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Local orderings in the melting process of a square crystal and in the resulting liquid
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Using Brownian dynamics simulations we investigate the melting processes of a square crystalline lattice
of colloidal particles interacting via an isotropic potential, which comprises both a hard-core repulsion and an
additional softened square-well potential. For temperatures slightly lower than the transition one, we found a
proliferation of small liquid clusters surrounded by the square lattice. These clusters are not static, quite the
opposite, they have an intense dynamics and are continuously formed and destroyed over time. However, no
unbound topological defects are observed. At the transition temperature, one of these liquid clusters starts to
grow, until the entire system becomes in the liquid phase, then, characterizing a first-order phase transition.
The tetratic intermediate phase, as given by the KTHNY theory, was not observed. Moreover, the liquid phase
exhibits a considerable number of crystalline clusters having square and triangular orderings, which remain
present even when increasing temperature by an order of magnitude. As the temperature increases, structural
changes within the liquid phase are analyzed by evaluating the number and sizes of the square and triangular
clusters. A transition of the dominant clusters is observed.

DOI: 10.1103/PhysRevE.106.054106

I. INTRODUCTION

The investigation of the melting processes in two-
dimensional (2D) systems has been explored for several
decades [1–4], and remains a subject of great debate and
interest. Much of the efforts to understand melting is aimed
at 2D systems whose ordering symmetry is usually trian-
gular. One of the main scenarios concerning melting in
2D systems is given by the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory, which states that the melting
mechanism of 2D crystals with hexagonal symmetry proceeds
via two consecutive continuous transitions: solid-to-hexatic
and hexatic-to-liquid transitions [5–7]. The hexatic phase has
quasi-long-range orientational order and the analogous case
for square crystalline solids is called the tetratic phase.

For a 2D hard-disk system, computer simulations revealed
the occurrence of a first-order liquid-hexatic transition and
a continuous hexatic-solid transition, which disagrees with
the KTHNY theory [8,9]. Many other computer simulation
and experimental studies revealed a melting mechanism for
2D solids with contrasting support for a two-stage melting
scenario via an hexatic phase as well as a first-order melting
transition [10–18]. Based on these results, it seems that 2D
melting is not universal, but that depends on the specific prop-
erties of the system, e.g., interparticle potential, out-of-plane
fluctuations, finite-size effects, etc.

Despite the great effort in understanding the melting pro-
cesses in 2D crystals with hexagonal symmetry, there are only
few investigations addressing the melting of square ordered
crystals. Reference [19] found a melting transition of the
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first order, where a square crystalline lattice, obtained by the
combination of two- and three-particle interactions, passes
directly to an isotropic liquid. In fact, most square crystals
melt this way [20–22], following the prediction of the simplest
renormalization group approach of defects-mediated melting
in such type of crystals [23].

By adding a higher-gradient term in the theoretical elastic
energy of the square lattice, giving a tunable angular stiffness,
the first-order transition split into two successive KT transi-
tions [24]. The intermediate tetratic phase has been observed
recently, for instance, in systems with isotropic pair interac-
tions [25,26], with hard regular polygons [27] (where many
types of solid-to-liquid transitions in 2D appear) and with
spinful particles with strong antiferromagnetic interactions
[28].

In this work, we investigate the melting processes and the
corresponding phases of a 2D system that at zero tempera-
ture forms a square crystal. Such type of crystal can appear,
for example, in a system with particles interacting through
a potential that comprises both a hard-core repulsion and
a square-well potential [29,30]. Here we use the softened
version of this interaction considered by Ref. [31], which
demonstrated, through self-assembly, the formation of a va-
riety of lattice orderings, e.g., triangular, mixed and square
orderings, as the well width, α, was varied.

Concerning a 2D square ordered crystal, this paper has the
following two objectives: (1) to investigate the solid-liquid
transition induced by the temperature increase, and (2) to
investigate the characteristics of the resulting liquid phase.

To achieve these goals, we performed a detailed investiga-
tion where the different lattice fractions were computed as a
function of temperature. It was found that, before the melting,
there is a proliferation of liquid clusters throughout the initial
squared lattice, where the clusters are continuously formed
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FIG. 1. Representation of the interaction potential, Eq. (1), for
two values of the parameter α, with m = 50 and n = 10.

and destroyed over time. However, at the transition temper-
ature, one of these liquid clusters starts to grow gradually
with the increasing of time, until the entire system becomes in
the liquid phase, in accordance with the classical nucleation
theory [32]. A peculiar characteristic of such a liquid phase
is that, although most particles are found in the disordered
arrangement, the system also exhibits small clusters with tri-
angular and square orderings. Moreover, the number and sizes
of these clusters vary with the temperature and, within the
liquid phase, a transition of the dominant type of clusters
occurs.

This article is organized as follows: in Sec. II, we present
our model, the computational methodology used to control
the temperature, and the quantities used to characterize the
different orderings of the system. In Sec. III, we present our
results and discussions, while the conclusions are given in
Sec. IV.

II. THEORETICAL MODEL

A. Details of the simulations

We investigate the melting scenario of a two-dimensional
crystalline system of N particles interacting via the isotropic
soft square-well potential given by

Ui j = ε

(
2r0

ri j

)m

− ε exp

[
−

(
ri j/r0 − 2

α

)n]
, (1)

where ri j is the distance between the centers of the particles
i and j, r0 defines the radius of the particles, and ε gives
the strength of the potential. The smoothness of the left and
right edges of the potential well are regulated, respectively,
by the exponents m and n, while its width is controled by
the parameter α. Figure 1 shows a graphic representation
of the interparticle interaction potential [given by Eq. (1)]
as a function of ri j for α = 1.4 and α = 3.2. Throughout
the simulations, the following potential parameters were kept
constant, that is, m = 50, n = 10, r0 = 1.0, and ε = 1.0. The
total potential energy of the system is given by

U =
N∑

i=1

N∑
j>i

Ui j . (2)

In previous work [33], it was shown that particles inter-
acting via Eq. (1) can self-organize in at least three different
lattice symmetries, that is, square, triangular, and mixed
symmetries. Square- and mixed-order lattices appear in two
separated ranges, as have been shown by Ref. [33]. The square
and mixed orderings occur, respectively, for the intervals
1.03 � α � 1.62 and 3.04 � α � 3.32. In this present work,
we take, as an example of the square lattice, the case α = 1.4.

For a given temperature, the time evolution system is ruled
by the overdamped Langevin equation, which is integrated
using the Euler method and, therefore, results in the following
first-order algorithm:

�ri(t + �t ) = �ri(t ) + �Fi(t )�t

γ
+ �gi

√
2kBT �t

γ
, (3)

where �Fi = −∇�riU is the total force acting on the particle i,
�t is the finite time step of the integrator, γ is the viscous
drag coefficient, kB is the Boltzmann constant, and �gi is a
two-dimensional vector with random components, following
a standard normal distribution whose mean and variance are
equal to zero and one, respectively. Throughout the simula-
tions, both γ and kB are made equal to one.

All the results will be given in terms of the normal-
ized quantities r∗ = r/r0, U ∗ = U/ε, T ∗ = kBT/ε, and t∗ =
εt/r2

0γ , respectively, for length, energy, temperature, and
time. From now on, for simplicity, we will omit the asterisk in
the normalized variables. In other words, lengths are measured
in units of r0, energies in units of ε, temperatures in units of
ε/kB, and times in units of r2

0γ /ε.
To investigate the melting processes the initial configura-

tion is set to be a perfect square crystalline lattice, where the
forces acting on any individual particle is null. The algorithm
achieves a good convergence for �t = 10−4. We iterated the
system 2 × 106 time steps before increasing the temperature
by an amount of �T = 0.01, resulting in a simulation time
of tsim = 200 for each temperature. We found tsim to be much
more than enough for the system to relax at each temperature.
At temperature values near the melting, the simulation time
that we use is tsim = 200 000.

We considered a system with N = 2562 = 65 536 particles
that interact to each other via the potential of Eq. (1) where
α = 1.4. In Sec. III A, we consider as the initial configuration
the square lattice that minimizes the total potential energy,
that is, the one with density ρ0 = 0.21473. In this case, the
simulation region is a square box of side L = 256a0, where
a0 = 2.148291 is the lattice parameter. In Sec. III B, systems
with other density values were investigated. The simulations
were carried out with periodic boundary conditions.

B. Order parameters

1. Standard m-fold orientational order parameter

In the study of melting, it is useful to calculate some orien-
tational order parameters and their correlation functions. The
m-fold bond order parameter of particle j is given by

ϕm(�r j ) = 1

Nj

Nj∑
k=1

eimθ jk , (4)
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where Nj is the number of nearest neighbors of particle j,
θ jk is the angle formed by an arbitrary reference axis and
the distance vectors �r jk . There are different ways to define
the neighbors, providing the same qualitative results in our
case. In spite of the commonly used Delaunay triangulation,
here we use the Nj = m nearest particles as the nearest neigh-
bors, a simple definition which is well-behaved and avoids
the discontinuity of the topology of the Voronoi diagram in
square crystals (see Fig. 4(b) of Ref. [34]). Thus, for m = 4
and m = 6, the first four and six nearest particles are used,
respectively. The local m-fold bond-orientational order ψm is
defined as

ψm = 1

N

N∑
j=1

|ϕm(�r j )|, (5)

while the global m-fold bond-orientational order 
m is defined
as


m = 1

N

∣∣∣∣∣
N∑

j=1

ϕm(�r j )

∣∣∣∣∣. (6)

The m-fold bond-orientational correlation function is cal-
culated as

gm(r = |�ri − �r j |) = 〈ϕ∗
m(�ri )ϕm(�r j )〉, (7)

where 〈〉 means an ensemble average. Each phase has a dif-
ferent prediction for the behavior of this correlation function
[4,6,27]. In a single crystal, it converges to a nonzero constant
at long distances. In the hexatic (m = 6) and tetratic (m = 4)
phases, gm(r) decays algebraically with the distance, while the
isotropic liquid phase presents an exponential decay.

2. Parameter for symmetry identification

Colloidal systems with the potential given by Eq. (1) or
similar were observed to self-assembly into squared, mixed,
and triangular lattices [31,33,35]. For α = 1.4 these three
lattices have very close energy values so that even a small
perturbations can change the local structure. In fact, within
the liquid phase of our system, we observed the presence of
small crystalline clusters, with square and triangular orders.
To further investigate the different local symmetries appearing
in our work, we need a method to identify the order around
each particle.

Note that any method which is always perfect in the order
identification would be complex. For instance, the use of
m-BOPs is a relatively simple and generally good method to
measure local order, but it has the problem that there can be
particles whose local order is visually square-like and whose
values of |ϕ6(�r j )| and |ϕ4(�r j )| are the same of some particles
which are visually triangular-like. Either way, any good (but
not perfect) method would provide the same qualitative in-
formations that we are interested to know in our system. We
choose to employ, due to its efficiency, a symmetry parameter
ξ j similar to the one used in Ref. [32]. This single parameter is
very simple to calculate and showed to have a good accuracy
in identifying clusters’ orders in our system. Moreover, it can
identify orders that are mixtures of triangular and square ones,
which appear in our system.

FIG. 2. Schematic representation of a hypothetical configuration
formed by four particles which are represented by circles and indexed
by numbers from 1 to 4. �r1k represents the distance vector between
particles 1 and k, and θ1

kl represents the smallest angle made by the
vectors �r1k and �r1l , where k, l = 2, 3, and 4 with k �= l .

We define

ξ j = 1

Ncut
j

∑
{k,l}

sinθ
j
kl (8)

for a particle j with Ncut
j nearest neighbors which are identi-

fied through a cutoff radius analysis. The neighbors of j are
ordered in the counterclockwise direction and the sum runs
over consecutive pairs {k, l} of neighbors. θ

j
kl is the interbond

angle between the neighbor k and the next one l , i.e., the
smallest angle formed by the distance vectors �r jk and �r jl . Note
that the angle in Eq. (4) is between a bond and a reference axis,
while the angle in Eq. (8) is between two bonds.

Figure 2 shows a schematic representation of a group of
four particles, where all the elements needed to calculate the
symmetry parameter ξ j is presented. In this case, the particle
1 has symmetry parameter values equal to ξ1 = (sin θ1

23 +
sin θ1

34 + sin θ1
42)/3.

The neighbors’ definition used in ξ j differs from the one
used in the calculation of Eq. (4), where a particular type of
order (m-fold) is investigated. Here we must be adaptative,
since the order around particle j can be square, triangular or
other, and we want to identify it. We could use the Voronoi
algorithm but it usually gives >4 neighbors for each particle
in nonperfect square crystals (see Fig. 4(b) of Ref. [34]).
To avoid considering second neighbors as first neighbors,
we choose to define the particles k with |�r jk| < rcut as the
neighbors of j. We use the cutoff rcut = 2.7, which is around
the first valley after the first peak of the radial distribution
functions measured in our simulations.

Finally, note that a particle belonging to a perfect triangular
lattice has 6 neighboring particles forming angles of θ

j
kl =

π/3 and then ξ j ≈ 0.866. For a square lattice, all θ
j

kl = π/2,
so ξ j = 1. In a mixed lattice, as defined in Ref. [31,33] and
also called elongated triangular lattice, each particle has three
pairs of neighbors with θ

j
kl = π/3 and two with θ

j
kl = π/2,

and therefore ξ j = (3 sin π/3 + 2 sin π/2)/5 ≈ 0.920. This is
the same result obtained in a snub square lattice, as both mixed
and snub square lattices are mixtures of square and triangular
tillings.

Inspired by the perfect lattices’ results and considering
small perturbations, we classify particles j having 0.85 �
ξ j < 0.89, 0.89 � ξ j < 0.94, and 0.96 < ξ j � 1.00 as being
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FIG. 3. Time average of the total potential energy per particle,
〈U/N〉, as a function of temperature, T , for the system with N =
65 526 = 2562 particles and α = 1.4.

triangular, mixed, and square, respectively. The choices of the
exact limits of these intervals are not important, they just need
to be disjoint, neither too large nor too short, and encompass
values around the perfect ones. Note that a “mixed” particle
has ambiguity in being of mixed or snub square symmetry,
but what matters here is that it has a mixture of triangular and
square orders. In fact, in our work, we are interested in the
appearance of nonsquare orders within the solid and in the
purely square and purely triangular clusters formed within the
liquid.

III. RESULTS AND DISCUSSIONS

In this section, we present and discuss the results obtained
from overdamped Langevin (Brownian) dynamics simulations
used to investigate the colloidal melting processes of the
square crystal described in the last section. Crystalline sys-
tems, when heated, can change their structural properties and
ultimately undergo phase transitions. Considering the square
lattice, we intend to answer the following two questions: (1)
What phase transitions occur when the system is heated? (2)
What characteristics do the phases have near the transition?

In the next subsection we investigate the melting processes
of a minimum energy square lattice, that is, a square lattice
with ρ0 = 0.21473. Next, in Sec. III B, we consider other
density values. The results obtained is summarized in a T × ρ

phase diagram.

A. Minimum energy square lattice: ρ0 = 0.21473

Here we simulate the system with density ρ0 = 0.21473,
which is the one that minimizes the total potential energy,
Eq. (2), for a square crystal. To determine the phase tran-
sition temperature we calculated the time averaged potential
energy per particle, 〈U/N〉, for each temperature T . Figure 3
shows how 〈U/N〉 varies with T . Such a figure demonstrates
that 〈U/N〉 exhibits, initially, a monotonous increase with the
growth of temperature, and that it passes through an abrupt
variation between at 0.95. The discontinuity in the potential
energy signalizes to the occurrence of a first-order phase tran-
sition.

At any T � 0.94, we can see from configuration snap-
shots that the orientation of the square order is very nearly

vertical/horizontal along the whole system, indicating a long
range orientational order and thus a crystalline phase. For
T � 0.95, we can see from snapshots that there is great dis-
order and no preferred orientation in the system, indicating an
isotropic liquid phase. Some quantitative analysis of the orien-
tational order parameters introduced in Sec. II B 1 are shown
in Sec. III A 1. The long and short range orientational orders
before and after the transition, respectively, are measured.

As we observe through configuration snapshots before the
transition, an isolated dislocation is extremely rare to appear
and, when it does, it is still near to a dislocation with opposite
Burgers vector. The absence of free dislocations is another
indication that this phase is crystalline and not tetratic. Fig-
ures with snapshots and discussions about the appearance of
disorder near and during the melting are given in Sec. III A 2.
Within the liquid, after melting, small clusters with square
and triangular orderings are observed. Snapshots, measures
and discussions about the crystalline clusters appearing in the
liquid phase are given in Sec. III A 3.

1. Orientational order parameter analysis

Here we investigate some aspects of the orientational order
in our system by measuring what was defined in Sec. II B 1.
Figures 4(a) and 4(b) present, respectively, graphs of the local
and global m-fold order parameters, that is, ψm and 
m, for
m = 4 and 6 as a function of the temperature, T. Figure 4(c)
shows the fourfold orientational correlation functions, g4(r),
as a function of the radial distance, r, for the temperatures
T = 0.5, 0.7, 0.94, 0.95, 1, and 5.

Before the transition (i.e., T < 0.95), Figures 4(a) and
4(b) reveal that the system holds large values of the local
and global fourfold bond-orientational parameters (i.e., ψ4 �
0.936 and 
4 � 0.924, respectively), indicating a square or-
dered phase. Also, within this range, the correlation function
g4(r) converges, for large values of r, to some constant close
to the unity, as shown in Fig. 4(c). This long range orienta-
tional order indicates that, before the transition, the system
keeps in a square crystal phase.

We can see that the system loses its global orientational
order for T � 0.95, becoming an isotropic liquid. However,
note that it still maintains some local square order (0.514 >

ψ4 > 0.405) and gains a relevant local triangular order which,
for T � 1.1, becomes higher than the square one. As it can
be seen from configuration snapshots, which will be shown
and discussed in Sec. III A 3, the triangular and square orders
appear in clusters within the liquid. One could expect that
the correlation of the orientational order parameter is high
within the length scale of the clusters’ sizes and then decays
exponentially at large distances. However, as it is shown in
Figs. 4(c) and 4(d), both the fourfold and sixfold orientational
correlation functions [given by Eq. (7)] decay exponentially
even at short distances. The liquid has a purely short range
orientational order.

We did not find evidence for the two-stage melting pro-
cesses described by the KTHNY theory or an adaptation of it
for square crystals. Indeed, our simulations demonstrate that
the system does not present a regime where g4(r) [or g6(r)]
has an algebraic decay, characteristic of the quasi-long-range
orientational order of the tetratic (or hexatic) phase.
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FIG. 4. (a) The local m-fold bond-orientational order parameter, ψm, for m = 4 (solid line) and m = 6 (dotted line) given by Eq. (5), (b) the
global m-fold bond-orientational order parameter, 
m, for m = 4 (solid line) and m = 6 (dotted line) given by Eq. (6), and (c) fourfold and
(d) sixfold bond-orientational correlation functions, g4(r) and g6(r), for the values of temperature T = 0.7, 0.94, 0.95, and 1, given by Eq. (7).

2. Local symmetry analysis near and during the melting

Particles in the crystalline lattice experience a strong and
regular confinement due to the interaction potential created by
the neighboring particles. The increasing of the temperature
enhances the particles’ random motion that eventually allows
small regions of the system to change their local order. We ob-
serve that, in our system, these changes of order are strongly
pronounced, looking like spatially localized phase transitions.
This occurs before and after the transition.

At the temperature T = 0.94, Figs. 5(a) and 5(b) dis-
play distinct snapshots, respectively, for the time values t =
157 200 and t = 157 380. The colored circles in blue, green,
and red, represent, respectively, particles with the squared,
mixed and triangular orderings. Such a classification for a
given particle j was determined by computing the quantity
ξ j and adopting the criteria given in the end of Sec. II B 2.
Note that the neighbors of the green particles, assigned with a
mixed ordering, seems to be in a mix of square and triangular
orderings, but have not necessarily the same symmetry of the
mixed lattice of Refs. [31,33].

Figures 5(a) and 5(b) show that the particles belonging
to the square symmetry (blue circles) are predominant. Our
simulations reveal that particles with the triangular and mixed
orderings tend to appear in groups, forming small clusters of
disorder within the square order phase, with no net Burgers
vector. In other words, the defected regions appearing in the
crystal are predominantly local and nontopological. This can
be visualized in Figs. 5(c) and 5(d), which are, respectively,
enlarged figures of the black square contours displayed in
Figs. 5(a) and 5(b). In fact, we observed that a region with

nonzero net Burgers vector, representing a dislocation, is
extremely rare to appear and, when it does, it is still near
to a region with opposite Burgers vector. Such absence of
unbound topological defects, before melting starts, maintains
the translational order expected in a crystal.

We emphasize that the black squares in Figs. 5(a) and 5(b)
are located in the same place of the simulation box but at
different times. Therefore, as we can see, the clusters of non-
square order in the solid phase are not static and can undergo
changes over time. Some defected regions, after appearing,
may increase a little but they all disappear after some time,
reorganizing back to the square ordering. Indeed, we observed
that close particles stay close along the time, i.e., with no
relative diffusion, which is another aspect of a solid phase as
stated by the dynamic Lindemann criterion [36].

Besides the discontinuities in Figs. 3 and 4(a), 4(b) an-
other indication that we have a first-order phase transition
is that the evolution of the melting process is in accordance
with classical nucleation theory [32] and has the following
characteristics. At T = 0.95, a small liquid nucleus is formed
and then gradually grows in size as the time passes. This
can be verified in Fig. 6, which shows the melting evolution
in a simulation of our system after the temperature achieves
T = 0.95. In Fig. 6(a), which occurs at the time t = 156400,
a small cluster in the liquid phase is formed. This cluster
grows gradually over time, as we can see from Figs. 6(b),
6(c), and 6(d), respectively, for t = 158 500, t = 160 500, and
t = 160 900. In this latter, the liquid phase is percolated and
occupies almost the entire simulation box, with the exception
of a small region with squared symmetry. Ultimately, for even
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FIG. 5. Panels (a) and (b) show the system configurations at
T = 0.94, taken at different times along the running simulation.
Panels (c) and (d) present, in detail, particles within the squared
boundaries, respectively, of panels (a) and (b). To identify the parti-
cle’s ordering classification, we adopted the criteria presented in the
end of Sec. II B 2, where the quantity ξ j was computed. The colored
circles in blue, green, and red indicate, respectively, the presence of
particles with square, mixed and triangular orderings. Black filled
circles represent particles whose ξ values do not fit into any of these
three orderings.

greater growth in time, the liquid phase passes to fill the
entire simulation box. We recall that, for temperatures below
T = 0.95, small “liquid” clusters can be formed, however
they are structures with limited lifetime, that is, such local
disorders eventually disappear.

3. Local symmetry analysis in the liquid phase

In general, physical systems whose crystalline order is
triangular can present, after melting, a disordered structure
typical of the liquid phase with occasional triangular clusters
[38]. We have already addressed the melting transition process
for a square ordering system, but we have not yet talked about
how the system behaves after melting, and in particular, if
there is any kind of remaining ordering.

The thermodynamic equilibrium phase in our system at the
temperature T = 0.95 corresponds to a liquid, with diffusion.
Figure 7(a) shows a snapshot of a thermodynamic equilibrium
configuration at this temperature. As we can see, the system
has not a globally preferred order or orientation in contrast to
what is found for the system with T = 0.94 [see Fig. 5(a)],
where the disorder becomes concentrated in small clusters
surrounded by a squared lattice.

Figure 7(b) shows in more detail the particles’ positions
located inside the black square contour of Fig. 7(a). Visu-
ally, the local order around each particle within this liquid
is rarely noncrystalline. We can see regions with many types

FIG. 6. Configurational snapshots at different times presenting
the evolution of the melting for a system at the temperature T = 0.95
and whose initial configuration forms a square crystal. The region
occupied by the liquid phase gradually grows as time passes. In
sequence, from the shortest time to the longest one, we have the
snapshots (a), (b), (c), and (d), occurring, respectively, at the times
t = 156 400, 158 500, 160 500, and 160 900. The circles are colored
as in Fig. 5.

of crystalline orderings, varying from square (as blue cir-
cles) and triangular (as red circles) to mixed and snub-square
(both as green circles). Note, however, that only square and
triangular particles form single crystal clusters with con-
siderable size. Due to the dynamical aspect of the liquid,
these orderings are constantly changing with the passage of
time.

Figure 8(a) shows the number of clusters with triangular
and square orderings as a function of the temperature, T . To
construct this graph, the procedure we considered to perform
the separation of clusters is given in the following. First, we
classify all particles according to their value of ξi, as described
in the end of Sec. II B 2, and then we group neighboring

FIG. 7. Panel (a) shows a snapshot for the system in thermody-
namic equilibrium at a temperature of T = 0.95. Panel (b) shows the
particle configuration of the region inside the black square contour in
panel (a). The circles are colored as in Fig. 5.
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FIG. 8. (a) Average number of clusters, 〈ηc〉, with squared
(square dots) and triangular (triangular dots) orderings as a function
of the temperature, T . (b) Average number of particles, 〈ηpc〉, in
clusters with square (square dots) and triangular (triangular dots)
symmetries as a function of the temperature, T .

particles (i.e., particles separated by a distance < rcut = 2.7)
that have the same local order. Thus, we obtain groups formed
by two or more particles with same order where each one is
neighbor to at least 1 other particle of the group. A cluster
is composed by the particles of a group like this and all
their neighbors. Note that the smallest possible square and
triangular clusters have 8 and 10 particles, respectively, as
they comprise a group of two neighboring particles with same
order and their neighbors.

Just after the transition, at T = 0.95, the average number
of clusters with triangular and square orderings are ap-
proximately 583 and 1351, respectively. As the temperature
increases, a significant variation in the number of clusters
happens, which can be seem from Fig. 8(a). The temperature
increase leads, ultimately, to the predominance of clusters
having a triangular ordering. This latter fact is in agreement
with the behavior observed, previously, by analyzing the bond
orientational parameters [see Fig. 4(a)].

For T = 10.00, Fig. 8(a) shows that the average number
of clusters with triangular and square orderings are approxi-
mately 900 and 250, respectively. This shows that the number
of clusters with triangular ordering becomes almost four times
greater than that of the square ordering. Nevertheless, we have
to point out something peculiar for the present system: the
number of clusters with square ordering, even at high temper-
atures, still remains significant. Therefore, the liquid phase of
the system is composed by both triangular and square ordered
clusters. Such a kind of liquid, presenting clusters with two
distinct local crystalline orderings, as far as we know, has not
yet been described in the literature.

The increase in temperature not only affects the number of
clusters in the system, but also their size. Figure 8(b) presents
the average number of particles per cluster, 〈ηpc〉, as a function

FIG. 9. Configurational snapshots for systems at the thermo-
dynamic equilibrium, where clusters with triangular and square
orderings are presented separately. Panels (a) and (c) correspond to
a system at T = 0.95 while panels (b) and (d) to a system at T = 5.
The first and second lines display, respectively, only the clusters with
square (blue circles) and triangular (red circles) orderings. Zooms are
shown to better visualize some clusters.

of temperature, for clusters with triangular (see triangular
dots) and square (see square dots) orderings. Shortly after
the transition, i.e., for T = 1.0, we see that the two types
of clusters have approximately the same average number of
particles, 〈ηpc〉 = 26. However, as we can see in Fig. 8(b), the
increase in temperature leads to the increase of the average
number of particles in clusters with triangular order and, op-
positely, to the reduction in those with square order. For large
values of temperature, 〈ηpc〉, approximates to values around
27 and 13, respectively, for clusters with triangular and square
orderings.

The change of dominant order of the clusters with increas-
ing temperature is due to the decrease of relative relevance of
the interaction potential well. The power-law repulsive part
of the potential in Eq. (1), when considered alone at fixed
density, induces a triangular ordering [37]. When the attrac-
tive part is added, with α = 1.4, a certain amount of nearby
particles tend to be trapped in the potential well, inducing a
square ordering [31]. Right after melting, the potential well is
still relevant and many square clusters appear. As the tempera-
ture increases, the well depth becomes small when compared
to the kinetic energy. In this case, neighboring particles no
longer get stuck in the well and their ordering is induced
by the power-law repulsion, preferring to form triangular
clusters.

To better visualize the clusters with triangular and square
symmetries, we present them separately, as follows: Figs. 9(a)
and 9(c), referring to the same system at T = 0.95, show,
respectively, a snapshot containing the configurations with
square (blue circles) and triangular (red circles) clusters.
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FIG. 10. T × ρ phase diagram. Colors are based on the ψ4 values computed for the system. Some snapshots of the system are presented on
the sides of the diagram. The vertical lines indicate, from left to right, the following density values: ρ = 0.19965, 0.20512, 0.21473, 0.22504,
and 0.23158. The case ρ0 = 0.21473 (dashed black line) corresponds to the density for which the square lattice has its lowest energy. For
densities inside the interval 0.20512 < ρ < 0.22504, the system melts directly from a square crystalline solid to a liquid, as described in
Sec. III A. For ρ � 0.20512 and ρ � 0.22504, a coexistence of the solid and liquid phases happens.

Similarly, Figs. 9(b) and 9(d), which correspond to a system
at higher temperature, that is, T = 5.0, present snapshots of
the same configuration showing, respectively, the square (blue
circles) and triangular (red circles) clusters. These snapshots
once more demonstrate that triangular clusters become domi-
nant at high temperatures, although the square order remains
present and significant.

B. Other square lattice densities: ρ �= ρ0

It is pertinent to consider densities with values around ρ0,
since in any real physical situation, the density value carries an
experimental error. Figure 10 presents the phase diagram T ×
ρ where the values of the local fourfold bond-orientational
order parameter ψ4, computed from the system configura-
tions, are used to give the point colors. We considered the
intervals: 0.19613 � ρ � 0.23611 and 0.05 � T � 1.05. The
color range varies from yellow (0.90 < ψ4 < 1.00) to dark
green (0.30 < ψ4 < 0.45). Some snapshots are displayed for
the densities values ρ = 0.19965, 0.20512, 0.22504, and
0.23158 (see the vertical lines used to highlight the density
locations), and temperatures indicated in figure. The dashed
vertical black line in Fig. 10 signalizes the region with the
density ρ0 = 0.21473 of the square crystal with minimum
potential energy.

The interval 0.20512 < ρ < 0.22504 corresponds to the
central region of the diagram (see Fig. 10), which is delimited
by the vertical dashed and dotted red lines. For a density
value within this interval, we found that the system melts
directly from a square crystalline solid to an isotropic liquid.

Thus, reproducing the same scenarios previously found for the
system with ρ0 = 0.21473.

Figures 11(a) and 11(b) present the g4(r) correlation func-
tion as a function of the distance r, respectively, for the
systems with the density values ρ = 0.20699 and 0.22292.
These densities are located inside the central interval de-
limited by the dashed and dotted vertical red lines of the
phase diagram of Fig. 10. Figure 11 shows that the sys-
tems with density values ρ = 0.20699 and 0.22292 melt,
respectively, at the temperatures Tm = 0.85 and 0.89. From
Figs. 11(a) and 11(b), we can see that g4(r) is converges
to a constant, for T < Tm, and decays linearly, for T � Tm.
Thus, we did not observe the occurrence of the tetratic phase,
or even of the hexatic phase. In fact, we calculated g4(r)
and g6(r) for several points of the phase diagram show
in Fig. 10 and no algebraic decay was observed, where
the plots of g6(r) are all similar to the ones shown in
Fig. 4(d).

For ρ � 0.22504, the solid and liquid phases can occur
simultaneously for the system in thermodynamic equilibrium.
This coexistence is common in NVT simulations with first-
order transition of phases with different preferred densities.
As the size of simulation box is kept constant, there are
temperatures at which part of the system must remain in the
solid state for the liquid phase to occur. Figures 10(d)–10(f)
present configurational snapshots containing the coexistence
of phases.

Similarly, phase coexistence also occurs for ρ � 0.20512.
Figures 10(a)–10(c) illustrate this situation. Here, the liquid
phase is favored due to the decreasing in density, and conse-
quently in pressure, causing part of the system to melt while
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FIG. 11. The orientational correlation function, g4(r), for the
system with N = 2562 = 65536 colloidal particles and densities: (a)
ρ = 0.20699 and (b) ρ = 0.22292. These densities are inside the
region delimited by vertical red lines in Fig. 10. Tm is the transi-
tion temperature. g4(r) has a constant behavior for T < Tm, and an
exponential decay for T � Tm.

another remains solid. Reference [31] considered a similar
system with ρ < ρ0, but there, the main focus was on the
investigation of self-assembly processes and configurations at
zero temperature.

IV. CONCLUSIONS

In this work, we investigated through NVT brownian dy-
namics simulations the melting process of a 2D system which
at zero temperature forms a square lattice. We considered an
interaction potential that comprises both a hard-core repulsion
and an additional softened square-well potential.

For the square lattice, the density that minimizes the total
potential energy is ρ0 = 0.21473. Our simulations demon-
strated that the investigated square lattice, having density
ρ0, or a value around it, melts without the intermediation
of a tetratic phase analogous to the hexatic one given by
the KTHNY theory. Bond-orientational order parameters are
used, for instance, to demonstrate such nonoccurrence of this
type of intermediate phase. The system thus goes directly
from crystal to liquid. Coexistence is observed at high or low
densities, as we show in a phase diagram.

We performed a detailed investigation where the different
fractions of local orderings were computed as a function of
temperature. It was found that, before the melting, there is
a proliferation of nonsquare regions throughout the initial
squared lattice, which are continuously formed and destroyed
over time. In spite of these disordered regions, no unbound
topological defects are observed. At the transition temper-
ature, one of these liquid clusters starts to grow with the
increasing of time, until the entire system becomes in the
liquid phase. This latter constitutes a one step solid-to-liquid
first-order phase transition.

A peculiar characteristic of the revealed liquid state is the
persistent presence of two distinct types of crystalline clus-
ters, that is, clusters with triangular and square orderings. We
located and measured the sizes of these clusters and observed
that they are continuously formed and destroyed along the
time. These clusters can be relatively big, though the ori-
entational correlation function decays exponentially even at
short distances. Transitions between the dominant order of the
clusters show the rich variety of structural sub-phases that can
be present within the liquid phase.
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