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Environment-mediated entropic uncertainty in charging quantum batteries
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We studied the dynamics of entropic uncertainty in Markovian and non-Markovian systems during the charg-
ing of open quantum batteries (QBs) mediated by a common dissipation environment. In the non-Markovian
regime, the battery is almost fully charged efficiently, and the strong non-Markovian property is beneficial for
improving the charging power. In addition, the results show that the energy storage is closely related to the
couplings of the charger-reservoir and battery-reservoir; that is, the stronger coupling of a charger reservoir
improves energy storage. In particular, entanglement is required to obtain the most stored energy and is
accompanied by the least tight entropic bound. Interestingly, it was found that the tightness of the entropic bound
can be considered as a good indicator of the energy transfer in different charging processes, and the complete
energy transfer always corresponds to the tightest entropic bound. Our results provide insight into the optimal
charging efficiency of QBs during practical charging.
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I. INTRODUCTION

The concept of quantum battery (QB) was proposed by
Alicki and Fannes [1], who investigated the extractability of
the amount of work done by a quantum system during unitary
evolution. It is a device used to temporarily store energy. In
recent years, a series of studies have been conducted on energy
changes in QBs [1–6]. In practice, both quantum and classical
batteries focus on the efficiency with which energy (in the case
of the battery) is transferred during charging and discharging
to extract as much energy as possible from the battery. QB
is considered an open system because of its interaction with
the surrounding environment. This leads to the leakage of
energy from the QB into the environment. Thus far, many
scholars have proposed various schemes for studying energy
transfer efficiency by quantum effects [7–9]. In principle, the
characterizations for improving the performance of the QB
during charging are reflected by higher energy storage and the
smaller optimal charging time (i.e., the shortest time λts to
reach the peak energy storage) [5,6,10–15]. Therefore, it is
necessary to pursue a better charging process by tuning the
control parameters in the transfer process.

In addition, the uncertainty relation was originally pro-
posed by Heisenberg where we cannot accurately predict
the measurement outcomes with respect to two arbitrary
incompatible observables [16]. Heisenberg’s uncertainty prin-
ciple is regarded as a cornerstone of quantum mechanics.
Subsequently, Kennard [17] and Robertson [18] proposed
an expression of the uncertainty principle in the form
of standard deviation: �P̂1�P̂2 � 1

2 |〈[P̂1, P̂2]〉|, where �(•)
represents the standard deviation, and 〈◦〉 in the lower
bound represents the corresponding expected value. Note
that this relation leads to a trivial result, that is, the lower
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bound will become zero when the system’s state is pre-
pared in one of the two observables’ eigenstates. On this
premise, Deutsch introduced information entropy to describe
the uncertainty principle and present the entropic uncer-
tainty relation (EUR) [19]: H (P̂1) + H (P̂2) � log2( 2

1+√
c
)2,

where c = maxi j |〈P1i. | P2 j〉|2, |P1i〉 and |P2 j〉 being with
the eigenstates of the measurement operator P̂1 P̂2, and the
Shannon entropy H (P̂k ) = −∑

i pkilog2 pki (k = 1, 2) with
pki = 〈Pki|ρ̂|Pki〉 being the probability of obtaining the ith
measurement result. Later, Kraus [20] and Maassen and
Uffink [21] improved Deutsch’s results. Notably, this rela-
tionship is suitable for single-particle systems. Thus, one may
ask how to express the uncertainty relation. If the measured
particle is correlated with another. Berta et al., Ming et al.,
and Xie et al. proposed a new form of uncertainty relation
called quantum memory-assisted entropic uncertainty relation
(QMA-EUR) [22–24]. Their investigation focuses on a two-
measurement case. Later on, Liu et al. expanded Berta et al.’s
version to the case of multiple measurements, and put forward
the general expression of a QMA-EUR related to multiple
measurements as [25]

N∑
x=1

S(P̂x|B) � −log2(b) + (N − 1)S(A|B), (1)

where S(A|B) = S(ρ̂AB) − S(ρ̂B) is the von Neumann condi-
tional entropy [26], and the von Neumann entropy S(ρ̂ ) =
−tr(ρ̂ log2ρ̂). Specifically, b = maxiN {∑i2∼iN−1

maxi1 [c(u1
i1 ,

u2
i2 )]

∏N−1
x=2 [c(ux

ix , ux+1
ix+1

)]} and ux
ix is the ith eigenvector of the

operator P̂x.
Recently, some scholars have studied the change in entan-

glement in the QB [27], and the relationship between energy
density and entanglement [28] during quantum battery charg-
ing, which indicates that entanglement plays an important role
in energy transfer during the charging process. In addition,
the connection between entanglement and uncertainty has
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been disclosed [29]. With this in mind, the tightness of the
lower bound on the entropic uncertainty relation plays a role
during the charging of quantum batteries. Motivated by this,
we first investigate the optimization of the charging process
by different coupling regimes: Markovian and non-Markovian
regimes. When the battery is stable, we look for more stored
energy by investigating the qubit-environment coupling and
the initial entanglement of the charger and battery. We found
that a stronger charger-environment coupling is beneficial for
obtaining more stored energy. Moreover, we study the varia-
tion in the entropic uncertainty relation (the tightness of the
entropic bound) and the relation with energy storage in charg-
ing QBs. Remarkably, it was found that the tightness of the
entropic bound can be considered an indicator of the energy
transfer, and the complete energy transfer is always accom-
panied by the tightest entropic bound. That is, the tightness
of the uncertainty bound can reflect the charging efficiency
in the QB.

The structure of this paper is as follows. In Sec. II, charging
model of an open quantum battery system is reviewed. In
Sec. III, the time evolution of stored energy and power in dif-
ferent coupling regimes is studied in the model. In Sec. IV, we
investigate the steady-state energy of the QB and its relation
to the tightness of the lower bounds on entropic uncertainty.
Furthermore, we investigate the tightness at different energy
transfer rates (the proportion of energy transferred from the
charger to the battery) in the charging process. Finally, we
conclude our paper with a concise summary in Sec. V.

II. CHARGING MODEL

We consider a quantum battery charging model consisting
of a quantum charger A and a quantum battery B, which
is coupled to a common zero-temperature bosonic reservoir,
without coupling between A and B. Each cell of A and B
is a two-level system with the same transition frequency
ωA = ωB = ω0, and the ground and excitation states are |g〉
and |e〉, respectively. The Hamiltonian H of the entire system
is composed of H0 and Hint [30–32],

H = H0 + Hint, (2)

where

H0 =
∑

i=A,B

ω0σ
+
i σ−

i +
∑

k

ωkc†
kck, (3)

and

Hint = (β1σ
+
A + β2σ

+
B )

∑
k

gkck + (β1σ
−
A + β2σ

−
B )

∑
k

gkc†
k .

(4)

H0 represents the free Hamiltonian of the qubit and the
reservoir, where σ+

i and σ−
i are the Pauli rising and lower-

ing operators of the qubit, ωk and c†
k (ck) are the frequency

and creation (annihilation) operators of the kth mode of the
field, respectively. Hint denotes the interaction between the
two-qubit system and the reservoir. β1 and β2 are defined
as the interaction strengths between qubits A and B and the
reservoir, respectively, and are dimensionless real parameters.
And gkβ1 and gkβ2 are the coupling constants between the
qubits and the reservoir. Then, the collective coupling constant
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FIG. 1. (a) Within time t ∈ [0, τ ], the charger (A) and battery (B)
interact with the environment (E ). (b) When t > τ , at the end of the
charging process, the battery is in the steady state and its energy is
conserved.

βT =
√

β2
1 + β2

2 and the relative interaction strength ζi =
βi/βT (i = 1, 2). It should be noted that different effective
couplings of A and B with a reservoir can be obtained under
different conditions for β1 and β2. In addition, Hint exists
within the time interval: t ∈ [0, τ ] of the charging process (see
Fig. 1). Outside this interval, there is no interaction between A
(B) and the environment, furthermore, there is no interaction
between A and B. Therefore, this is the wireless charging
process of QB in an environmental medium [30]. Note that,
this charging model corresponds to physically feasible exper-
imental settings by the all-optics platform [30,33,34].

Under the limitation that the two-qubit system and reser-
voir are separable states at the beginning, we consider the case
in which there is only one excitation state in the two-qubit
system and the reservoir is in a vacuum state. The initial state
of the entire system is

|ϕ(0)〉 = η01|e〉A|g〉B|0〉X + η02|g〉A|e〉B|0〉X , (5)

where η01 and η02 are the probabilities amplitudes and |0〉X

is the vacuum state of the reservoir. The time evolution of a
single excited state can be obtained as

|ϕ(t )〉 = η1(t )|e〉A|g〉B|0〉X + η2(t )|g〉A|e〉B|0〉X

+
∑

k

ηk (t )|g〉A|g〉B|1k〉X , (6)

where η1(t ) and η2(t ) are probability amplitudes. We consider
the case in which the environment is regarded as an electro-
magnetic field in a lossless cavity, and the Lorentzian form of
the spectral density of the cavity field is [35]

J (ω) = ν2λ

π (ω − ω0)2 − πλ2
, (7)

where λ is the spectrum width, 1/λ is the correlation time of
the reservoir, and ν is the effective coupling strength satisfying
L = νβT where L is the vacuum Rabi frequency. Then we
define a dimensionless real number R = L/λ where strong
coupling has R � 1 and weak coupling with R 	 1 [36–42].
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In this case, Markovian evolution occurs under weak cou-
pling, and non-Markovian dynamics and memory effects
occur under strong coupling. And then the analytic solution
for ηi(t ) (i = 1, 2) comes in the following form [30–32]:

η1(t ) = [
ζ 2

2 + ζ 2
1 μ(t )

]
η01 − ζ1ζ2[1 − μ(t )]η02, (8)

and

η2(t ) = [
ζ 2

1 + ζ 2
2 μ(t )

]
η02 − ζ1ζ2[1 − μ(t )]η01, (9)

where the Lorentzian form is μ(t ) = e− λt
2 [cosh( κt

2 ) +
λ
κ

sinh( κt
2 )] and κ = √

λ2 − 4L2 [30–32]. Finally, we have

μ(t ) =
{

e− λt
2 [cosh (x) + sinh (x)/χ1], 0.5 � R � 0,

e− λt
2 [cos (y) + sin (y)/χ2], R � 0.5,

(10)

where x = χ1

√
λ2t2/2, y = χ2

√
λ2t2/2 and χ1 = √

1 − 4R2,
χ2 = √

4R2 − 1.

III. PERFORMANCE OF QUANTUM BATTERIES
WITH DIFFERENT COUPLING REGIMES

During the charging process of the quantum batteries, the
coupling strength between the qubits (charger and battery)
and the reservoir is considered to be an important element in
determining excellent charging performance. From Eqs. (5)
and (6), the reduced density matrices can be expressed as

ρAB(0) = |η01|2|eg〉AB〈eg| + |η02|2|ge〉AB〈ge|
+ η01η

∗
02|eg〉AB〈ge| + η∗

01η02|ge〉AB〈eg|, (11)

and

ρAB(t ) = |η1(t )|2|eg〉AB〈eg| + |η2(t )|2|ge〉AB〈ge|
+ η1(t )η2(t )∗|eg〉AB〈ge| + η1(t )∗η2(t )|ge〉AB〈eg|
+ [1 − |η1(t )|2 − |η2(t )|2]|gg〉AB〈gg| (12)

of the two-qubit system. Note that ηi(t ) = ηi(t )∗, (i = 1, 2).
The reduced-density matrices ρA(t ) and ρB(t ) of A and
B can also be obtained. Then we take η01 = sin θeiφ and
η02 = cos θ . According to Eq. (12) and the reduced density
matrix ρB(t ), the energy of the battery at time t is represented
by EB(t ) = tr[HBρB(t )]. Hence, the change in battery energy
during charging can be quantified by

�EB(t ) = EB(t ) − EB(0) = ω0[|η2(t )|2 − cos2 θ]. (13)

Another effective parameter in the charging process is the
charging power of the QB. In this case, the instantaneous
power of the charging process is as follows:

P = EB(t )

t
. (14)

A. Markovian dynamics

In the weakly coupled regime, the general behavior of
energy variation can be obtained. We consider the maximum
energy storage and the faster charging speed (i.e., greater
instantaneous power) as indicators to optimize the charging
process and find the smallest optimal charging time λts when
the maximum energy obtained by the battery is fixed.

Figure 2(a) shows the effect of coupling strength on stored
energy with ζ1 = ζ2 = 1√

2
. First, the stored energy increases

to its maximum over time. Second, in the long-time limit,
the change in the coupling between the qubit and the reser-
voir cannot increase the peak energy storage, however, it
can significantly optimize the shortest time λts to reach the
peak energy storage. Figure 2(b) represents the variation
in the energy stored over a larger range of coupling. The
energy did not change monotonically with time. Different
from Fig. 2(a), the enhanced coupling strength enables the
QB to store more energy with smaller λts. Figure 2(c) re-
veals the contribution of coupling strength to instantaneous
power during charging. A stronger interaction between the
two-qubit system and the reservoir was found to speed
up the charging. Compared with Figs. 2(c) and 2(d) also
reveals that the improvement of the coupling strength is ben-
eficial to the charging power, which is increased by about
four times. Moreover, the change trend of power does not
change like that of energy, that is, it reaches the maximum
in a relatively short period of time and then decreases slowly.
In short, in Markovian systems, a higher coupling strength
reduces the optimal charging time and attains more stored
energy, therefore, the charging performance of the battery is
improved.

B. Non-Markovian dynamics

Figure 3(a) clearly shows the help of a memory effect for
maintaining high energy storage. The stored energy oscillates
efficiently, and the first wave packet represents the maximum
stored energy, which corresponds to the optimal charging
time. The peaks of the other wave packets decreased with re-
spect to λt . It can be seen that changing the coupling strength
does not significantly improve the maximum stored energy,
and a decrease in λts can be realized by an increase in the
coupling. Figure 3(b) illustrates that coupling enhancement
can significantly increase the charging speed, which is the
same as Figs. 2(c) and 2(d).

In the Markovian regime, one can obtain that the maxi-
mum energy of the weak coupling regime is about 0.34ω0

and the optimal charging time is about 4. However, the
non-Markovian system has advantages both in terms of
maximum energy storage (the battery is almost full) and
optimal charging time λts ≈ 0.006, owing to the unique
memory effect of the non-Markovian regime, which pro-
vides an important way to overcome energy leakage into the
environment.

IV. THE TIGHTNESS OF AN ENTROPIC BOUND
AND STORED ENERGY

In the open quantum battery system, the decoherence ef-
fect of the environment leads to an energy leakage. Although
greater non-Markovian properties allow the battery to charge
satisfactorily for short periods of time, there still exists an
additional improvement in energy storage for a longer charg-
ing time, which is regarded as another consideration for an
excellent charging protocol for quantum batteries. Therefore,
in this section, we pursue higher stored energy in the steady
state of a quantum battery under the influence of initial en-
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((a) ((b)

((c) ((d)

FIG. 2. Markovian charging process. The stored energy of battery �EB(t )/ω0 and instantaneous power P/ω0 as function of the dimension-
less quantity λt and coupling strength R are plotted in (a), (b), (c), and (d), respectively. We choose the initial separable states with θ = 0.5π ,
and the same interactions of the charger reservoir and the battery reservoir (ζ1 = ζ2 = 1√

2
). Graphs (a) and (c): 0 � R � 0.5; Graphs (b) and

(d): 0.5 � R � 1.

tanglement and relative interaction strength (characterized
by comparing the charger-reservoir ζ1 and battery-reservoir
coupling strength ζ2. Note that ζ1 and ζ2 were normalized).

Furthermore, we investigate the role of the entanglement and
tightness of the entropic bound in the process of boosting
stored energy.

((a) ((b)

FIG. 3. In the Non-Markovian charging process the stored energy of the battery �EB(t )/ω0 and instantaneous power P/ω0 as a function
of the dimensionless quantity λt and coupling strength R are plotted in Graphs (a) and (b), respectively. 1 � R � 500 is set, and all other
parameters are the same as those in Fig. 2.

054107-4



ENVIRONMENT-MEDIATED ENTROPIC UNCERTAINTY IN … PHYSICAL REVIEW E 106, 054107 (2022)

For a system with an X -type density matrix, the con-
currence of the system [43] is Cρ(t ) = 2 max{0, |ρ14| −√

ρ22ρ33, |ρ23| − √
ρ11ρ44}, where ρi j corresponds to the en-

tries in row i and column j of matrix ρ(t ). Consequently, the
concurrence of ρAB(t ) is calculated as CρAB (t ) = 2|η1(t )η2

∗(t )|.
To probe the dynamics of entropic uncertainty, we resort

to a pair of Pauli operators σx and σz as the incompatibility,
which leads to postmeasurement states,

ρ(σx|B) = 1
2 [ρ(t )AB + (σx ⊗ I )ρ(t )AB(σx ⊗ I )], (15)

and

ρ(σz|B) = 1
2 [ρ(t )AB + (σz ⊗ I )ρ(t )AB(σz ⊗ I )]. (16)

where I denotes an identity matrix. With respect to ρ(σx|B),
eigenvalues can be calculated as

γ x
1 = γ x

2 = (1 − D)/4, γ x
3 = γ x

4 = (1 + D)/4, (17)

where D =
√

1 − 4|η2(t )|2 + 4|η1(t )|2|η2(t )|2 + 4|η2(t )|4 for
ρ(σz|B), we have eigenvalues

γ z
1 = 0, γ z

2 = |η1(t )|2, γ z
3 = |η2(t )|2, (18)

γ z
4 = 1 − |η1(t )|2 − |η2(t )|2. (19)

Finally, we obtain the magnitude of the entropic un-
certainty as U xz

l (t ) = 2
∑2

i=1 εB
i log2ε

B
i − ∑4

j=1 γ x
j log2γ

x
j −∑4

j=1 γ z
j log2γ

z
j [left-hand side of Eq. (1)]. When the system

is stable, we have

U xz
l (∞) = |η2(∞)|2log2|η2(∞)|2 − Mlog2M

− 2[|η2(∞)|2 − 1]log2[1 − |η2(∞)|2]

− |η1(∞)|2log2|η1(∞)|2
+ (F − 1)log2[(1 − F )/4]/2

− (F + 1)log2[(F + 1)/4]/2, (20)

and lower bound U 2
r (t ) = 1 + ∑2

i=1 εB
i log2ε

B
i − ∑4

j=1 εAB
j ×

log2ε
AB
j [right-hand side of Eq. (1)]. The corresponding lower

bound in the steady state is in the form of

U 2
r (∞) = 1 + |η2(∞)|2log2|η2(∞)|2

− [|η2(∞)|2 − 1]log2[1 − |η2(∞)|2]

− M log2M − (1 − M )log2(1 − M ), (21)

where εB
i and εAB

j are the eigenvalues of ρB(t ) and ρAB(t ),

F =
√

1 + 4|η1(∞)|2|η2(∞)|2 − 4|η2(∞)|2 + 4|η2(∞)|4,
and M = 1 − |η1(∞)|2 − |η2(∞)|2. The superscripts of
entropic uncertainty and lower bounds indicate the Pauli
operator chosen for the measurement and the number of
measurement operators, respectively.

After a sufficient charging period, i.e., t → ∞, the internal
energy of the battery tends to be stable, and at this time we get
μ(∞) = 0, η1(∞) = ζ 2

2 η01 − ζ1ζ2η02, and η2(∞) = ζ 2
1 η02 −

ζ1ζ2η01. Thus, the concurrence can be expressed as follows:

CρAB (∞) = 2|η1(∞)η∗
2 (∞)|, (22)

and the stored energy of the battery in the steady state is
obtained by

�EB(∞) = ω0[|η2(∞)|2 − cos2 θ ]. (23)

Similarly, entropic uncertainty Ul
xz(∞) and its lower bound

U 2
r (∞) in the steady state can be calculated. The tightness of

the lower bound is given by �U xz(∞) = Ul
xz(∞) − U 2

r (∞),
which reflects the general characteristics of the entropic un-
certainty relation. The tighter lower bound is quantified by a
smaller �U xz(∞).

In addition, as a parameter in the probability amplitude
of the initial state, θ is reflected in the initial charger-battery
entanglement in the charging scheme. The concurrent initial
state can be expressed as CρAB (0) = 2|η01η

∗
02|. After the calcu-

lation, it was found that the entanglement of the initial state is
only related to θ and is independent of phase φ, which reaches
a maximum value of 1 when θ = 0.25π and monotonically
decreases to 0 when θ approaches the boundary value 0.5π .
Therefore, in the charging process, we consider the influence
of the initial entanglement on battery performance according
to the change in θ .

In Figs. 4(a)–4(c), entanglement and stored energy have
a similar evolution process whereas they are opposite to
the tightness of entropic bound. All three quantities reach
an extreme value when the initial entanglement is at a
minimum. Moreover, when the initial state is separable
(θ = 0.5π ), the stored energy is effective [�EB(∞) � 0] for
all values of the relative interaction strength, and the stored
energy reaches a maximum [�EB(∞)max = 0.25ω0] when the
coupling strengths of the charger reservoir and the battery
reservoir are symmetrical (ζ1 = ζ2 = 1/

√
2). The results also

show that entanglement is beneficial for energy storage when
φ = 0. Although a tighter entropic bound is not required
for the growth of stored energy, there is a close relationship
between them, that is, the highest stored energy strictly corre-
sponds to the least tight entropic bound, which never occurs
with respect to entanglement.

In Figs. 4(d)–4(f) with the reversal of the relative phase
to φ = π , it can be seen that entanglement reaches the peak
value when the system is initially the maximum entangled
state, which is completely opposite to that of the case of
φ = 0. Simultaneously, the entropic bound became less tight.
Furthermore, there is effective stored energy [�EB(∞) � 0],
regardless of the initial charger-battery entanglement. Com-
pared to the case of φ = 0, the peak value of the stored energy
increases to approximately 0.33ω0 when φ = π , accompanied
by an asymmetric charging process (ζ1 ≈ 0.8) and a certain
initial entanglement (θ ≈ 1.3). Comparing Figs. 4(d) and 4(e),
it is to find that charger-battery entanglement is necessary on
the parameter plane θ − ζ1 to obtain the most stored energy.
Interestingly, the flip of the relative phase does not change
the close relationship between the tightness of the entropic
bound and the stored energy, that is, the most stored energy
when φ = π strictly corresponds to the least tight entropic
bound.

We find that the stored energy of the steady state is
always negatively correlated with the tightness of the en-
tropic bound when the relative phase is 0 or π . Therefore,
we will further study the relationship between the stored
energy and the tightness of the entropic bound from the
transfer of energy between charger and battery. Here, we
study the evolution of the entanglement and tightness of the
entropic bound for any case of energy transfer. The energy
variation of the charger and battery is associated with the
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((a) ((b) ((c)

((d) ((e) ((f)

FIG. 4. When the battery is in the steady state, the concurrence CρAB (∞), stored energy, �EB(∞)/ω0 and the tightness of the lower bound
�U xz(∞) are affected by the relative interaction strength ζi and the probability amplitude of the initial state. CρAB (∞) is plotted in (a) and (d);
�EB(∞)/ω0 is plotted in (b) and (e); �U xz(∞) is plotted in (c) and (f); θ ∈ [0.25π, 0.5π ] and ζ1 ∈ [0, 1] are given, respectively. In addition,
the relative phase is also associated with the concurrence CρAB (∞), stored energy, �EB(∞)/ω0 and the tightness of the lower bound �U xz(∞),
here, we set φ = 0 in Graphs (a), (b), and (c); and φ = π in Graphs (d), (e), and (f).

tightness of the lower bound and the entanglement [according
to Eqs. (20)–(23)]. From the relation |η1(t )|2 = �EA(t )/ω0 +
sin2 θ and |η2(t )|2 = �EB(t )/ω0 + cos2 θ , where |�EA(t )| is
the energy lost by the charger, we can see that the energy
partly determines the evolutionary behavior of entanglement
or tightness. The constraint can then be expressed as CρAB (t ) =
2[�EA(t )/ω0 + sin2 θ ]1/2[�EB(t )/ω0 + cos2 θ ]1/2. Similarly,
the tightness of the entropic bound can be represented
by �U xz(t ), which is obtained by substituting energy and
parameters θ .

Next, we visually depict the relationship between entan-
glement or tightness and energy storage in Fig. 5. The energy
stored by the battery during the charging process has a bound-
ary value, which is the maximum value of the stored energy
regardless of the energy lost by the charger, as shown in
Fig. 5 as the hypotenuse of a triangle region. The boundary
value or constraint can be expressed as �EB(t )/|�EA(t )|=1.
This implies that the energy lost by the charger is com-
pletely transferred to the battery. However, we find that at
�EB(t ) �= |�EA(t )|, that is, �EB(t )/|�EA(t )| < 1 the energy
is not completely transferred to the battery, which means that
some of the transferred energy flows into the environment.
Different energy transfers actually correspond to arbitrary
charging processes caused by different parameter settings in
the charging model. Therefore, it is meaningful to discuss
the effect of energy transfer rate �EB(t )/|�EA(t )| on the
tightness of entropic bound.

Meanwhile, Fig. 5(a) shows that the relationship between
entanglement and energy variation during the arbitrary charg-
ing process. It can be seen that an increase in the energy

transfer rate (i.e., the charger loses less energy or the battery
stores more energy) contributes to an increase in entangle-
ment. Entanglement disappears when the battery or charger
is empty. Interestingly, the energy can be completely trans-
ferred for different entanglements, corresponding to the states
of the hypotenuse in Fig. 5(a). Therefore, we can conclude
that entanglement is not a clear indicator of the maximal
energy stored. Besides, we obtain that the maximum energy
transfer rate corresponds to the tightest entropic bound ex-
cept when the charger or battery is completely empty as
shown in Fig. 5(b). This indicates that the tightness of the
entropic bound can also play a role in indicating the degree
of energy transfer in the charging processes, implying that
the energy is completely transferred for the tightest entropic
bound �U xz(t ) = 0, which virtually agrees with the previous
conclusion.

To explore the role of tightness in improving charging in a
more general context. We consider three measurements with
(σx, σy, σz ). As a result, the entropic uncertainty is

U xyz
l (t ) = −|η1(t )|2log2|η1(t )|2 + 2|η2(t )|2log2|η2(t )|2

− 3[|η2(t )|2 − 1]log2[1 − |η2(t )|2] − m log2m

+ (D − 1)log2[(1 − D)/4]

− (D + 1)log2[(1 + D)/4], (24)

where m = 1 − |η1(t )|2 − |η2(t )|2 and the corresponding
lower bound is

U 3
r (t ) = 2U 2

r (t ) − 1, (25)

054107-6



ENVIRONMENT-MEDIATED ENTROPIC UNCERTAINTY IN … PHYSICAL REVIEW E 106, 054107 (2022)

((a) ((b)

FIG. 5. The concurrence CρAB (t ) and the tightness �U xz(t ) as functions of energy are plotted in (a) and (b), respectively. The x axis is the
energy change in the charger �EA(t )/ω0, and the y axis is the stored energy of the battery �EB(t )/ω0. In addition, a separable initial state
θ = 0.5π is set.

the tightness of the three measurements was �U xyz(t ) =
U xyz

l (t ) − U 3
r (t ).

Figure 6 shows the connection between the exchanged en-
ergy and the tightness of the entropic uncertainty. Obviously,
the complete energy transfer takes place when the tightness
is fixed to �U xyz(t ) = 1 corresponding to the hypotenuse,
which also supports tightness can be considered an effective
indicator of the maximum energy transfer during the charging
of QBs.

V. DISCUSSIONS AND CONCLUSIONS

To summarize, we have investigated the dynamics of the
entropic uncertainty of charging quantum batteries in common

FIG. 6. Tightness �U xyz(t ) as functions of energy are plotted.
The other settings are the same as those in Fig. 5.

dissipative bosonic environments. We studied two cases of
the charging process, and the results show that the coupling
enhancement during the Markovian charging process cannot
only improve the charging power, but also increase the stored
energy of the battery. Stronger coupling in non-Markovian
systems can also significantly improve the charging power;
in contrast, the battery can be efficiently full during the non-
Markovian charging process. When the battery is in a steady
state, maximum energy storage is achieved when the charger
is more coupled to the reservoir than the battery in the case of
a certain initial charger-battery entanglement. It is worth men-
tioning that a tighter entropic bound has a negative effect on
energy storage in the presence of entanglement. We then stud-
ied the dynamic behavior of the entanglement and tightness
in an arbitrary charging process, and the results revealed that
an increase in entanglement can increase the energy transfer
rate and degrade the energy storage. Remarkably, it is argued
that the tightness of the entropic bound can be regarded as
an important indicator of the optimal energy transfer during
charging, and the tightest entropic bound corresponds to the
complete energy transfer. We believe that our findings will be
helpful for the pursuit of high-performance energy transfer in
N-cell QB charging in the future.
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