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From random walks on networks to nonlinear diffusion
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Mathematical models of motility are often based on random-walk descriptions of discrete individuals that can
move according to certain rules. It is usually the case that large masses concentrated in small regions of space
have a great impact on the collective movement of the group. For this reason, many models in mathematical
biology have incorporated crowding effects and managed to understand their implications. Here, we build on
a previously developed framework for random walks on networks to show that in the continuum limit, the
underlying stochastic process can be identified with a diffusion partial differential equation. The diffusion
coefficient of the emerging equation is, in general, density dependent, and can be directly related to the transition
probabilities of the random walk. Moreover, the relaxation time of the stochastic process is directly linked to the
diffusion coefficient and also to the network structure, as it usually happens in the case of linear diffusion. As a
specific example, we study the equivalent of a porous-medium-type equation on networks, which shows similar
properties to its continuum equivalent. For this equation, self-similar solutions on a lattice and on homogeneous
trees can be found, showing finite speed of propagation in contrast to commonly used linear diffusion equations.
These findings also provide insights into reaction-diffusion systems with general diffusion operators, which have
appeared recently in some applications.
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I. INTRODUCTION

Interactions between individuals are fundamental in order
to decipher collective motility rules. This process is relevant
in many fields, from the movement of cells during develop-
ment and tumour formation [1], to the spreading of diseases
or opinions [2,3]. One of the simplest forms of interaction
take place when individuals compete for available space,
which is usually referred to as volume exclusion. Such a ba-
sic mechanism can have drastic changes in model dynamics
and usually comes in the form of localized repulsive forces
between individuals that are close to each other [4–6]. Crowd-
ing effects play an important role in biology across different
scales [7–11], but also make sense in other contexts, where
the behavior of single individuals is highly influenced by large
masses. Recent models on networks have focused on incorpo-
rating this volume-filling mechanism [12–14], but there is also
a vast literature coming from the field of mathematical biology
that at its core, is motivated by the same basic ideas—to name
a few [9,15–20].

Many of these models, however, focus on continuum de-
scriptions of the system of interest, which are based on some
kind of diffusion partial differential equation (PDE). While
the case of linear diffusion has probably been the most popular
choice, this is not suitable when there is volume exclusion
because it represents purely random motion. Probably, one of
the first alternatives used to model biological populations [21]
was the so-called porous-medium equation (PME), introduced
in this context in [22]. The PME is a nonlinear diffusion
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equation (see [23] for an exhaustive and detailed analysis),
where the diffusion coefficient increases as a power-law func-
tion of the density so that

∂ρ

∂t
= �ρm = m∇ · (ρm−1∇ρ). (1)

Note that m = 1 corresponds to the usual linear diffusion. The
cases m > 1, m < 1 are usually called slow diffusion and fast
diffusion because of how quickly their solutions decay in time
compared to the reference case given by linear diffusion.

Different arguments can be found in the literature to derive
the PME. The case of exponent two is particularly interesting
as it can be identified with particle-based models [15,24],
and also with on-lattice models where agents have different
aspect ratios [25]. In fact, the exponent of the PME has been
related to the size of the agents [26]. Moreover, the m = 2
case is also closely related to statistical mechanics, as it
emerges as the thermodynamic limit of a system of interacting
agents [6,27,28]. The PME with m = 3 has also appeared in
applications and has been suggested as the simplest model
to relate the dispersal velocity to both the density and its
gradient [29].

Understanding the interplay between diffusion and crowd-
ing effects on networks is also relevant, as many processes
are more suitably described by spatially discrete models. This
raises the question of whether one can translate some of the
mentioned PDEs to the graphs setting [30–32]. Moreover,
continuum models are usually not only limited to diffusion,
but include other type of mechanisms or reactions, and these
have also appeared in the discrete case [33,34].

Here, we build on a graph random-walk framework to show
that on regular lattices, one can identify a continuous limit
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for the underlying stochastic process. The emerging macro-
scopic PDE has the form of a general diffusion equation, with
a density-dependent diffusion coefficient which is directly
related to the transition probabilities of the random walk.
This discrete-to-continuum approach provides a direct link
between models at different scales and gives insights into the
process at the microscopic level. In particular, we show that
for porous-medium-type equations, one also observes mass
propagation with finite speed on networks, in contrast to the
commonly used linear diffusion equation. The propagation
speed can be found analytically for simple graphs. On finite
networks, we also fully characterize the stationary distribution
of the stochastic process and the relaxation time needed to
reach this state, which depends on the network structure and
on the diffusion coefficient. These analytical results can also
be applied to reaction-diffusion systems, which we briefly
discuss and compare to the recent findings of [34].

II. PRELIMINARIES

We build on [13,14] and consider N agents moving on
a network with M nodes—for simplicity, we consider un-
weighted undirected graphs. A different feature of these works
is that each node has a finite carrying capacity K which sets
an upper limit for the number of agents that can be at the
same node. Here we consider that all nodes have the same
carrying capacity, but, in principle, it could also be node
dependent—see [13]. We denote by Ai j and ki the elements
of the adjacency matrix and the degree of each node, re-
spectively. We also represent the state of the process via a
vector n = (n1, . . . , nM ), where 0 � ni � K is the number of
agents at node i. In [13,14], the agents perform a node-centric
random walk only allowing for transitions to neighboring
nodes, for which Ai j = 1. Considering such a process, where
the hopping rate is independent of the node degree, usually
gives place to a diffusion operator involving the random-walk
normalized Laplacian matrix L′ and to stationary states which
depend on the degree of each node, ki [35]. However, more
recently, it has been argued that the edge-centric choice, where
the hopping rate is also proportional to the node degree, is
more suitable for applications where one would expect uni-
form distributions in the infinite-time limit [34]. In this work,
and following this discussion, we focus on the edge-centric
case, although the node-centric case is studied for a specific
model in Appendix B.

We further assume that the transition probabilities of the
random walk are modulated according to the local density of
agents. More specifically, if there is an agent in node i, we
assume that the willingness to leave such node is given by
a function f , which depends on the local density, ni/K ; and
the attractiveness of a neighboring node j is given by another
function g which depends on the density at this node, nj/K .
These functions then measure the influence of crowding on
motility [36]. Note that this framework is different from other
biased random walks on networks where the bias depends on
the network topology rather than on how crowded a particular
node is [37–40].

In particular, the stochastic process is given by the tran-
sition probabilities T (n′|n) from state n to state n′, and the
master equation for the evolution of the probability of state n

at time t ,

d

dt
P(n, t ) =

∑
n′

[T (n|n′)P(n′, t ) − T (n′|n)P(n, t )]. (2)

Since exchanges of particles only happen between pairs of
nodes (i, j) for which Ai j = 1, and only increments and decre-
ments of one unity per unit time in the number of particles are
allowed, the transition probabilities T (ni − 1, n j + 1|ni, n j )
are sufficient to characterize the process. According to our
previous considerations, these read

T (ni − 1, n j + 1|ni, n j ) = λAi j f
(ni

K

)
g
(n j

K

)
. (3)

Here, λ is just a hopping rate giving the timescale of the
process. Usually, one thinks of f and g as nondecreasing
and nonincreasing functions, respectively, as hops from low-
density regions to crowded nodes are less likely to occur.

In the limit of large K and for small densities, we can
expect the transition probabilities (3) to be small and, con-
sequently, P(n, t ) will be peaked around the macroscopic
mean. In this situation, correlations can be neglected (see [41],
chapter X) and it makes sense to consider the mean-field
approximation 〈 f (·)〉 = f (〈·〉), and similarly for g. Under this
approximation, 1/K corrections vanish and one can explicitly
write an evolution equation for the mean-field node density
ρi(t ) = limK→∞〈ni〉/K (see [13,14] for more details),

dρi

dt
= −λ

∑
j

Li j[ f (ρ j )g(ρi ) − f (ρi )g(ρ j )], (4)

where Li j = δi jki − Ai j is the usual graph Laplacian [35]. The
approximation is exact when K → ∞ [42,43].

Previous studies also support the validity of the mean-field
approximation for finite K [44–46]. In general, one can expect
the approximation to work in the absence of proliferation
and for small movement bias. Note here that jumps from a
given node are biased if the densities of the neighboring nodes
are different and g is not constant. Whenever the transition
probabilities are dominated by f instead of g, movement bias
should be small.

One important property that follows from (4) is the con-
servation of mass, which will be used later to characterize the
stationary distribution. We can then define the average density
as ρ̄ = M−1 ∑M

i=1 ρi, which we can calculate from the initial
condition and does not depend on time.

Observe that in the case f (x) = x and g(x) = 1, the linear
diffusion equation is recovered. In this work, we consider
general forms of f and g, but for some applications, we
look at the case given by a specific choice of these functions
representing only local repulsive interactions. In particular,
we will study the case f (x) = xm and g(x) = 1, meaning that
the attractiveness of any node is independent of its density,
and that the willingness to leave a node is modulated by the
exponent m � 0. As we will discuss in the next sections,
this choice of transition probabilities is closely related to the
macroscopic PME.

Note, too, that a simplified version of the Kuramoto model
on networks [47] is recovered for f (x) = sin x and g(x) =
cos x. In this case, Eq. (3) should be reinterpreted, as ρi is
no longer a density but a phase which could be negative.
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Several other choices of f and g have been studied be-
fore. This framework was initially derived in [13], in the
node-centric setting, with f (x) = x, g(x) = 1 − x to solve the
inverse problem of finding the connectivity distribution of a
network. Note, however, that this choice in the edge-centric
setting case (4) results in linear diffusion. Later, it was ex-
tended to allow for nonlinearities of the type f (x) = x, g(x) =
(1 − x)σ in [14]. In this work, we focus on the choice f (x) =
xm.

III. MACROSCOPIC LIMITS

Before moving to study the properties of Eq. (4), we an-
alyze it in the case of regular lattices, where the distance
between nodes is given by a. In fact, the approach taken
here is similar to the coarse-graining method used to link
continuous-time discrete-space equations with macroscopic
models [48]. We imagine that the process takes place on a
square grid graph, where the degree k only depends on the
dimension of the grid. We assume for simplicity that the grid
is one dimensional and thus k = 2 and Ai j = δi,i+1 + δi,i−1.
Note, however, that the following results generalize easily for
any higher-dimensional square grid. Then, Eq. (4) simplifies
to

dρi

dt
= λ{g(ρi)[ f (ρi+1) + f (ρi−1)]

− f (ρi )[g(ρi+1) + g(ρi−1)]}. (5)

We take a continuous approximation of the one-dimensional
lattice in the limit where the number of nodes, M, tends to
infinity, and the distance between two consecutive nodes, a,
tends to zero. We identify ρ(x, t ) = ρi(t ) (also, dρi/dt = ∂tρ)
and ρ(x ± a, t ) = ρi±1(t ). By expanding ρi±1 as a Taylor
series for small values of the distance between nodes a, we
obtain

ρi±1 = ρ ± a∂xρ + a2

2
∂xxρ + o(a2), (6)

and again for f (ρi±1) [and similarly for g(ρi±1)],

f (ρi±1) = f (ρ) ± a f ′(ρ)∂xρ + a2

2
f ′(ρ)∂xxρ

+ a2

2
(∂xρ)2 f ′′(ρ) + o(a2). (7)

Note that this last expansion is, in fact, exact whenever f and
g are polynomials in ρ. By using this, and writing

h = f ′g − f g′, (8)

Eq. (5) reduces to

∂tρ = λa2[h(ρ)∂xxρ + (∂xρ)2h′(ρ)] + o(a2). (9)

Taking now the macroscopic limit a → 0 alongside the scal-
ing λ = O(a−2), we obtain

∂tρ = h(ρ)∂xxρ + (∂xρ)2h′(ρ) = ∂x[h(ρ)∂xρ] = ∂xxH (ρ),
(10)

where H ′ = h. Note that without loss of generality, here we
assumed that λa2 → 1 as a → 0. As mentioned before, this

same argument holds in square grid graphs of higher dimen-
sions and gives rise to the nonlinear diffusion equation

∂tρ = �H (ρ) = ∇ · [h(ρ)∇ρ], (11)

with a density-dependent diffusion coefficient h(ρ). Note that
for the equation to be well posed, one needs h � 0, which is
always the case given that f is nondecreasing and g is nonin-
creasing. In the case where these assumptions fail, e.g., g is
nonmonotonic due to the possible presence of an aggregation
mechanism [49], the macroscopic PDE could be ill posed.
However, in such case, it still makes sense to analyze (4),
which is a discrete model; a similar phenomenon is studied
in [50].

In the particular case where H (ρ) = ρm, we obtain the
PME (1). This can be achieved, for example, when the tran-
sition probabilities only depend on local densities f (x) = xm

and g(x) = 1, which represents a process with very localized
repulsive interactions (but there are other possibilities). In this
case, the diffusion coefficient is

h(ρ) = mρm−1. (12)

Moreover, Eq. (4) can be written in such a way that reminds
one of the macroscopic PME,

dρ

dt
= −λLρm. (13)

We note here that different choices of f and g can yield
macroscopic equations which are well-known PDEs. For ex-
ample, it is instructive to analyze the case studied in [14],
f (x) = x and g(x) = (1 − x)σ , with σ � 0. This yields the
degenerate diffusion coefficient,

h(ρ) = (1 − ρ)σ−1[1 + (σ − 1)ρ]. (14)

Similar mobility coefficients in PDEs have appeared in math-
ematical biology to prevent overcrowding [48,51,52], but
also in mathematical physics to describe fermionic systems
where particles obey the exclusion principle [53,54]; these
usually correspond to the case σ = 2. Under the substitution
(1 − ρ)σ−1 �→ (1 + ρ)σ−1, we instead obtain an equation de-
scribing a system of bosons under relaxation [55]. Moreover,
such equations can also be derived from microscopic rules
following a probabilistic argument; see [56] and also [57] for
a case with two species. Here, h(ρ) has completely different
behaviors in the cases σ = 1, when this reduces to linear
diffusion; σ > 1, when h(ρ) < 1 and is a decreasing function;
and σ < 1, which makes h(ρ) > 1 increasing and unbounded.
This could be directly related to previous works studying the
exploration efficiency of different random-walk models on
networks [14,37]. In fact, and as we will see, the diffusion
coefficient is not only related to the macroscopic PDE, but
also determines the timescale of the process on finite graphs.

IV. SELF-SIMILAR SOLUTIONS ON INFINITE GRAPHS

Many PDEs of the form of (11) present well-known so-
lutions in the case of infinite domains. Of particular interest
is the case of the PME, with h(ρ) = mρm−1, which solutions
in the real line tend to the so-called Barenblatt profiles [58].
In one spatial dimension, these can be found by looking for
self-similar solutions of the form ρ(x, t ) = t−βF (xt−β ) and

054103-3



CARLES FALCÓ PHYSICAL REVIEW E 106, 054103 (2022)

give place to

β = 1

m + 1
, F (y) = (C − κy2)1/(m−1)

+ , (15)

where (y)+ = max(y, 0), and C and κ are constants related to
the exponent m and the total mass [23]. Note that according
to this relation, mass is propagated following the relation
x ∼ tβ . In the limit m → 1, we obtain the heat kernel solution
for the linear diffusion PDE. Here we analyze, following a
self-similarity argument, a porous-medium-type equation (13)
on two infinite graphs, namely, a regular lattice and a q-
homogeneous tree. We find that in contrast with the case of
linear diffusion, mass propagation occurs at a finite speed.
These calculations also give insights into nonlinear diffusion
on more general graphs, where the observed solutions resem-
ble those of the macroscopic PME.

A. Regular lattice

In the case of an infinite regular lattice, we show that the
solutions of Eq. (13) agree with those of the macroscopic PME
and, in the long-time limit, tend to the Barenblatt profile (15).
On this domain, Eq. (13) simply reads

dρi

dt
= ρm

i−1 + ρm
i+1 − 2ρm

i . (16)

We assume that initially, all the mass is placed at i = 0 and
we allow for integer values of i. Now assume the self-similar
ansatz ρi = t−βF (y) with y = it−β , and substitute into the
above expression to find

− βt−β−1[F (y) + yF ′(y)]

= t−mβ [F (y − t−β )m + F (y + t−β )m + F (y)m], (17)

where the prime denotes differentiation with respect to y.
By expanding the right-hand side for large t and eliminating
the time dependence, we find β = 1/(m + 1), and also the
differential equation for F ,

(m + 1)[F (y)m]′′ + yF ′(y) + F (y) = 0. (18)

This equation is usually called the profile equation [23] and
can be integrated to obtain the Barenblatt profile (15).

Thus we have proved that on a lattice, (1) behaves as its
continuum limit, the PME.

B. Homogeneous trees

We now move to the case of infinite q-homogeneous trees,
where each node has degree q + 1. We assume q > 1 since
q = 1 corresponds to the case of the lattice studied in the pre-
vious section. Now, the long-time behavior is more complex,
but it can be understood by looking at the continuum limit
again. Equation (13) now reads

dρi

dt
= qρm

i−1 + ρm
i+1 − (q + 1)ρm

i , (19)

where ρi is representative of the set of nodes in the ith gen-
eration of the tree. Here we assume that initially, all the mass
is located at nodes with i = 0, and that the tree extends for
negative and positive values of i.

Following the approach in the previous section, one can
now take the continuum limit of Eq. (19). By doing so, we
obtain the nonlinear diffusion PDE with convection,

∂tρ = a2(q + 1)∂xxρ
m − a(q − 1)∂xρ

m, (20)

where a stands for the distance between nodes. Note that the
equation can be explicitly solved for the m = 1 case to obtain
a traveling Gaussian with speed ∼(q − 1). In fact, it is easy
to see, via a self-similar argument as in the previous section,
that this is also true for the discrete case (19). We focus on the
case m > 1.

These type of equations with nonlinear diffusion as well
as convection have been widely studied and, depending on
whether diffusion or convection dominates, we may find
different long-time behaviors. When both diffusion and con-
vection have the same exponent, m > 1, the dominant term is
the convective one, and in the long-time limit, the diffusive
part can be neglected [59]. Asymptotic solutions then can
be obtained from the equation ∂tρ + ∂xρ

m = 0 and follow
ρ(x, t ) ∼ t−γ G(z), with z = xt−γ and

γ = 1

m
, G(z) =

{
z1/(m−1) for 0 < z < Cm

0 otherwise,
(21)

where the constant Cm is determined by normalization.
Following these ideas, we may now assume the self-similar

ansatz ρi = t−γ G(z) with z = it−γ for Eq. (19). By substi-
tuting into (19), expanding again for large t , and eliminating
time dependence, we find γ = 1/m and the differential equa-
tion for G,

m(q − 1)[G(z)m]′ + zG(z) + G(z) = 0. (22)

By looking for solutions G(z) ∼ zδ , we obtain δ = 1/(m − 1)
as expected from the continuum limit solution (21).

Observe that in the discrete case, we have obtained so-
lutions that agree with the corresponding continuum limits,
showing propagation speeds which heavily depend on the
exponent m. It would also be interesting to study these equa-
tions with an added reaction term, as in the linear diffusion
case these can show different behavior with respect to the
continuum PDE [60]. We have also shown that the propa-
gation speed of solutions depends on the network structure,
and while it may be possible to extend these results to similar
graphs, the case of general complex networks seems challeng-
ing. However, for finite and connected graphs, the situation is
simpler as after some time all nodes present nonzero densities.
We will see in the next sections that this allows us to charac-
terize the timescale of the process.

V. STATIONARY DISTRIBUTION AND RELAXATION
TIME

From now on and unless stated otherwise, we assume that
we work with finite and connected networks. As expected for
an edge-centric random walk, the stationary distribution of
Eq. (4) for any choice of f and g is a uniform distribution,
as long as f is nondecreasing and g is nonincreasing. To see
this, note that a stationary state ρ∗ of (4) satisfies∑

j

Li j[ f (ρ∗
j )g(ρ∗

i ) − f (ρ∗
i )g(ρ∗

j )] = 0, (23)
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for all i = 1, . . . , M. In particular this means that v(i) defined
by v j (i) = f (ρ∗

j )g(ρ∗
i ) − f (ρ∗

i )g(ρ∗
j ) is an eigenvector of L,

for i = 1, . . . , M. On a connected graph, v j (i) is a constant
independent of j [61], and setting i = j we see that v j (i) = 0.

Note that here we assumed that f (ρ∗
i ), g(ρ∗

i ) 
= 0, which is
always true given that f and g are nonzero for positive density
values. In cases where this assumption fails, steady states in
general could depend on initial conditions and on the precise
form of these functions. This is also the case in general when
f and g fail to be monotonic, a situation that has appeared
before in different settings [49,62,63].

Reordering the terms gives f (ρ∗
i )/g(ρ∗

i ) = f (ρ∗
j )/g(ρ∗

j ),
which is met for any i and j only if both sides are equal to
a constant c. Hence the stationary distribution must satisfy the
relation

f (ρ∗
i )

g(ρ∗
i )

= f (ρ∗
j )

g(ρ∗
j )

= c. (24)

This equation always has a unique solution given that f is
nondecreasing and g is nonincreasing, and from it, we deduce
that ρ∗ is uniform as it cannot depend on i. Using the mass
conservation property, we finally obtain ρ∗

i = ρ̄ for every
node, with ρ̄ = M−1 ∑M

i=1 ρi being the average density that
we can calculate from the initial condition and that does not
depend on time.

The main challenge when we look for the relaxation time of
Eq. (4) lies in the nonlinearities f and g. However, in the edge-
centric case, this can be done for general forms of these two
functions. We seek solutions of the form ρi = ρ̄ + εηi for ε �
1. Since ρ̄M = ∑

i ρi = ∑
i ρ

∗
i , we require the perturbation η

to have zero total mass. Bringing together the O(ε) terms, we
obtain

dηi

dt
= −λh(ρ̄)

∑
j

Li j (η j − ηi ), (25)

or, more compactly, dη/dt = −λh(ρ̄)Lη. Note that this is the
usual linear diffusion equation with a rescaled time. We know
then from [35] that the relaxation time to the stationary state
is simply

τ−1
1 = h(ρ̄ )λμ1, (26)

with μ1 being the smallest nonzero eigenvalue of L. This
expression relates the relaxation time of the random walk with
the diffusion coefficient appearing in the continuum limit, and
thus provides a direct link between the microscopic nature of
the process and the macroscopic dynamics. It also shows the
same scaling as in the PDE (11) up to a constant, which is
given by the network structure.

This derivation could lead us to think that the nonlinear
process is somehow equivalent to its linearized version (25)
up to a constant given by the diffusion coefficient. However,
and as we will see in the next section, this is not the case,
and the timescale of the process does not fully determine its
dynamics, which in general depend on the nonlinearities f
and g. The linear approximation is only valid once the mass
has propagated to all nodes, similarly to what happens in the
continuum case on finite domains and under no-flux bound-
ary conditions. This also becomes evident when one thinks
of the simplified Kuramoto model, which is recovered for

f (x) = sin x, g(x) = cos x. In this case, we obtain h = 1, al-
though its dynamics are different from the linear diffusion
case, which also has h = 1.

The derived relaxation time should be understood then in
the sense of the asymptotic decay of the solutions in finite
graphs. In other words, it provides an estimate of how ρ tends
to ρ∗. By projecting η into a basis of eigenvectors of L, it
is easy to see that in the long-time limit, η ∼ e−t/τ u1, where
u1 is the eigenvector of L associated with μ1 [35]. A direct
measure of the convergence to the stationary solution is then
given by the 2-norm of ρ − ρ∗, which in the long-time limit
follows ‖ρ − ρ∗‖2 ∼ e−t/τ1 . Note, however, that we do not
have this estimate on infinite graphs. In that case, finding the
timescales of the process as in [64] seems challenging due to
the nonlinearities in our equation.

VI. SLOW AND FAST DIFFUSION

We continue the discussion on the previous section with
special emphasis on the case given by Eq. (13), which corre-
sponds to the choice h(ρ) = mρm−1. As mentioned earlier, the
regimes m < 1, m = 1, m > 1 are usually referred to as fast
diffusion, linear diffusion, and slow diffusion in the context
of the PME (1). Given these known differences between the
linear diffusion PDE and the PME with exponent m 
= 1, one
could then wonder how solutions of Eq. (13) depend on m for
general graphs.

In fact, the situation on networks is similar to the case of
the PDE (1) under no-flux boundary conditions, as shown in
Fig. 1(a). In the PDE setting, for early times, one would expect
the density to approach the solution in the whole space, but as
soon as the density reaches the boundary, nonlinear and linear
diffusion tend to the uniform steady state in a similar way.

As mentioned in previous sections, in the whole space—
where there are no boundary effects—and in the m > 1 case,
solutions to the PME (1) with an initial point source are of
the form of the so-called Barenblatt profiles [23]. These differ
from the Gaussian solution to the linear diffusion equation as
they are compactly supported and have a power-law decay in
time t−β with an exponent decreasing with m. This means that
the speed of propagation is finite in contrast to the case of
linear diffusion. In fact, the larger the exponent m, the slower
the solution decays. This is depicted in Fig. 1(a), where we
compare the PME solutions with different exponents to the
Gaussian solutions of the linear diffusion equation.

We now study numerically Eq. (13) on randomly generated
connected networks [Figs. 1(b)–1(d)]. We start by placing a
determined density on random nodes and we observe how this
density spreads across the network. Interestingly, the pattern
that appears resembles that shown in Fig. 1(a), as already
happened for infinite graphs. While in the linear diffusion case
[Fig. 1(b)], all nodes have nonzero densities after arbitrarily
small times, for the cases m = 2, 3 [Figs. 1(c) and 1(d)], some
nodes seem to have zero density after positive times, thus
showing a finite propagation speed. This is a major difference
with respect to commonly used linear diffusion operators in
network science.

This behavior is easily understood when one looks at the
relaxation time (26). In the porous-medium case, the dif-
fusion coefficient at the stationary distribution is given by
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FIG. 1. Nonlinear diffusion yields mass propagation at a finite speed, in contrast to linear diffusion. (a) PME in a box of length two with
no-flux boundary conditions and for exponents m = 1, 2, 3; m = 1 corresponds to the linear diffusion equation. Solutions at three different
time points starting from a compactly supported initial condition. Note the slower decay of the PME for exponents m = 2, 3. (b)–(e) Numerical
solutions of Eq. (13) with λ = 1, for an Erdos-Renyi network with M = 50 and a probability of drawing any possible edge p = 0.1. The four
numerical simulations start from the same initial conditions and take place on the same network. At t = 0, 10 randomly selected nodes start
with ρi = 0.1, so ρ̄ = 1/M. Dashed lines correspond to the relaxation time given by Eq. (26).

Eq. (12) and, hence, the relaxation time is minimum for m∗ =
−1/ ln ρ̄. In the figure, we show values of the exponent sat-
isfying m > m∗ ≈ 0.22, where h(ρ̄) is a decreasing function
of m, thus explaining why larger values of the exponent yield
slower diffusion.

A. Comparing linear and nonlinear dynamics

The differences between the linear and nonlinear cases can
be further analyzed via a time rescaling of Eq. (13). If we
rescale this equation by the relaxation time given by Eq. (26),

dρi

dt
= −λh(ρ̄ )−1

∑
j

Li j[ f (ρ j )g(ρi ) − f (ρi )g(ρ j )], (27)

then, for any choice of f and g, we will have τ−1
1 = λμ1.

Now that the timescale of the process is decoupled from the
chosen nonlinearities, one can easily compare several models.
We focus again on the porous-medium case.

In order to evaluate the differences induced by different
exponents m, we measure the Shannon entropy of ρ as a
function of time, H(ρ) = −∑

i ρi ln ρi [Fig. 2(a)]. Note that
the entropy is maximum when ρ is a uniform distribution and
then this can be understood as a measure of the diversity of ρ.
Other possible metrics, such as the diversity index [65], or dif-
ferent measures of variance on graphs [66] give qualitatively
similar results. In the figure, we observe how varying m does
indeed give place to different behaviors, with a higher level of
uniformity obtained for larger values of the exponent.

These results are easily understood when one takes into
account the speed of propagation of the process which, in the
PDE setting, is infinite for the linear case and finite and de-
creasing with m for m > 1. On graphs, the situation is similar
and one obtains a faster decay of solutions for the linear case
(and m < 1). When compared with the nonlinear cases with

slower diffusion, fixing the timescale means that a higher level
of uniformity needs to be reached earlier in time; see Fig. 2(b).
This is accentuated the slower the diffusion mechanism or,

10−4 10−3 10−2 10−1 100 101 102

t
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4

5

H(
ρ
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m = 4
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FIG. 2. Comparing linear and nonlinear dynamics in the porous-
medium case. The general model given by Eq. (4) is rescaled by
h(ρ̄)−1 in order to study the differences due solely to nonlinear ef-
fects. (a) Shannon entropy of ρ given by Eq. (27) for different values
of the exponent m. (b) Particular solutions for the linear case in gray
(m = 1) and nonlinear case in red (m = 3). (c) Density difference
for different exponents and the linear case given by ρ�. Nonlinear
diffusion shows very different dynamics from the linear case. All
numerical simulations were performed in Erdos-Renyi networks with
M = 100, p = 0.1 and using λ = ρ̄ = 0.01. At time t = 0, we place
a positive density at 10 randomly chosen nodes. All simulations share
the same initial condition.
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equivalently, the larger the exponent m; see the differences
between the nonlinear cases and the linear case that we denote
by ρ� in Fig. 2(c).

B. Timescale separation in modular networks

From Eq. (26), we see that our previous arguments can
actually be generalized to give the next slowest relaxation
time of the process, τ2. Now τ−1

2 = h(ρ̄ )λμ2 is given by the
second smallest nonzero eigenvalue of the graph Laplacian
μ2. This means that for times t � τ2, the network density is
described by a linear combination of u1e−t/τ1 , which is the
leading term in the long-time limit, and also u2e−t/τ2 , where
u2 is the eigenvalue of L associated with μ2.

In the case of graphs with a strong modular structure, the
difference between μ1 and μ2 can be very large, thus giving
place to two separated timescales, τ1 and τ2. During the first
stages of the process, diffusion brings nodes in the same
community to a state of local consensus, where they have
similar densities and, after this first timescale, the different
communities diffuse towards the global stationary state; see
Fig. 3. These considerations can be helpful in some applica-
tions because they allow for simplified representations of the
network [67].

However, note that in general, the timescale separation
also depends on the diffusion coefficient. As �τ = τ1 − τ2 ∼
h(ρ̄)−1, this means that �τ could either be increased or de-
creased according to the nonlinearity. In particular, for the
porous-medium case and small average density ρ̄, we obtain
that �τ increases with m; see Fig. 3.

Although these considerations hold even in cases where
the difference between μ1 and μ2 is small and hence no
timescale separation is observed, one must be cautious when
using random-walk dynamics to infer network modularity.
In particular, for fast-diffusion equations, for which h(ρ) is
large for small densities, noisy measurements coupled with
fast global dynamics might result in community identifiability
issues [68].

VII. INSIGHTS INTO REACTION-DIFFUSION SYSTEMS

As an application of the above ideas, we briefly study
reaction-diffusion equations of the type

dρi

dt
= (Lρ)i + αρi(1 − ρi ), (28)

where L is a diffusion operator, and the second term repre-
sents logistic growth with rate α. We now consider a network
where ρi(0) = 0 for i 
= s. At t = 0, we place a positive
density ρs(0) on a random node s and study how the system
evolves.

For general reaction-diffusion systems, the operator L
could take many forms [64,69,70], but here we focus on
the nonlinear operator given by Eq. (4). The resulting
equation has recently been studied in the context of neurode-
generative diseases in [34,71] in the case where L represents
linear diffusion– f (x) = x, g(x) = 1. For extensions to two
species with the same operator, see, for example, [33,72].

Before moving further, we remark that Eq. (28) constitutes
a Fisher-KPP (Kolmogorov-Petrovsky-Piskunov) equation on

0.00

0.05

0.10

Δτ ∼ 4
m = 0.3

0.00

0.05

0.10

Δτ ∼ 9
m = 1

10−2 100 102

t

0.00

0.05

0.10

Δτ ∼ 87
m = 2

FIG. 3. Nonlinear diffusion on modular networks. Here we use a
network with two large components with M = 15 nodes each, and an
edge that serves as a link. For every numerical simulation ρ̄ = 0.05,
λ = 1. Dashed lines represent the times τ1 and τ2.

networks. Probably the most interesting feature about this
equation in the continuum setting is the formation of invasion
fronts which propagate with a constant speed, and, studying
the shape of the front as well as the speed of invasion, is
of particular interest in mathematical biology. One could ask
then if similar behavior can be observed on networks and
whether one can characterize these fronts.

This problem has been studied in simpler settings and only
for linear diffusion, for example in the case of a lattice [73,74],
as well as for homogeneous trees [60,75]. In the lattice case,
one always observes front propagation with a wave speed
which depends on the scales of proliferation and diffusion.

054103-7



CARLES FALCÓ PHYSICAL REVIEW E 106, 054103 (2022)

0.0

0.2

0.4

0.6

0.8

1.0

m
=

1

Growth-dominated Diffusion-dominated

0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0

m
=

3

0 10 20 30 40 50
t

h(ρ̄)λμ1 < α

h(ρ̄)λμ1 > α

FIG. 4. A Fisher-KPP-type equation in the growth-dominated
regime (left, λ = 0.05, α = 10) and the diffusion-dominated regime
(right, λ = 1, α = .3): Comparing linear (top) with nonlinear (bot-
tom) diffusion with exponent m = 3. Simulations take place on
Erdos-Renyi networks with a number of nodes, M = 50, and a prob-
ability of drawing any possible edge, p = 0.1. Black dashed lines
correspond to the asymptotic solutions derived in Appendix C. The
gray dashed line is given by (29).

In the limit of large diffusion, one can derive that the speed
tends to that of the linear diffusion Fisher-KPP PDE. On the
other hand, in the case of homogeneous trees, this behavior
changes and the speed of the front satisfies a nonmonotonic re-
lationship with the diffusion coefficient. In fact, above certain
values of the diffusion coefficient, spreading might not occur
and the solution converges to zero. In the limit of vanishing
diffusion, the wave speed is decoupled from the diffusion
coefficient, which predicts a constant speed value for more
general networks.

Extending these results to the nonlinear diffusion setting
seems challenging, but it is certainly an interesting problem
to explore. Here, however, we focus on a qualitative study
of Eq. (28) and explore how considering nonlinear diffusion
might influence mass propagation on random networks.

As already noted in [34], Eq. (28) has two associated
timescales τ1 and α−1, given by diffusion and growth, respec-
tively. Depending on the relative strength of the two mecha-
nisms, we can distinguish two regimes: a diffusion-dominated
regime, in which diffusion operates at much shorter timescales
and thus τ1 � α−1, and a growth-dominated regime, where
τ1 � α−1. Note, however, that the mean-field approximation
used to derive Eq. (4) might be worse in this last regime where
proliferation dominates.

For linear diffusion, these two regimes are easily character-
ized, as diffusion is density independent and depends directly
on the quotient λμ1/α. The two regimes can be seen in Fig. 4
as gray lines. In the growth-dominated regime, proliferation
occurs at a much larger rate than diffusion, causing nodes
closer to the initial seed to reach higher densities faster. How-
ever, the densities at nodes that are further from the initial seed
are close to zero for times smaller than λμ1 � α. On the other

hand, in the diffusion-dominated case where λμ1/α � 1, all
nodes rapidly reach the consensus state via diffusion and then
grow together following logistic growth.

This behavior is somewhat different in the nonlinear case,
as the timescale of diffusion is density dependent, τ1 ∼
h(ρ̄)−1, with ρ̄ varying in time due to the presence of pro-
liferation. Note now that the two regimes are given instead
by the quotient h(ρ̄)λμ1/α, and hence it is possible to move
from one regime to the other one in time, depending on the
evolution of the average density ρ̄. For the porous-medium
equation, we see that diffusion is always weak at low den-
sities, where ρ̄ is small. In the case of a large proliferation
rate, the timescale separation between nodes becomes clearer
and nodes with the same step distance to the initial seed
tend to cluster and grow together to the steady state. In the
opposite case, however, diffusion can still be weaker for early
times even with a small proliferation rate. As proliferation
occurs, diffusion becomes more and more important until it
overcomes growth. This is shown in Fig. 4 for m = 3. The
critical density ρ̄c at which this regime transition happens can
be found and satisfies h(ρ̄c)λμ1 = α. In the porous-medium
case,

ρ̄c =
(

α

mλμ1

)1/(m−1)

. (29)

For some applications, including the study of neurode-
generative diseases [34], it is instructive to analyze the time
needed to reach certain densities at every node. For that pur-
pose, one can construct asymptotic solutions in each one of the
discussed regimes which very well approximate the evolution
of the density at each node; see black dashed lines in Fig. 4.
Although inspired by [34], we explain in Appendix C the
details of how to find these approximations.

VIII. CONCLUSIONS AND OUTLOOK

To summarize, here we have provided a link between diffu-
sion PDEs and random-walk models on networks. This gives
a different interpretation for previous works developed at the
scale of individual agents [13,14]. Moreover, being able to
build the connection with the macroscopic PME and similar
equations helps one to understand why nonlinear diffusion
on networks yields mass propagation at a finite speed, in
contrast to the commonly used linear diffusion operator. Gen-
eralizations of this work could include accounting for different
interacting species [76] or for further interaction terms in the
form of an external or interaction potential [31,77].

Some of the examples considered here also provide a useful
framework for applications. For instance, and as suggested
before [14], fast diffusion can be thought of as an efficient
way of network exploration and, on the other hand, slow dif-
fusion may emerge in applications where individual motility
is reduced due to crowding effects. In other contexts, it would
also be interesting to explore the validity of ignoring crowding
effects and describing movement as simple linear diffusion.
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APPENDIX A: MEAN-FIELD LIMIT FROM SYSTEM-SIZE
EXPANSION

Here we derive the mean-field equation (4) from the master
equation (2), using a system-size expansion. The size of the
system in our case is given by the carrying capacity K , and
thus, K → ∞ corresponds to the thermodynamic limit. We
follow [[41], chapter X] closely.

The basic idea behind the method is to take advantage of
the structure of the transition probabilities (3) in order to find
an expansion of the master equation in terms of powers of
K . Note that when K is large, the transition probabilities (3)
are small, and we can expect P(ni, t ) to be peaked around the
macroscopic mean ni ∼ Kρi, with a width of the order of K1/2.
Under this setting, ni follows

ni = Kρi + K1/2ξi, (A1)

with ξi giving the fluctuations in the number of particles at
node i. Now the transition probabilities may be written for
large K as

T (ni − 1, n j + 1|ni, n j )

= λAi j f

(
Kρi + K1/2ξi

K

)
g

(
Kρ j + K1/2ξ j

K

)

= λAi j f (ρi )g(ρ j ) + O(K−1/2). (A2)

We are interested in studying ρi = 〈ni〉/K for large K ,
where 〈ni〉 = ∑

n niP(n, t ). By taking the time derivative of
〈ni〉 and using the differential equation for the master equa-
tion (2), we obtain (see, also, [14])

d

dt
〈ni〉 = −

∑
j

[〈T (ni − 1, n j + 1|ni, n j )〉

− 〈T (ni + 1, n j − 1|ni, n j )〉]. (A3)

Now rescale time so that t �→ t/K and use Eq. (A2) in the
above expression to find, to leading order in K , the mean-field
equation

dρi

dt
= −λ

∑
j

[Ai j f (ρi )g(ρ j ) − Aji f (ρ j )g(ρi )], (A4)

which might be rearranged into Eq. (4) by using Ai j = Aji.

APPENDIX B: A POROUS-MEDIUM-TYPE EQUATION IN
THE NODE-CENTRIC SETTING

Here we study Eq. (4) in the node-centric setting, as it was
initially derived in [14]. In this case, the transition probabili-
ties read

T (ni − 1, n j + 1|ni, n j ) = λAi j

ki
f
(ni

K

)
g
(n j

K

)
. (B1)

These give place, via a mean-field approximation, to a
similar equation for the evolution of the node density

ρi = limK→∞〈ni〉/K ,

dρi

dt
= −λ

∑
j

L′
i j

[
ki

k j
f (ρ j )g(ρi ) − f (ρi )g(ρ j )

]
, (B2)

where now instead we have the random-walk normalized
Laplacian defined by L′

i j = δi j − Ai j/ki. Note that in the case
of regular networks where ki = k, the above expression and
Eq. (4) are essentially the same equation, up to a constant
given by the network degree. This means that Eq. (B2) is
also valid for deriving the same macroscopic limits that we
discussed in Sec. III.

It was already proven in [14] that the stationary distribution
of (4) satisfies the relation

f (ρ∗
i )

kig(ρ∗
i )

= f (ρ∗
j )

k jg(ρ∗
j )

= c, (B3)

for a given constant c that can be found using conservation of
mass. In the local repulsion model, i.e., f (x) = xm and g(x) =
1, the stationary distribution reads

ρ∗
i = ck1/m

i , (B4)

where c = ∑
i ρi/

∑
i k1/m

i = ρ̄/〈k1/m〉. It is informative to
study how the stationary distribution depends on m. In the
limit of large exponents m, k1/m

i → 1 and thus the dependence
on the node degree is erased. In this case, we can approximate

ρ∗
i ≈ ρ̄ as m → ∞, (B5)

obtaining that in the stationary state, all nodes have the same
density of walkers. Note that in this limit, we obtain the same
stationary distribution as in the edge-centric case. As we will
see, the relaxation time also tends to the one obtained in the
main text.

On the other hand, a completely different phenomenon
occurs in the limit where m tends to zero. In this case,
walkers tend to accumulate in nodes with higher connec-
tivity, and in the limit m → 0, only nodes with maximum
degree have nonzero densities. To see that, take a particular
node i. If ki < kmax, where kmax is the maximum degree in
the network, then k1/m

i /
∑

i k1/m
i → 0. However, if ki = kmax,

we have k1/m
i /

∑
i k1/m

i → 1. Then we have found

lim
m→0+

ρ∗
i =

{ ρ̄M
#kmax

for ki = kmax

0 for ki 
= kmax,
(B6)

where #kmax is the number of nodes with maximum degree.
We see then that the spread of the stationary distribution goes
from ρ̄M/#kmax, in the m → 0 limit, to zero, when m → ∞.

Obtaining a closed-form expression for the relaxation time
of Eq. (B2) seems more challenging than in the edge-centric
case and may not be very illuminating. However, progress can
be made in the porous-medium case again. Again, we perturb
around the steady state and linearize the resulting equation.

We thus seek for solutions of the form ρi = ρ∗
i + εηik

1/m
i

for ε � 1. The scaling in the perturbation is only chosen in
order to facilitate the notation in the following arguments.
Bringing together the O(1) terms gives the stationary solution.
Up to the order of O(ε), we have

dη

dt
= −mcm−1DmLη := −mcm−1Lmη, (B7)
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where Dm = diag(k−1/m
1 , . . . , k−1/m

N ) and Lm is defined by the
rightmost identity. Note that in the linear diffusion case (m =
1), Dm = D−1 and L1 = L′ is the random-walk normalized
Laplacian.

In order to find the relaxation time, we follow a standard
procedure [35] and project η onto a basis of eigenvectors
of Lm. In the long-time limit, the solution can be written
approximately in terms of the eigenvector with the smallest
nonzero eigenvalue, μ̃1. Thus we find that

τ−1
1 = mcm−1μ̃1. (B8)

Note here that μ̃1 also depends on m. Again, the relaxation
time seems to be linked to the diffusion coefficient of the
PME (12) as we can write τ−1

1 ∼ h(c). This is the same scaling
that we found in the edge-centric case with the substitution
ρ̄ �→ ρ̄/〈k1/m〉 in Eq. (26).

Again, we explore how this relaxation time is related to the
edge-centric case given by (26). First of all, note that using
a very naive mean-field approximation, which accounts for
neglecting network structure k �→ 〈k〉, would give a relaxation
time equivalent to the one found in the main text,

τ−1
MF = mρ̄m−1μ1

〈k〉 . (B9)

This expression is in fact exact for regular networks.
In the slow-diffusion limit, one can find a very similar

relationship, suggesting again the scaling τ−1
1 ∼ h(ρ̄ ). In the

large-m limit, note that the matrix Dm tends to an identity
matrix. In fact, one may write, for every entry k1/m

i = 1 +
log ki

m + O(m−2), and thus

Lm = DmL = L − 1

m
D̃L + O(m−2), (B10)

with D̃ = diag(log k1, . . . , log kM ). Now we can use a stan-
dard perturbation theory argument and expand μ̃1 = μ1 +
O(m−1). The first-order correction can actually be found in
terms of the above expansion, but the leading order is suffi-
cient for our purposes.

In the large-m limit, cm−1 can be expanded similarly,

cm−1 = ρ̄m−1e−〈ln k〉[1 + O(m−1)]. (B11)

Then, together with Eq. (B8), we have obtained

τ−1
1 = mρ̄m−1μ1

(k1 . . . kM )1/M [1 + O(m−1)], (B12)

which is essentially the same equation as (B9), substituting
the mean degree 〈k〉 by its geometric mean.

Although obtained through different approximations,
Eqs. (B12) and (B9) show the same dependence of τ1 with
respect to the exponent m. This suggests that τ1 also follows
the scaling derived in the main text for the edge-centric and
macroscopic cases: τ−1

1 ∼ h(ρ̄ ).

APPENDIX C: ASYMPTOTIC SOLUTIONS
FOR FISHER-KPP-TYPE EQUATIONS

Here we discuss how to obtain approximations for the
solutions of Eq. (28), in the case given by the PME f (x) = xm,
g(x) = 1. We distinguish between the two mentioned regimes.

The diffusion-dominated regime is easier since it can be
described by the solution of the usual logistic equation. In
such case, the densities at each node grow simultaneously af-
ter some time tc determined by the condition 〈ρ〉 = ρ̄c. Thus,
for t > tc, all nodes have similar densities and we can ignore
the diffusion and write

dρi

dt
= αρi(1 − ρi ), ρi(tc) = ρ̄c, (C1)

with solution

ρi(t ) = ρ̄ceα(t−tc )

1 + ρ̄c(eα(t−tc ) − 1)
. (C2)

This curves are plotted in Fig. 4 with black dashed lines for
the diffusion-dominated case. Note that for linear diffusion,
we can approximate tc ≈ 0.

In the growth-dominated case, one can expect λ to be small
in comparison to α, and then it makes sense to consider an
asymptotic solution in terms of powers of λ. Here we follow
an asymptotic method developed in [34,78]—see the latter
for other possibilities. Whenever λ = 0, the solution takes
essentially the same form as in Eq. (C2). Without imposing
initial conditions, we have

ρi(t ) = Kieαt

1 + Ki(eαt − 1)
. (C3)

Now, motivated by the numerical simulations shown in Fig. 4,
we consider the ansatz: Ki = K (0)

i + λγi K̃i, where γi is the
distance between node i and the initial seed. We can now
solve iteratively for different orders in λ. The solution up to
the order of λ0 is K (0)

s = ρs(0) and K (0)
i = 0 for i 
= s.

Looking at the O(λ) terms, we obtain the solution for nodes
that are at distance γi = 1 from the initial seed. This yields the
differential equation for K̃i,

dK̃i

dt
= −Lise

−αtρs(t )m, K̃i(0) = 0, (C4)

which can be integrated to give

K̃i(t ) = − Lisρs(0)m

α(m − 1)[1 − ρs(0)]

×
[

1 −
(

ρs(t )

ρs(0)

)m

{ρs(0) + [1 − ρs(0)]e−αt }
]
. (C5)

In the linear diffusion case (m = 1), we have instead

K̃i(t ) = − Lisρs(0)

α[1 − ρs(0)]
{αt − log [ρs(0)(eαt − 1) + 1]}.

(C6)
These asymptotic solutions are represented in Fig. 4. Note

that there is a very good agreement between the numerical
solution and the derived approximations. When densities are
close to 1, these might fail in the nonlinear case due to the
increase of the diffusion coefficient with the density.

The solutions at distance γi > 1 from s can be found iter-
atively in terms of these solutions. For more details, we refer
the reader to [34].
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