cν � 0,∑
ν cν = 1.

(19)

Results for the boundary line h = 0 are listed in Table II.
One can see that the composition of the states for the weakly
diluted spin chain, m < 0, at 0 < J � V , includes solutions
10 and 11 from Table I. The parameter

x∗ =
√

1
2 + 2m2 − 1

2 − m (20)

is equal to the concentration of antiferromagnetically ordered
spin pairs at J = −V and the concentration of ferromagneti-
cally ordered spin pairs at J = V .

Solutions in Table II are divided into three groups. It is
interesting to note that for significantly different composi-

054111-4



RESIDUAL ENTROPY OF THE DILUTE ISING CHAIN IN … PHYSICAL REVIEW E 106, 054111 (2022)

FIG. 2. Concentration dependencies of the residual entropy of a dilute Ising chain for (a) the states inside the regions of the ground state
phases (the framed numbers correspond to the solutions given in Table I), (b) the states at the phase boundary at h = 0 given in Table II, and
(c) the states at the phase boundaries at h �= 0 given in Table III. Next to the curves are the equations of the corresponding phase boundaries in
the ground state diagram.

tions, the entropy within the group is defined by identical
dependencies on m. The FM states at J > V have zero entropy.
The entropy of states at the interval |J| < V has the following
form:

s0 = −2|m| ln (2|m|) −
(

1

2
− |m|

)
ln

(
1

2
− |m|

)

+
(

1

2
+ |m|

)
ln

(
1

2
+ |m|

)
+

(
1

2
− |m|

)
ln 2. (21)

Both FM and AFM states in the points J = ±V , h = 0 have
the same entropy:

s0 =
(

1

2
+ m

)
ln

1
2 + m

2m + x∗ +
(

1

2
− m

)
ln

1
2 − m

x∗ . (22)

Figure 2(b) shows the dependencies in Eqs. (21) and (22).
Function (21) has two maxima s0,max = ln 2 ≈ 0.693 at m =
± 1

6 and the local minimum s0,max = 1
2 ln 2 ≈ 0.347 at m =

0, while function (22) has maximum s0,max = ln(1 + √
2) ≈

0.881 at m = 0.
The concentration dependencies of entropy in Eqs. (21)

and (22) coincide with those obtained earlier [48] from the
exact solution for a dilute Ising chain in the zero field as the
limit at T → 0. This confirms the correctness of the general
equation for the residual entropy in Eq. (15) and the method
of obtaining entropy for the boundary states in Eq. (19).

Solutions at the boundaries between the ground state
phases at h �= 0 are listed in Table III. Here α fulfills the

equation

(1 − μα)
√

1 − α2 = 2μα2, μ = 1 − 2m

1 + 2m
. (23)

If m > 0, then 0 � α � 1, and if m < 0, then 0 � α � 1/μ.
The parameters

x0 =
(

1

2
+ m

)
(1 − μα), (24)

x1 = (1 − 2m)α, (25)

x2 =
(

1

2
− m

)
(1 − α), (26)

are equal to concentrations of the impurity pairs, impurity-
spin pairs, and antiferromagnetically ordered spin pairs,
respectively, at the phase boundary J = −V − |h|. The con-
centration of antiferromagnetically ordered spin pairs at the
spin-flip boundary is also introduced:

x∗∗ = 1
5

(
1
2 − 9m −

√
1
4 − 9m + m2

)
. (27)

The states at the boundary between FM and frustrated
phases, J = V , h �= 0, have the entropy

s0 = −(
1
2 − m

)
ln

(
1
2 − m

) − (
1
2 + m

)
ln

(
1
2 + m

)
. (28)

This function is symmetric with respect to a line m = 0 and
has a maximum s0,max = ln 2 ≈ 0.693 at m = 0.

TABLE II. The composition {xa,b} of the ground states at phase boundary at h = 0. The value x∗ is defined by Eq. (20). The necessary
condition for the existence of a state is shown in the first column, and the numbers of contributing phases in the second column.

Constraint Phases x0,0 x1,1 x−1,−1 x0,−1 x0,1 x1,−1

J > V 1, 2 n 1
2 ns

1
2 ns 0 0 0

0 < J < V , m < 0 4, 5, 10, 11 0 −m −m n n 0
−V < J < 0, m < 0 6, 7 0 0 0 n n −2m
|J| < V , m > 0 8, 9 2m 0 0 ns ns 0

J = V , m < 0 1, 2, 4, 5, 10, 11 2m + x∗ 1
2 x∗ 1

2 x∗ ns − x∗ ns − x∗ 0
J = V , m > 0 1, 2, 8, 9 2m + x∗ 1

2 x∗ 1
2 x∗ ns − x∗ ns − x∗ 0

J = −V , m < 0 3, 6, 7 2m + x∗ 0 0 ns − x∗ ns − x∗ x∗

J = −V , m > 0 3, 8, 9 2m + x∗ 0 0 ns − x∗ ns − x∗ x∗

054111-5



YURY PANOV PHYSICAL REVIEW E 106, 054111 (2022)

TABLE III. The composition {xa,b} of the ground state at phase
boundaries at h �= 0. The values x0, x1, x2, and x∗∗ are defined by
Eqs. (26) and (27). The necessary condition for the existence of a
state is shown in the first column, and the numbers of contributing
phases in the second column.

Constraint Phases x0,0 x1,1 x−1,−1 x0,−1 x0,1 x1,−1

J = V
m < 0, h > 0 1, 4 n2 n2

s 0 0 2nns 0
m < 0, h < 0 2, 5 n2 0 n2

s 2nns 0 0
m � 0, h > 0 1, 8 n2 n2

s 0 0 2nns 0
m � 0, h < 0 2, 9 n2 0 n2

s 2nns 0 0

J = −V − |h|
m < 0, h > 0 3, 6 x0 0 0 0 x1 x2

m < 0, h < 0 3, 7 x0 0 0 x1 0 x2

m � 0, h > 0 3, 8 x0 0 0 0 x1 x2

m � 0, h < 0 3, 9 x0 0 0 x1 0 x2

J = −|h|/2
m < 0, h > 0 4, 6 0 −2m − x∗∗ 0 0 2ns x∗∗

m < 0, h < 0 5, 7 0 0 −2m − x∗∗ 2ns 0 x∗∗

The field |h| = −J − V (where J < −V < 0) can be called
the frustration field, since this field defines the boundary be-
tween the AFM and frustrated phases. The entropy at this
boundary has the following form:

s0 = −
(

1

2
+ m

)
ln (1 − μα) + 1

2

(
1

2
− m

)
ln

1 + α

1 − α
. (29)

This function has no symmetry with respect to a line m = 0
and reaches a maximum s0,max ≈ 0.589 at m = 0.043.

At the spin-flip boundary, m < 0, J = −|h|/2, h �= 0, the
entropy is given by

s0 = −(
1
2 + m

)
ln (1 + 2m)

+ 1
2 ln (1 − 2m − x∗∗) + m ln x∗∗. (30)

In this case, the maximum s0,max = ln 2 ≈ 0.693 is attained at
m = − 1

3 .
The concentration dependencies in Eqs. (28)–(30) are

shown in Fig. 2(c).
In all the cases considered, the entropy of states at the

boundary between the ground state phases is higher than the
entropy of the adjacent phases. Using the Rojas rule [39,40],
we can conclude that there are no pseudotransitions in the
one-dimensional dilute Ising model.

The magnetization at the boundaries between the phases
of the ground state can be found from Eq. (6) using the solu-
tions in Tables II and III. All solutions in Table II have zero
magnetization. The magnetization at the boundary between
FM and FR-FM phases, J = V , h �= 0, coincides with that
for these phases, M = ns. At the frustration field boundary,
J = −V − |h|, h �= 0, we obtain M = αns, where α is defined
by Eq. (23). At the spin-flip boundary, m < 0, J = −|h|/2,
h �= 0, the magnetization has the following form:

M = ns − x∗∗ = 1
5

(
2 + 4m +

√
1
4 − 9m + m2

)
. (31)

Figure 3 shows the concentration dependencies of magneti-
zation for the phase states and boundary states at h �= 0. At the

FIG. 3. Concentration dependencies of magnetization of a dilute
Ising chain. Magnetization for the states inside the regions of the
ground state phases is described by linear dependencies (the framed
numbers correspond to the solutions given in Table I). Magnetiza-
tion at the phase boundaries demonstrates nonlinear concentration
dependencies (the equations of the phase boundaries in the ground
state diagram are given near the curves).

boundaries, the magnetization demonstrates a nonlinear con-
centration dependence and has an intermediate value relative
to the magnetization of adjacent phases. The spin-flip bound-
ary magnetization in Eq. (31) for the pure Ising chain equals
M0 = 1√

5
≈ 0.447 and attains maximum Mmax = 4 − 2

√
3 ≈

0.536 at m = 9
2 − 8√

3
≈ −0.119. At m = 0, phases FR-AFM

and FR-FM transform into the FR-PM phase, so that all three
dependencies merge into one, M = ns. At the boundary be-
tween AFM and frustrated phases, J = −V − |h|, h �= 0, the
magnetization curve is not symmetric with respect to a line
m = 0 and has the maximum Mmax ≈ 0.242 at m ≈ 0.055.

IV. TRANSITIONS BETWEEN THE GROUND STATE
PHASES INDUCED BY A MAGNETIC FIELD

In this section, we study transitions between the ground
state phases, which can be caused by a change in the magnetic
field, and in particular, the jump in entropy in these transitions,
�s0 = s0(init ial state) − s0( f inal state), which gives infor-
mation about the magnetocaloric properties of the system.

Figure 1 shows different field-induced transitions in the
ground state, which can be divided into three groups. The first
group consists of transitions τ1–τ4 from the states at the phase
boundary −V � J � V , h = 0, into frustrated states at h �= 0.
In the strongly diluted case, 1/2 � n < 1, the final state is the
same for both J > 0 and J < 0, so only transition τ1 remains.
Figures 2(a) and 2(b) show that the entropy of the system in
the field is always lower than without the field. The entropy
jumps �s0 = s0(h = 0) − s0(h �= 0) for transitions τ1–τ4 are
shown in Fig. 4(a). The value �s0 has maximum for the
FR-FM and FR-PM phases (transition τ1) at a half filling,
m = 0, and for the FR-AFM (transition τ2) at some m < 0.
The maximum jump in the residual entropy is achieved in
transition τ4 at m = 0. This happens due to the transition from
the state at −J = V , which is completely frustrated due to the
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FIG. 4. Residual entropy jumps induced by a magnetic field for transitions (a) τ1–τ4 near zero field, (b) τ5–τ7 near the frustration field,
(c) and τ8–τ10 near the spin-flip field. The transitions are shown by arrows in Fig. 1.

compensation in energy of contributions from the exchange
and charge interactions, to the charge-ordered state, which is
induced by the magnetic field at a half filling. The value �s0

in this case is significantly higher than for FR-FM and FR-PM
phases in transition τ1, since at |J| < V , m = 0, and h = 0 the
ground state is also partially charge ordered. The �s0 have
a small value in transition τ3, because the nonzero magnetic
field leaves the state frustrated for all m at J = V > 0, except
for the values of m = ±1/2.

Figure 4(b) shows the concentration dependencies of the
residual entropy jumps near the frustration field boundary in
transitions τ5–τ7. Since for the AFM phase s0 = 0, �s0 for
transitions τ5 and τ7 coincide with the residual entropy of
the corresponding frustrated phases, and for �s0 the obvious
equality holds: �s0(τ7) = �s0(τ6) + �s0(τ5).

The transition, the reverse τ5, from AFM to FR-AFM or
FR-PM phase demonstrates a kind of magnetoelectric effect:
when the value of the magnetic field increases more than the
value of the frustration field, |h| = −J − V , a charge ordering
appears in the system. The markers of the charge ordering are
the nonzero values x0,±1 in the FR-AFM and FR-PM phases
(see Table I), while in the AFM phase x0,±1 = 0. The charge-
order parameter reaches maximum at half filling, m = 0, and
in this case the change of the ground state will manifest itself
most distinctly: the dilute AFM state at |h| < −J − V , which
consists of macroscopic AFM and impurity domains and has
zero magnetization, is replaced by a charge-ordered state at
|h| > −J − V , in which the spin and impurity sites alternate
and the magnetization is M = 1/2.

Figure 4(c) shows the concentration dependencies of �s0

for transitions τ8–τ10 near the spin-flip boundary. In this case,
�s0 has maximum at m = −1/2, i.e., in the absence of im-
purities. For −1/2 < m < 0, the value �s0 is greater when
switching to the FR-AFM phase than when switching to the
FR-FM phase, and for �s0, for each value of m, the equality
�s0(τ10) = �s0(τ9) + �s0(τ8) is satisfied. If −1/2 < m < 0,
the entropy jump is greater for the transition to the FR-AFM
phase than for the transition to the FR-FM phase. For all m,
the equality �s0(τ10) = �s0(τ9) + �s0(τ8) holds.

Table IV shows the values of the critical concentration
m0 and maximal jumps of entropy �smax for dependencies
shown in Fig. 4. The maximum value of �smax ≈ 0.881 can be
reached when the magnetic field is turned on for the half filled
with a nonmagnetic impurities chain in the AFM frustration
point, J = −V . The second largest value of �smax ≈ 0.588 is

realized for a strongly diluted AFM phase, J < −V and n =
0.543, when the frustration field |h| = −J − V is reached.
This value slightly exceeds the entropy jump �smax ≈ .586
at half filling, which is the same both with increasing and
decreasing the field counted from the frustration field. The
maximum value of �smax ≈ 0.481 in the absence of impu-
rities is achieved in the AFM chain at the spin-flip field |h| =
−2J , which is very large for typical values of the exchange
constant.

V. CONCLUSION

The dilute Ising chain is the simplest model of systems
frustrated due to impurities. Such systems are of interest from
both fundamental and applied points of view. Although the
exact solution of this model without a magnetic field has been
studied in detail earlier [41–46], and the thermodynamic prop-
erties taking into account the magnetic field can be calculated
by the transfer matrix method [47], some subtle details of the
structure of the ground state phase diagram are difficult to
calculate in the conventional approach, but they are important
for predicting possible features of thermodynamic behavior.
These include the properties of states at the boundaries be-
tween the ground state phases in the phase diagram.

Here we presented the calculation of the zero-temperature
phase diagram of a dilute Ising chain in a magnetic field

TABLE IV. Critical concentrations m0 and the maximum jumps
of entropy �smax for the field-induced transitions shown in Fig. 1.

Transition m0 �smax

τ1 0 1
2 ln 2 ≈0.347

τ2 − 1
14 ≈ −0.071 ln 4√

7
≈0.413

τ3 0 ln
√

2+1
2 ≈0.188

τ4 0 ln(
√

2 + 1) ≈0.881

τ5 − 1
4

1
2 ln 2 ≈0.347

τ5
1

2
√

5
≈ 0.224 1

2 ln
√

5+1√
5−1

≈0.481

τ6 0 ≈0.586

τ7 0.043 ≈0.588

τ8 − 1
6 ln 2√

3
≈0.144

τ9, τ10 − 1
2

1
2 ln

√
5+1√
5−1

≈0.481
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at a fixed impurities concentration as a solution of the lin-
ear optimization problem, as well as an equation for the
entropy of frustrated states based on the Markov property
of the system, and a method for calculating the entropy of
states at phase boundaries as a solution of the nonlinear
optimization problem. The methods allow generalization to
other one-dimensional models with Ising-type interactions.
The zero-temperature phase diagram was obtained and the
composition, magnetization, and entropy of the ground state
phases were investigated for all possible values of the system
parameters. If h �= 0, the ground state of the system is frus-
trated at −|h| − V < J < V and n �= 0, 0.5, 1, while if J > V
or J < −|h| − V , the residual entropy is zero. The concentra-
tion dependencies of the residual entropy of frustrated phases
are consistent with the numerical results for entropy at low
temperatures [47], and at the phase boundaries h = 0, the
exact analytical results obtained earlier in Ref. [48] are repro-
duced, which is the test of the methods used. It was found that
the residual entropy of states at phase boundaries is always
higher than the entropy of adjacent phases, which, according
to the Rojas rule [39,40], means the absence of pseudotransi-
tions in the dilute Ising chain. Microscopically, this is due to
the absence of phases for which mixing at the phase boundary
is prohibited due to an increase in energy [49]. For the states

at the phase boundaries, the exact analytical dependencies of
magnetization on the impurities concentration were investi-
gated. They exhibit nonlinear behavior, although for adjacent
phases the magnetization is linear in concentration. Transi-
tions between the ground states induced by changes in the
external magnetic field were considered. It was found that
when passing through the phase boundary determined by the
frustration field |h| = −J − V , charge ordering induced by a
magnetic field occurs in the system. The maximum of this
effect is observed when the chain is half filled with impurities.
The entropy jump in transitions induced by a magnetic field
is also considered. This value reaches a maximum when the
magnetic field is turned on for the half-filled AFM chain at
J = −V . Comparison of the spin-flip field, |h| = −2J , with
the frustration field, |h| = −J − V , shows the advantage of
AFM systems diluted with mobile charged nonmagnetic im-
purities to obtain the maximum jump in entropy.
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