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We investigate the ground-state phase diagram for a spin-one quantum Heisenberg antiferromagnetic chain
with exchange and single-ion anisotropies in an external magnetic field by using the infinite time-evolving
block decimation algorithm to compute the ground-state fidelity per lattice site. We detect all phase boundaries
solely by computing the ground-state fidelity per lattice site, with the prescription that a phase transition
point is attributed to a pinch point on the ground-state fidelity surface. Furthermore, the results indicate that
a magnetization plateau corresponds to a fidelity plateau on the ground-state fidelity surface, thus offering
an alternative route for investigating the magnetization processes of quantum many-body spin systems. We
characterize all phases by using the local-order parameter, the spin correlation, the momentum distribution of the
spin correlation structure factor, and mutual information as a function of the lattice distance. The commensurate
and incommensurate phases are distinguished by the mutual information. In addition, the central charges at
criticalities are identified by performing a finite-entanglement scaling analysis. The results show that all phase
transitions between spin liquids and magnetization plateaus belong to the Pokrovsky-Talapov universality class.
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I. INTRODUCTION

In recent years, significant attention has focused on spin-
one anisotropic Heisenberg antiferromagnetic chains with
exchange and single-ion anisotropies in an external magnetic
field [1–9], in part because of the prospect for a feasible exper-
imental realization [10]. The system offers a rich ground-state
phase diagram that stems from the competition between dif-
ferent control parameters favoring distinct orderings, which
has led to the discovery of a supersolid (SS) phase induced
by an external magnetic field [2,3], the salient feature of
which is the coexistence of diagonal and off-diagonal order
[1]. The system involves competing parameters such as the
exchange anisotropy �, the single-ion anisotropy D, and the
external magnetic field B. As demonstrated in Refs. [4–6],
diverse phases such as antiferromagnetic (AFM), ferromag-
netic (FM), spin-liquid (SL), large-D, and supersolid (SS)
phases occur when the single-ion anisotropy and the external
magnetic field are varied for a proper chosen (fixed) value of
the exchange anisotropy.

To mention the diversity of the phase in the system, nu-
merical methods, such as the exact diagonalization [6], the
effective model and Monte Carlo simulations [2,3], and the
density matrix renormalization group (DMRG) in either pe-
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riodic [1] or open [4] boundary conditions, provide proper
probes to explore different aspects of rich behaviors of quan-
tum criticalities underlying the system. Due to the novel
physical phenomena in the system, it is challenging to study
thoroughly, for example, (i) the existence of a magnetization
plateau in the AFM phase, the FM phase, and the 10 phase;
(ii) discrimination of commensurate and incommensurate
phases; (iii) exploration of the SS phase; and (iv) character-
ization of the Pokrovsky-Talapov (PT) [11] phase transition
lines in the phase diagram. Recently, Zhou et al. [12–17]
proposed that the ground-state fidelity per lattice site approach
in the context of tensor networks is able to be a universal
phase transition marker to capture quantum phase transitions
[18,19], regardless of whether or not a local order is present.
Such a system offers an excellent test bed for a novel fi-
delity approach to quantum phase transitions. Therefor, it is
worthwhile to use the fidelity approach to excavate the phase
information in the deeper physics of this complex system.

In this contribution, we investigate the ground-state phase
diagram for a spin-one quantum Heisenberg antiferromag-
netic chain with exchange and single-ion anisotropies in an
external magnetic field with � = 6 by exploiting the infinite
time-evolving block decimation (iTEBD) algorithm [20]. The
iTEBD algorithm does not suffer from any finite-size effect,
due to the fact that the translational invariance of the system
is exploited to avoid any necessity to perform extrapolations.
The ground-state fidelity per lattice site is used to detect all
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the phase boundary lines. All of the phases are also charac-
terized. It is found that a magnetization plateau corresponds
to a fidelity plateau on the ground-state fidelity surface, thus
offering an alternative route towards the investigation of the
magnetization processes of quantum many-body spin systems.
Our results show that the mutual information can be used to
distinguish the commensurate and incommensurate phases.
In addition, from the fidelity platform and the center charge
c = 1, we verify that all the phase transitions between the SL
phases and the magnetization plateau phases belong to the PT
universality class.

This paper is organized as follows. Section II briefly de-
scribes the spin-one quantum Heisenberg antiferromagnetic
chain with exchange and single-ion anisotropies in an external
magnetic field. Section III presents the ground-state fidelity
phase diagram with the exchange anisotropy � = 6. This is
achieved by computing the ground-state fidelity per lattice
site to identify all the phase boundary lines with pinch points
on the fidelity surfaces. The results of the study show that
the ground-state fidelity can distinguish all phase transition
points. Even for a very narrow exotic SS phase, the singu-
larity remains clearly visible in the ground-state fidelity per
lattice site. Section IV presents a finite-entanglement scaling
analysis, which allows us to determine both the commensurate
SL(SLC) and incommensurate SL(SLIC) phases as Luttinger
liquids. As such, all phase transitions between the magne-
tization plateaus and the SLs belong to the PT universality
classes [6,11]. Section V characterizes all relevant phases and
finds that a fidelity plateau on the fidelity surface corresponds
to a magnetization plateau. Finally, Sec. VI is devoted to a
summary.

II. MODEL

The spin-one Heisenberg chain with exchange and single-
ion anisotropies subject to an external magnetic field is
described in terms of the Hamiltonian H :

H =
∑

i

[
J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

) + D
(
Sz

i

)2 − BSz
i

]
,

(1)

where i denotes the lattice site; � and D are the exchange
and single-ion anisotropy, respectively; and B is an external
magnetic field applied along the z direction. Generically, one
can argue that a negative large D favors the spin components
Sz = 1 and Sz = −1, projecting out the spin component Sz =
0, while a positive large D favors the spin component Sz = 0.
The effect of the external magnetic field B competes with the
exchange anisotropy �, such that the net magnetization mz

increases with increasing B. Indeed, for a sufficiently large B,
the system becomes a fully polarized state. Due to the compe-
tition of these interactions, this model has a rich ground-state
phase diagram. Here, we fix J = 1 as the energy scale and
assume � = 6. Compared with the result from the DMRG
calculation for � = 5 [5], the system is induced to a direct
phase transition occurs from the SS phase to the 10 phase, as
well as from the AFM phase to the SLIC phase on the ground-
state phase diagram for � = 6. The SS phase broadens and the
SLC phase disappears between the AFM phase and the SLIC

phase with increasing the exchange anisotropy �.

FIG. 1. The ground-state fidelity phase diagram for the spin-1
anisotropic Heisenberg chain in the (D/J , B/J) plane with � = 6.
Here, we have assumed J to be 1 as the energy scale. The dashed
lines are just a guide for the eyes.

Note that in order to check the fidelity per lattice site
feasibility, following Ref. [5], the ground-state phase diagram
for � = 5 is obtained by using the fidelity per lattice site
(see Appendix A for details). The overall phase landscape
identified from the ground-state fidelity surfaces is consistent
with the previous results from DMRG calculations [5].

III. GROUND-STATE FIDELITY PHASE DIAGRAM

Generically, fidelity is a measure of the similarity between
two quantum states. A remarkable observation is that the
ground-state fidelity F (B1/J, B2/J ), between the two ground
states |ϕ(B1/J )〉 and |ϕ(B2/J )〉 (with B1/J and B2/J being
two different values of a control parameter B/J), which is
defined as F (B1/J, B2/J ) = |〈ϕ(B1/J )|ϕ(B2/J )〉| mathemat-
ically, offers a universal marker in signaling quantum phase
transitions in a quantum many-body system. Asymptotically,
F (B1/J, B2/J ) scales as d (B1/J, B2/J )N , with N being the
number of the sites and d (B1/J, B2/J ) being the averaged
fidelity per lattice site [13]. In the thermodynamic limit, the
ground-state fidelity per lattice site d (B1/J, B2/J ) [13] is de-
fined as

ln d (B1/J, B2/J ) ≡ lim
N→∞

ln F (B1/J, B2/J )

N
. (2)

As argued in Refs. [12–16], this fundamental quantity cap-
tures quantum criticality underlying quantum many-body
systems in condensed-matter physics, with the prescription
that a phase transition point is attributed to a pinch point
occurring on the ground-state fidelity surface. In passing, we
mention that a pinch point is defined as an intersection point
of two perpendicular singular straight lines.

To determine the ground-state phase diagram, we use the
iTEBD algorithm, which represents ground-state wave func-
tions in terms of the infinite matrix product state (iMPS)
forms [20]. The algorithm provides an efficient means to com-
pute the ground-state fidelity for one-dimensional quantum
many-body lattice systems. This enables us to determine the
ground-state phase diagram with no prior knowledge of the
order parameters.

Figure 1 plots the ground-state fidelity phase diagram in the
(D/J , B/J) plane. It consists of the conventional AFM and FM
phases, an exotic SS phase, the SLC phase, and the SLIC phase,
as well as the 10 phase and the incommensurate (IC) phase
with exponentially decaying transversal spin correlations [21].
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FIG. 2. (a) The ground-state fidelity surface defined by the
ground-state fidelity per site d (B1/J, B2/J ) as a function of B1/J
and B2/J , two different values of the external magnetic field strength
B/J . (b) The contour plot of d (B1/J, B2/J ), containing AFM, SS,
and FM phases. Here, we have chosen the single-ion anisotropy D
to be equal to 4 as a typical example to compute the ground-state
fidelity per lattice site.

The dash lines are just a guide for the eyes, and the phases
are characterized in detail in Sec. V. Note that the 10 phase
is a magnetization plateau with an alternative arrangement of
the spin components Sz = 1 and Sz = 0 [3], with the magne-
tization 〈(Sz

i + Sz
i+1)/2〉 = 0.5. Here, we have taken the bond

dimension χ to be 60. All phase boundary lines are detected
from the ground-state fidelity per lattice site. The results offer
another example highlighting the connection between critical
points for a quantum many-body system undergoing a quan-
tum phase transition and pinch points on a fidelity surface.

To explain how this has been done, we compute the
ground-state fidelity per lattice site as a function of B1/J
and B2/J for a typical (fixed) value of D/J , with B1/J and
B2/J being two different values of B/J with the bond dimen-
sion χ = 60. Figure 2(a) plots the simulation results for the
ground-state fidelity per site d (B1/J, B2/J ), with D/J = 4.
Five pinch points occur on the ground-state fidelity surface
corresponding to the phase transition points. The five phase
transition points Bc(χ )/J are located at Bc(χ )/J = 7.27, 7.91,
8.82, 12.49, and 18.01 between AFM and SS phases, SS and
SLC phases, SLC and 10 phases, 10 and SLIC phases, and SLIC

and FM phases, respectively.

A remarkable feature appears on the fidelity surface in
Fig. 2(b). That is, three fidelity plateaus occur, meaning that
one single ground-state wave function, which does not depend
on the control parameters, describes the entire phase. This is
expected because the external magnetic field term B

∑
Sz

i is
conserved. Thus, the fidelity plateaus arise from level cross-
ings that are due to variations in the external magnetic field
strength B/J . Conversely, as clarified in the next section, a
fidelity plateau on the ground-state fidelity surface implies a
magnetization plateau, which is predicted in Ref. [22].

IV. CENTRAL CHARGE

The von Neumann entropy quantifies the bipartite en-
tanglement in a quantum state. Its behavior at criticality is
universal [23]. In our setting, the entire chain is partitioned
into two semi-infinite chains. The von Neumann entropy for a
semi-infinite chain is defined as

S = −
∑

i

�i log2 �i, (3)

where �i are the eigenvalues of the reduced density matrix
and represent the entanglement between two semi-infinite
chains. At a critical point, the conformal invariance implies a
logarithmic scaling relation of the von Neumann entropy with
respect to the bond dimension χ [24–26]:

S ∼ cκ

6
log2 χ, (4)

where c is the central charge and κ is a finite entanglement
scaling exponent. The scaling relation between the correlation
length ξ and the bond dimension χ [25] takes the form

ξ ∼ aχκ. (5)

Equations (4) and (5) constitute the so-called finite-
entanglement scaling [24–26], which is reminiscent of the
finite-size scaling [27]. In the iMPS representation, for a
given bond dimension χ , the correlation length is defined as
ξ (χ ) = 1/log2(| ε0

ε1
|), where ε0 and ε1 denote the largest and

the second largest eigenvalues of the transfer matrix T [28],
respectively. Figure 3 plots the von Neumann entropy S(χ )
and the correlation length ξ (χ ) with the bond dimension χ

ranging from 20 to 150 for four chosen points deep inside
the SLC and SLIC phases, respectively. The fitting functions
are S(χ ) = cκ

6 log2 χ + b and ξ (χ ) = aχκ , respectively. The
fitting results are listed in Table I and show that the central
charge c = 1 in the SL phases. As a result, the central charge
c is close to the exact value c = 1, with a relative error being
less than 4%. These results show that both the SLC and the
SLIC phases are the Luttinger liquids. To further confirm that,
the Luttinger parameter K is also extracted according to the
bipartite fluctuations in the SL phases (see Appendix B for
details).

Note that the magnetization plateaus in the AFM, FM, and
10 phases correspond to the fidelity plateaus on the fidelity
surface: all of these phases are, respectively, described in
terms of a single ground-state wave function, independent of
the control parameters. Therefore, these phases are gapped.
As such, all phase transitions from Luttinger liquids to the
AFM, FM, and 10 phases, which arise from level crossings
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FIG. 3. The scaling of the von Neumann entropy S with respect
to the bond dimension χ , S(χ ) = cκ

6 log2 χ + b, and the correlation
length ξ (χ ) as a function of the bond dimension χ , ξ (χ ) = aχκ , for
the SLC phase [panels (a) and (b)] and the SLIC phase [panels (c) and
(d)].

due to conservation of the magnetization along the external
magnetic field direction, belong to the PT universality class.
This is also consistent with the continuity of the ground-state
fidelity per site with respect to the control parameters D/J and
B/J around all these phase transition points.

TABLE I. The finite-entanglement scaling exponents κ and cen-
tral charges c for four chosen points deep inside the SLC and SLIC

phases.

SLC SLC SLIC SLIC

D/J = 4 D/J = 5 D/J = 4 D/J = 5
B/J = 8.5 B/J = 9 B/J = 13 B/J = 15

κ 1.225(9) 1.28(2) 1.28(2) 1.29(1)
cκ/6 0.210(4) 0.213(3) 0.217(3) 0.218(2)
c 1.03(3) 1.00(3) 1.02(2) 1.02(2)

V. CHARACTERIZATION OF PHASES

Given that the ground-state phase diagram has seven dif-
ferent regions, the remaining task is to characterize their exact
nature. To characterize the SS phase, the SLC phase, the SLIC

phase, and the IC phase, we calculate the spin correlation
functions 〈Sz

i Sz
j〉 and 〈S+

i S−
j 〉 and the mutual information I (r),

with r = |i − j| being the lattice distance, respectively. A
Fourier transform allows the spin structure factor to be written
as [2]

Szz(q) =
∑

j

e−iq·(r0−r j )
〈
Sz

0Sz
j

〉
,

S+−(q) =
∑

j

e−iq·(r0−r j )〈S+
0 S−

j 〉. (6)

Mutual information is a standard measure of correlation
between two random variables in classical information the-
ory. Quantum mutual information can be defined [29–33] by
replacing the Shannon entropy in the classical information
theory with the von Neumann entropy, which can quantify the
total correlation including classical and quantum correlations
in a bipartite quantum state [30]. The quantum mutual infor-
mation between sites A and B can be written as

I (A : B) = SA + SB − SAB, (7)

where S = −Trρ ln ρ is the von Neumann entropy and ρ

denotes the reduced density matrix.

A. AFM, FM, and 10 phases

Three of these phases (the AFM, FM, and 10 phases)
admit a local-order parameter. A common prominent feature
of these three phases is that they are seen as three fidelity
plateaus on the fidelity surfaces, which correspond to the
three magnetization plateaus in Fig. 4. Here, we assume that
the single-ion anisotropy D/J = 4, the exchange anisotropy
� = 6, and the magnetic field strength B/J varies from 4
to 20, with the bond dimension χ = 60. Note that, on each
fidelity plateau, d (B1/J, B2/J ) = 1 is satisfied, which implies
that the system is described by a single ground-state wave
function, independent of the control parameter B/J .

In order to characterize the AFM, FM, and 10 phases,
here, we defined a magnetization Mz

1 = 〈(Sz
i + Sz

i+1)/2〉 and
a staggered magnetization Mz

2 = 〈(Sz
i − Sz

i+1)/2〉. The mag-
netization Mz

1 and the staggered magnetization Mz
2 along the

magnetic field direction shown in Fig. 4 also reflect dif-
ferences between different phases: the AFM plateau with
antiparallel spin alignment (Mz

1 = 0, Mz
2 = 1), the FM plateau

with parallel spin alignment (Mz
1 = 1, Mz

2 = 0), and the half-
magnetization plateau corresponding to the 10 phase (Mz

1 =
0.5). The latter describes a macroscopic superposition state
with two configurations: (1010 · · · ) and (0101 · · · ). That is,
the fraction of spins “−1” in the AFM configuration are
replaced by spins “0”, such that the averaged value of the
odd and even sites per site takes 0.5 rather than 1 or 0 at a
single site. Except for the three magnetization plateaus, the
magnetization Mz

1 always increases with increasing external
magnetic field strength B/J .

Here, we stress that the occurrence of the magnetiza-
tion plateaus with Mz

1 = 0, 0.5, and 1 is consistent with the
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FIG. 4. (a) The magnetization Mz
1 and (b) the staggered magne-

tization Mz
2, as a function of external magnetic field B/J for � = 6

and D/J = 4, with the bond dimension χ = 60. In the inset of panel
(a), we show the first-order derivative of the magnetization Mz

1 as
a function of B/J , and a singularity point corresponds to the phase
transition point between the SS and SLC phases.

proposal that, in one dimension, the magnetization Mz
1 at a

plateau in the magnetization curve satisfies SV (1 − Mz
1) ∈ Z,

with Z denoting the set of integers, S being the size of a local
spin, and V being the number of spins in a translational unit
cell of a given ground-state wave function [22]. An intriguing
fact is that a magnetization plateau corresponds to a fidelity
plateau on the ground-state fidelity surface, thus offering an
alternative route to investigate the magnetization processes of
quantum many-body spin systems [34].

B. SS phase

Due to the competition between the exchange and single-
ion anisotropies, an exotic SS phase occurs in a narrow region
between the AFM and 10 phases. In the SS phase, 〈Sz

i 〉 takes
on different values at odd and even sites without uniformity,
in sharp contrast with the SL phases. The average value is
nonzero with the net magnetization, which is consistent with
previous results [2,3] with an Ising-like order. As a detailed
characterization of the SS phase, Fig. 5(a) plots (left panel) the
longitudinal spin correlations 〈Sz

i Sz
j〉 and Fig. 5(b) plots (left

panel) the transversal spin correlations 〈S+
i S−

j 〉, which take
finite values even if the distance is as far as up to 500, for a
typical ground state (D/J = 3, B/J = 9) in the SS phase, with
the bond dimension χ = 200. Specifically, in the longitudinal
direction, we see that Szz(π ) occurs as a peak and Szz(0) as
a dip. The transversal correlation approaches saturation with
an algebraic decay. The nonvanishing transversal and longitu-
dinal spin correlations guarantee, even in the thermodynamic

FIG. 5. In the SS phase with D/J = 3 and B/J = 9: (a) (left
panel) the longitudinal correlation 〈Sz

i Sz
j〉 and (b) (left panel) the

transversal correlation 〈S+
i S−

j 〉. The corresponding momentum dis-
tribution of the structure factor: (a) (right panel) Szz(q) and (b) (right
panel) S+−(q), with the bond dimension χ = 200.

limit, the coexistence of the diagonal and off-diagonal order.
Note that the peaks for the transversal structure factor S+−(q)
is located at a multiple of π .

Figure 6(a) plots the mutual information I (r) as a function
of the lattice distance r = |i − j|, for a typical ground state
(D/J = 3, B/J = 9) in the SS phase, with the bond dimension
χ = 200. In the SS phase, the mutual information I (r) shows
a power-law decay at odd and even lattice distance r, respec-
tively. In Fig. 6(b), the ln-ln plot shows clearly the mutual
information I (r) undergoes a power-law decay to zero as the
lattice distance increases to the infinity. The power-law decay-
ing part increases as the bond dimension increases. Here, we
take the even lattice distance r = 2|i − j| in Fig. 6(b). In order
to confirm the power-law decay of the mutual information,
we perform a numerical fit for the power-law decaying part
with the fitting function ln I (r) = −η ln r + d . The exponents
of the mutual information are given as η = 1.34(2), 1.24(1),
1.18(1), and 1.16(1) for the bond dimensions χ = 50, 100,
150, and 200, respectively. The result implies that the expo-
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FIG. 6. (a) Mutual information I (r) as a function of the lattice
distance r = |i − j| for a typical ground state in the SS phase with
the bond dimension χ = 200. (b) Mutual information ln I (r) as a
function of the lattice distance ln r with the lattice distance r =
2|i − j| for various bond dimensions χ . The exponent η of the mutual
information is extracted for the power-law decaying part in panel
(b) for the bond dimensions χ = 50, 100, 150, and 200, respectively.
Here, D/J = 3 and B/J = 9 for the SS phase.
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nent of the power-law decay decreases as the bond dimension
increases.

C. SLC and SLIC phases

Let us turn to the commensurate and incommensurate SL
phases. Physically, “incommensurate” means the wavelength
of the oscillation pattern is not an integer multiple of the
lattice spacing. As aforesaid, the SS phase can be charac-
terized by the nonvanishing transversal and longitudinal spin
correlations. Following the SS phase, we calculate also the
transversal and longitudinal spin correlations for the SLC and
SLIC phases. Figure 7 plots the momentum distribution of
structure factors (a) Szz(q) and (b) S+−(q) for two typical
ground states in the SLC phase (D/J = 4, B/J = 8.5) and
the SLIC phase (D/J = 5, B/J = 15), respectively. Here, the
bond dimensions χ = 50, 100, 150, and 200. From Fig. 7,
we do not see a peak at some q between 0 and 2π except
0, ±π , and ±2π on Szz(q) and S+−(q) in the SLIC phase.
The spin-liquid phase is characterized by long-range quantum
entanglement and without long-range order. Therefore, the
oscillation pattern of the SLIC phase should be seen in the
entanglement measure, not in spin correlation.

In order to distinguish clearly the SLC and SLIC phases,
we calculate the mutual information in Fig. 8. From Fig. 8(a),
we see a remarkable difference in the mutual information
between two typical ground states in the SLC and SLIC phases
with the bond dimension χ = 200: for a sufficiently large
lattice distance r, the mutual information I (r) shows almost a
monotonic power-law decay as the lattice distance r = |i − j|
increases in the SLC phase and the dominant decaying term
of the mutual information I (r) is proportional to r−η. Here,
the exponents η = 2.2(2), 2.18(7), 2.13(4), and 2.07(4) are
extracted from the fitting function ln I (r) = −η ln r + d for
the power-law decaying part in Fig. 8(b) (left panel) for a
typical ground state (D/J = 4, B/J = 8.5) in the SLC phase
with the bond dimensions χ = 50, 100, 150, and 200, re-
spectively. It is close to 2 as the bond dimension increases.
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FIG. 8. (a) Mutual information I (r) as a function of the lattice
distance r = |i − j| for two typical ground states in the SLC and
SLIC phases with the bond dimension χ = 200. (b) Mutual infor-
mation ln I (r) as a function of the lattice distance ln r with the lattice
distance r = 7|i − j| for various bond dimensions χ . The exponent
η of the mutual information can be extracted for the power-law
decaying part in panel (b), for two typical ground states in the SLC

and SLIC phases, respectively. Here, D/J = 4 and B/J = 8.5 for the
SLC phase, and D/J = 5 and B/J = 15 for the SLIC phase.

Moreover, for a sufficiently large lattice distance r = |i − j|,
the dominant decaying term of the mutual information I (r) is
expected to be proportional to r−η cos(qr) in the SLIC phase
in Fig. 8(a) (right panel). Here, q = απ (1 − mz ) [6], with
α being the fitting constant and mz being the magnetization
per site along the z direction. Next, such a behavior will be
confirmed for a typical ground state (D/J = 5, B/J = 15) in
the SLIC phase. Note that the data in Fig. 8(b) (right panel)
come from the decaying term r−η of the mutual information
I (r) with the lattice distance r = 7|i − j|. Here, the exponents
η = 1.69(3), 1.67(1), 1.66(1), and 1.66(1) are extracted from
the fitting function ln I (r) = −η ln r + d for the power-law
decaying part in Fig. 8(b) (right panel) with the bond di-
mensions χ = 50, 100, 150, and 200, respectively. The result
implies that the exponent of the power-law decay tends to a
finite value as the bond dimension increases.

As an illustrative example, we choose one site deep in-
side the SLIC phase. Figure 9 plots the mutual information
I (r) as a function of the lattice distance r = |i − j| with the
bond dimension χ = 200 for D/J = 5 and B/J = 15 in the
SLIC phase. Here, the red dots denote the data and the solid
black line is the fitted line. To confirm the decaying form
of the mutual information I (r), we performed a numerical fit
with the fitting function I (r) = er−η cos(qr) + f r−1 + g, with
q = απ (1 − mz ). Here, e, f , g, and α are fitting constants.
The fitting constants are given as e = 0.312, f = 0.031 55,
g = −0.000 16, and α = 0.6704 with the exponent η = 1.657
and the magnetization mz = 0.572. For a sufficiently large
lattice distance r, our result indicates that the dominant
decaying term of the mutual information I (r) is proportional
to r−η cos(qr), with q = απ (1 − mz ), in the SLIC phase.
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FIG. 9. The mutual information I (r) as a function of the lattice
distance r with the bond dimension χ = 200 for D/J = 5 and B/J =
15 in the SLIC phase. The black line is the numerical fitting function
I (r) = er−η cos(qr) + f r−1 + g, with q = απ (1 − mz ). Here, e, f ,
g, and α are fitting constants.

D. IC phase

As for the IC phase, Fig. 10(a) shows the longitudinal
structure factor Szz(q), which is peaked at q = 0 and ±2π ,
indicating the appearance of the ferromagnetic order, although
the off-diagonal order vanishes in the thermodynamic limit. In
addition, we can see some small peaks around q = ±0.65π

and ±1.35π in the inset of Fig. 10(a); this indicates that
the IC phase has an incommensurate oscillation pattern in
the longitudinal spin correlations. Figure 10(b) shows the
transversal structure factor S+−(q), which is peaked at ±π .
Figure 11(a) shows the mutual information I (r), and similar
to the SLIC phase, the dominant decaying term of the mutual
information I (r) is proportional to r−η cos(qr). Next, such a
behavior will be confirmed for a typical ground state (D/J =
−3, B/J = 12) in the IC phase. Note that the data in Fig. 11(b)
come from the decaying term r−η of the mutual information
I (r) with the lattice distance r = 3|i − j|. Here, the exponents
η = 1.4(1), 1.4(1), and 1.4(1) are extracted from the fitting
function ln I (r) = −η ln r + d for the power-law decaying
part in Fig. 11(b) with the bond dimensions χ = 100, 150,
and 200, respectively. The result implies that different bond
dimensions provide qualitatively consistent results.

In the IC phase, we also plot the mutual information I (r)
as a function of the lattice distance r = |i − j| with the bond
dimension χ = 200 for D/J = −3 and B/J = 12 in Fig. 12.
By using the same fitting function, i.e., I (r) = er−η cos(qr) +

FIG. 10. Momentum distribution of the structure factors
(a) Szz(q) and (b) S+−(q) for various bond dimensions χ . Here,
D/J = −3 and B/J = 12 in the IC phase. The inset shows a
magnification of the Szz(q).
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FIG. 11. (a) Mutual information I (r) as a function of the lattice
distance r with r = |i − j| for the bond dimension χ = 200. (b) Mu-
tual information ln I (r) as a function of the lattice distance ln r with
the lattice distance r = 3|i − j| for various bond dimensions χ . The
exponent η of mutual information can be extracted for the power-law
decaying part in panel (b) for the bond dimensions χ = 50, 100,
150, and 200, respectively. Here, D/J = −3 and B/J = 12 for the
IC phase.

f r−1 + g, with q = απ (1 − mz ), the fitting constants are
given as e = 0.1808, f = 0.0489, g = −0.000 19, and α =
1.001(5) with the exponent η = 1.359 and the magnetization
mz = 0.341. Similar to the SLIC phase, for a sufficiently large
lattice distance r, the dominant decaying term of I (r) is pro-
portional to r−η cos(qr) in the IC phase.

As a result, the mutual information I (r) exhibits differ-
ent decay behaviors in commensurate and incommensurate
phases, respectively. Our results show that the dominant de-
caying term of the mutual information I (r) is proportional
to r−η in the commensurate phase and is proportional to
r−η cos(qr), with q = απ (1 − mz ), in the incommensurate
phase.

VI. CONCLUSIONS

The spin-one quantum Heisenberg antiferromagnetic chain
with exchange and single-ion anisotropies in an external mag-
netic field is investigated by using the iTEBD method. The
ground-state phase diagram is identified solely by computing
the ground-state fidelity per lattice site. Three fidelity plateaus
appear on the fidelity surface, corresponding to the AFM,
10, and FM phases. Our results indicate that a magnetization
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FIG. 12. The mutual information I (r) as a function of the lat-
tice distance r with the bond dimension χ = 200 for D/J = −3
and B/J = 12 in the IC phase. The black line is the numerical
fitting function I (r) = er−η cos(qr) + f r−1 + g, with q = απ (1 −
mz ). Here, e, f , g, and α are fitting constants.
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FIG. 13. : The ground-state fidelity phase diagram for the spin-1
anisotropic Heisenberg chain in the (D/J , B/J) plane with � = 5.
Here, we have assumed J to be equal to 1 as the energy scale. The
dashed lines are just a guide for the eyes.

plateau corresponds to a fidelity plateau on the ground-state
fidelity surface. This offers an alternative route to investigate
the magnetization processes of quantum many-body spin sys-
tems.

In addition, we perform a finite-entanglement scaling anal-
ysis of the von Neumann entropy and the correlation length
with respect to the bond dimension, thus determining the
central charge c = 1 in the SL phase and affirming that all
transitions from the spin liquids to the magnetization plateaus
belong to the PT universality class. Finally, we characterize
all relevant phases that exhibit distinguishable magnetization
processes with an increasing external magnetic field. The spin
correlations, structure factors, and mutual information clearly
characterize their dominant magnetic behavior. We confirm
the coexistence of the diagonal order and the off-diagonal
order in the SS phase, demonstrate the difference between the
SLC and SLIC phases, and unveil the characteristics of the IC
phase.
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APPENDIX A: GROUND-STATE FIDELITY PHASE
DIAGRAM FOR EXCHANGE ANISOTROPY � = 5

We investigate the ground-state phase diagram for the
model (1) with exchange anisotropy � = 5 by comput-
ing the ground-state fidelity per lattice site [13]. The
ground-state fidelity per lattice site enables us to determine
the ground-state phase diagram with no prior knowledge of
the order parameters. Figure 13 plots the ground-state fidelity
phase diagram in the (D/J, B/J ) plane. It consists of the
conventional AFM and FM phases, an exotic SS phase, the
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FIG. 14. The ground-state fidelity surface defined by the ground-
state fidelity per site d (D1/J, D2/J ) as a function of D1/J and D2/J ,
two different values of the external magnetic field strength D/J .
Here, the External field is fixed as B/J = 9.3.

SLC phase, and the SLIC phase, as well as the 10 phase and
the IC phase. The overall phase landscape identified from the
ground-state fidelity surfaces is in good agreement with the
previous results from the DMRG calculations [5,7].

Note that the phase transition between the commensurate
and incommensurate SL corresponds to a pinch point on the
ground-state fidelity surface, as shown in Fig. 14, where the
ground-state fidelity per lattice site d (D1/J, D2/J ) is plotted
as a function of D1/J and D2/J for a typical choice of the
control parameters: the exchange anisotropy � = 5 and the
external field B/J = 9.3, but the single-ion anisotropy D/J
varies from 0 to 2. The singularity appearing on the fidelity
surface is relatively weak. Nevertheless, we are still able to
discern the pinch point, thus locating the phase transition
point.

APPENDIX B: THE BIPARTITE FLUCTUATIONS

In addition, to identify both the commensurate and the
incommensurate SL phases as Luttinger liquids, we apply a
scaling analysis for the bipartite fluctuations. The bipartite
fluctuations can be defined as [35,36]

F (χ ) =
∑
i, j

[〈
Sz

i Sz
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉]
, (B1)

which satisfies [35–37]

F (χ ) = K

2π2
ln ξ (χ ) + const., (B2)

allowing us to extract the Luttinger parameter K . According
to the U(1) quantum number (i.e., either the particle number
n or the spin projection Sz) [35,38], the bipartite fluctuations
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FIG. 15. The finite-entanglement scaling: bipartite fluctuations
F (χ ) versus ln ξ (χ ). The bond dimension χ ranges from 24 to 120.
Here, D/J = 5, B/J = 7.5 and D/J = 6, B/J = 9 for the SLC phase
and D/J = 3, B/J = 14 and D/J = 5, B/J = 15 for the SLIC phase.

can be written in the Schmidt basis as

F =
∑

x

x2
∑

i

(
λx

i

)2 −
[∑

x

x
∑

i

(
λx

i

)2

]2

, (B3)

where x is the quantum number and λi is the Schmidt decom-
position coefficient. Note that the sum

∑
i is restricted to a

fixed value of the quantum number x.
Figure 15 plots the bipartite fluctuations F (χ ) versus

ln ξ (χ ), with the bond dimension χ ranging from 24 to
120, for four chosen points deep inside the SLC and SLIC

phases. The best linear fit is exploited to estimate the Lut-
tinger parameter K , which is listed in Table II. It shows that
the Luttinger parameter K varies with the parameters D/J
and B/J .

TABLE II. The Luttinger parameter K is extracted for four cho-
sen points deep inside the SLC and SLIC phases. Here, the bond
dimension χ ranges from 24 to 120.

SLC SLC SLIC SLIC

D/J = 5 D/J = 6 D/J = 3 D/J = 5
B/J = 7.5 B/J = 9 B/J = 14 B/J = 15

K 0.78(1) 0.687(8) 1.10(2) 0.74(1)
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