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Building on parallels between geometric quantum mechanics and classical mechanics, we explore an
alternative basis for quantum thermodynamics that exploits the differential geometry of the underlying state
space. We focus on microcanonical and canonical ensembles, looking at the geometric counterpart of Gibbs
ensembles for distributions on the space of quantum states. We show that one can define quantum heat and
work in an intrinsic way, including single-trajectory work. We reformulate thermodynamic entropy in a way that
accords with classical, quantum, and information-theoretic entropies. We give both the first and second laws
of thermodynamics and Jarzynki’s fluctuation theorem. Overall, this results in a more transparent physics than
conventionally available. The mathematical structure and physical intuitions underlying classical and quantum
dynamics are seen to be closely aligned. The experimental relevance is brought out via a stochastic model for
chiral molecules (in the two-state approximation) and Josephson junctions. Numerically, we demonstrate this
invariably leads to the emergence of the geometric canonical ensemble.
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I. INTRODUCTION

Geometric quantum mechanics (GQM) exploits the tools
of differential geometry to analyze the phenomenology of
quantum systems. It does so by focusing on the interplay
between statistics and geometry of quantum state space.

For finite-dimensional quantum systems, that we consider
here, the state space H is isomorphic to a complex projective
space CPn of dimension n = D − 1, where D := dim H. Our
goal is to explore the statistical and thermodynamic conse-
quences of the geometric approach. In particular, structural
and informational properties can be properly formulated. And,
the close parallels in the mathematical foundations of classical
and quantum dynamics become clear.

To the best of our knowledge, the development of the geo-
metric formalisms started with early insights from Strocchi
[1] and then work by Kibble [2], Marsden [3], Heslot [4],
Gibbons [5], Ashtekar and Shilling [6,7], and a host of others
[8–18]. Although geometric tools for quantum mechanics are
an interesting topic in their own right, the following explores
their consequences for statistical mechanics and nonequilib-
rium thermodynamics.

As one example in this direction, Brody and Hughston
[19–21] showed that a statistical mechanics treatment of quan-
tum systems based on the geometric formulation differs from
standard quantum statistical mechanics: The former can de-
scribe phase transitions away from the thermodynamic limit,
the latter not [22]. This arises, most directly, since the geomet-
ric formulation puts quantum mechanics on the same footing
as the classical mechanics of phase space [1,4], bringing to
light the symplectic geometry of quantum state space. It is

*fanza@ucdavis.edu
†chaos@ucdavis.edu

then straightforward to build on the principles of classical
statistical mechanics to lay out a version of quantum statistical
mechanics that takes advantage of such state-space features.

That said, these insights do not come for free. The conun-
drum of a consistent foundation of thermodynamic behavior
arises. On the one hand, we have quantum statistical me-
chanics, a description of macroscopic behavior that, despite
limitations, has proven to be remarkably successful. On the
other, transitioning from microphysics to macrophysics via
quantum mechanics is conceptually different than via classical
mechanics. Consistency between these approaches begs for
a conceptually unique route from microphysics to macro-
physics.

With this broad perspective in mind, unifying the two
coexisting statistical mechanics of quantum systems, though
challenging, deserves further attention. To address the chal-
lenge, the following advocates a geometric development of
a practical, macroscopic companion of geometric quantum
statistical mechanics: a geometric quantum thermodynamics.

Beyond foundations, geometric quantum thermodynamics
is all the more timely due to recent success in driving ther-
modynamics down to the mesoscopic scale. There statistical
fluctuations, quantum fluctuations, and collective behavior not
only cannot be neglected, but are essential. Largely, this push
is articulated in two research thrusts: stochastic thermody-
namics [23,24] and quantum thermodynamics [25,26]. The
following draws ideas and tools from both, in effect showing
that geometric tools provide a robust and conceptually incisive
crossover between them.

Our development unfolds as follows. First, it recalls the
basic elements of geometric quantum mechanics. Second, it
shows how this formalism emerges naturally in a thermody-
namic context. Third, it describes our version of the statistical
treatment of geometric quantum mechanics, what we refer to
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as geometric quantum statistical mechanics. Fourth, it builds
on this to establish two fundamental equations of geomet-
ric quantum thermodynamics. The first is a unique version
of the first law of quantum thermodynamics, with its def-
inition of quantum heat and quantum work. The second is
a quantum version of Jarzynski’s inequality, one that does
not require a two-time measurement scheme. Fifth, the de-
velopment proposes an experiment that highlights geometric
quantum thermodynamics’ practical relevance. Finally, it ex-
pands on the geometric approach’s increasing relevance to the
thermodynamics of quantum information and computing.

II. GEOMETRIC QUANTUM MECHANICS

Geometric quantum mechanics arose from efforts to ex-
ploit differential geometry to probe the often-counterintuitive
behaviors of quantum systems. This section summarizes the
relevant concepts, adapting them to our needs. Detailed ex-
positions are found in the original literature [1–18]. Here,
we present the main ideas in a constructive way, focusing
on the aspects that are of direct relevance to thermodynamic
behavior.

Any statistical mechanics requires an appropriate, work-
able concept of ensemble. To do this, one identifies ensembles
with coordinate-invariant measures on the space of quantum
states, a treatment first introduced in Ref. [19]. We call these
distributions geometric quantum states and in Ref. [27] we
give a generic procedure to compute them in a quantum ther-
modynamic setting of a small system interacting with a large
environment.

Achieving this, though, requires a series of technical steps.
The first identifies the manifold of pure states and defines
their observables. The second introduces a suitable metric,
scalar product, and coordinate-invariant volume element for
the pure-state manifold. From these, the third step derives
the evolution operator and equations of motion. Finally, states
are described via functionals that map observables to scalar
values. This is done so that the associated ensembles are
coordinate-invariant measures.

Our quantum system of interest has Hilbert space H of
finite dimension D. The space of pure states is therefore the
complex projective space P (H) ∼ CPD−1 [10]. Given an ar-
bitrary basis {|eα〉}D−1

α=0 a generic pure state is parametrized by
D complex homogeneous coordinates Zα , up to normalization
and an overall phase:

|ψ〉 =
D−1∑
α=0

Zα |eα〉 ,

where Z ∈ CD, Z ∼ λZ , and λ ∈ C/{0}.
For example, the pure state Zqubit of a single qubit can be

given real coordinates: Zqubit = (
√

p,
√

1 − peiν ). An observ-
able O is a quadratic real function of the state. It associates
to each point of the pure-state manifold P (H) the expectation
value 〈ψ |O |ψ〉 of the corresponding operator O on that state:

O(Z ) =
∑
α,β

Oα,βZαZ
β

(1)

and Oβ,α = Oα,β . And so, O(Z ) ∈ R.

These complex projective spaces are Kahler spaces. This
means there is a function K , which in our case is K = ln Z · Z ,
from which one obtains both a metric g:

gαβ = 1
2∂α∂β ln Z · Z,

with gαβ = gβα , and a symplectic two-form:

� = 2igαβdZα ∧ dZ
β
,

using shorthand ∂α := ∂/∂Z
α
. It is not too hard to see that

these two structures are parts of the Hermitian form that
defines the scalar product 〈ψ1〉 ψ2 in H. Indeed, using the
standard notation, one has [5]

〈ψ1〉 ψ2 = g(Z1, Z2) + i�(Z1, Z2).

Each geometric term provides an independent volume ele-
ment.

Agreement between these volumes, together with in-
variance under unitary transformations, selects a unique
coordinate-invariant volume element dVFS [19], based on the
Fubini-Study metric on CPD−1:

dVFS = 1

(D − 1)!

(
�

2

)
∧

(
�

2

)
∧ · · · ∧

(
�

2

)
(2a)

=
√

det g(Z, Z )dZ dZ. (2b)

(See also Ref. [10] for a textbook treatment.) Equipped
with this unique volume element, the total volume of the
pure-state manifold CPD−1 is [5,10]

Vol(CPn) = πD−1

(D − 1)!
.

Since symplectic geometry is the correct environment in
which to formulate classical mechanics, one can see how the
geometric formalism brings classical and quantum mechanics
closer together, a point previously raised by Strocchi [1] and
made particularly clear by Heslot [4]. Indeed, as in classical
mechanics, the symplectic two-form � is an antisymmetric
tensor with two indices that provides Poisson brackets, Hamil-
tonian vector fields, and the respective dynamical evolution.

Given two functions A and B on manifold P (H) we have

�(A, B) = ∂αA∂βB�αβ

= {A, B},
where we used � = 1

2�αβdZα ∧ dZ
β

and �αβ = (�−1)αβ is
the inverse: �αγ �γβ = δα

β . Using the symplectic two-form
one can show that Schrödinger’s unitary evolution under op-
erator H is generated by a Killing vector field VH as follows:

V α
H = �αβ∂βh(Z ), (3a)

dF

dt
= {F, h}, (3b)

where h(Z ) = ∑
αβ HαβZαZ

β
and F : P (H) → R is a real

but otherwise arbitrary function. Indeed, it can be shown that
Schrödinger’s equation is nothing other than Hamilton’s equa-
tions of motion in disguise [4,10]:

d |ψt 〉
dt

= −iH |ψt 〉 ⇐⇒ dF

dt
= {F, h}, (4)
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for all F . Here, we use units in which h̄ = 1.
This framework naturally views a quantum system’s states

as the functional encoding that associates expectation values
with observables, as done in the C∗-algebra formulation of
quantum mechanics [28]. Thus, states are described via func-
tionals P[O] from the algebra A of observables to the reals:

P[O] =
∫
P (H)

p(Z )O(Z )dVFS ∈ R,

for p(Z ) � 0 and all O ∈ A. Here, p is the distribution as-
sociated to the functional P. It is important to note here that
dVFS and O(Z ) are both invariant under coordinate changes.
Thus, for P[O] to be a scalar, p(Z ) must be a scalar itself. A
pure state |ψ〉 ∈ H is represented by a Dirac-delta functional
concentrated on a single point of P (H). However, Dirac delta
functions δ(·) are not invariant under coordinate changes: they
transform with the inverse of the Jacobian δ → δ/detJ .

To build an invariant quantity, then, we divide it by
the square root

√
g of the metric’s determinant. This trans-

forms in the same way, making their ratio δ̃ = δ/
√

g an
invariant quantity. This is a standard rescaling that turns
coordinate-dependent measures, such as Cartesian measure,
into coordinate-invariant ones. And, this is how the Fubini-
Study measure (2) is defined from the Cartesian product
measure. Thus,

Pψ0 [O] =
∫
P (H)

δ̃[Z − Z0]O(Z )dVFS

= O(Z0)

= 〈ψ0|O |ψ0〉 , (5)

where

δ̃[Z − Z0] = 1√
g

∏
α

δ
(
Zα − Zα

0

)
and

δ
(
Zα − Zα

0

) = δ
(
Re[Zα] − Re

[
Zα

0

])
δ
(
Im[Zα] − Im

[
Zα

0

])
.

This extends by linearity to ensembles ρ = ∑M
k=1 pk |ψk〉 〈ψk|

as

Pρ[O] =
M∑

h=1

pk

∫
P (H)

δ̃[Z − Zk]O(Z )dVFS

=
M∑

h=1

pkO(Zk )

=
M∑

h=1

pk 〈ψk|O |ψk〉 .

It is now quite natural to consider generalized ensembles
that correspond to functionals with a continuous measure on
the pure-state manifold. Such ensembles have appeared pre-
viously in Refs. [9,19–21] and elsewhere, where aspects of
their properties have been investigated extensively. For our
purposes, it will be useful to look at them from the following
point of view.

Consider a probability measure on the natural numbers:
{pk} such that pk � 0 and

∑
k pk = 1. Now let Zk be a

countable collection of points in P (H), then δk (dZ ) is the
Dirac measure concentrated on the point Zk . Then, given {pk}
one can define the measure μ(dZ ) on P (H) as

μ(dZ ) =
∞∑

k=1

pkδk (dZ ), (6)

which gives precise meaning to the notion of a geometric
quantum state with support on a countably infinite number
of points. Indeed, with the measure in Eq. (6) and arbitrary
observable function O(Z ) one has that

P∞[O] =
∫
P (H)

O(Z )μ(dZ )

=
∞∑

k=1

pkO(Zk ).

In more general terms, calling B the Borel σ algebra of the
open sets of P (H), then, this procedure defines a measure μ

on P (H) such that for a set S ∈ B one has

μ(S) =
∫

S
μ(dZ )

=
∞∑

k=1

pkI (Zk ∈ S),

where I (Zk ∈ S) is the indicator function which is 1 if Zk ∈ S
and zero otherwise.

The resulting geometric quantum state has all the prop-
erties desired of an appropriately generalized pure-state
ensemble: It preserves normalization and convexity of linear
combinations, each of its elements are invariant under coor-
dinate changes, and the entire functional P∞ is also invariant
under unitary transformations. With some abuse of language,
we will often refer to both the functional P and its underlying
measure μ as geometric quantum states.

III. GEOMETRIC QUANTUM STATE AND THE
THERMODYNAMIC LIMIT

We are now equipped to address how the geometric formal-
ism arises quite naturally for subsystems of a larger system
in a pure state, in particular, in a quantum thermodynamic
setting.

If we have a bipartite system HAB = HA ⊗ HB and
|ψAB〉 = ∑

α,i ψ
αi
AB |aα〉 |bi〉 ∈ HAB, the partial trace over the

subsystem B is

ρA =
dA∑

α,β=1

ρA
αβ |aα〉〈aβ |,

where

ρA
αβ =

dB∑
i=1

ψαiψ
βi

= (ψψ†)αβ.
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dA and dB are A’s and B’s dimensions, respectively. Hence, we
can write the partial trace as

ρA =
dB∑
j=1

|v j〉〈v j |,

with |vi〉 ∈ HA given as

|vi〉 :=
dA∑

α=1

ψαi |aα〉 .

However, |v j〉 is not normalized. To address this, we notice
that

〈v j〉 vk = (ψ†ψ ) jk

= ρB
jk

= 〈b j | ρB |bk〉 .

This gives

pB
k = ρB

kk

=
dA∑

α=1

|ψαk|2.

We see that 〈v j〉 vk is a Gramian matrix of vectors |v j〉 ∈ HA

that conveys the information about the reduced state ρB on the
subspace HA. Although the vectors |vk〉 are not normalized,
we readily define their normalized counterpart:

|χk〉 := |vk〉√〈vk〉 vk

=
dA∑

α=1

ψαk√∑dA
β=1 |ψβk|2

|aα〉 .

And, eventually, we obtain

ρA =
dB∑

k=1

pA
k

∣∣χA
k

〉〈
χA

k

∣∣, (7)

where {|χ j〉}dB
j=1 is a set of dB pure states on HA which, usually,

are nonorthogonal. This provides the following geometric
quantum state, at fixed dB:

μA
dB

(dZ ) :=
dB∑

k=1

pB
k δχk (dZ ),

where δχk is the Dirac measure with support only on the point
χk ∈ P (HA) corresponding to the ket |χk〉.

While it is possible to track all information about {pA
k }dB

k=1
for small dB, in the thermodynamic limit this rapidly be-
comes infeasible. A probabilistic description becomes more
appropriate. One could object that this is not a concern since,
at each step in the limit, the spectral decomposition ρA =∑dA

i=1 λi |λi〉 〈λi|, where the λi are the Schmidt coefficients of
|ψAB〉, is always available. However, this retains only ρA’s
matrix elements, erasing the information contained in the

vectors |v j〉 =
√

pA
j |χA

j 〉. That is, ρB has been erased from the

description.

However, this information can be crucial to understanding
A’s behavior. The geometric formalism resolves this issue
as it naturally keeps the “relevant” information by handling
measures and probability distributions. In the limit of a large
“environment” B, despite the fact that storing all information
about the environment’s details is exponential in B’s size, the
geometric quantum state’s form (convex sum of Dirac deltas)
facilitates working with smooth approximations of increasing
accuracy. It does so by retaining the information about its
“purifying environment.”

Since we are interested here in the thermodynamics, one
needs to operationally define the thermodynamic-limit proce-
dure. We do so by confining ourselves to modular systems and
defining an iterative procedure. Modular systems are those
made by identical subsystems, each described by a Hilbert
space Hd of dimension d . Thus, we imagine our system to
contain NA such repetitive units, while the environment con-
tains NB � NA. This means HA = H⊗NA

d and HB = H⊗NB
d , so

that dA = dNA and dB = dNB . At any given iteration, the joint
system will always be in a pure state |ψAB(NB)〉 ∈ HA ⊗ HB.

We also imagine that the system’s global dynamics has a
Hamiltonian HAB of fixed functional form: for example, the
XXZ model. Starting with NB = NA, at each step we add one
repetitive unit NB → NB + 1 and choose a series of pure states
{|ψAB(NB)〉}NB with the required property that the limit of the
average energy has to be finite:

lim
NB→∞

〈ψAB(NB)| HAB |ψAB(NB)〉
NA + NB

= ε.

For example, one can decide to consistently pick the ground
state of the Hamiltonian HAB. In general, though, there is
no unique way of performing the procedure. However, with
any specific choice of the series {|ψAB(NB)〉}NB satisfying the
constraint on average energy, the procedure is well defined,
physical, and meaningful. It provides an operational way to
study the thermodynamic limit of the geometric quantum state
μA

dB
.
That said, by no means does this guarantee the limit always

exists. However, it does allow exploring it in a physically
meaningful way. In particular, given this operational imple-
mentation of the thermodynamic limit, we say that

lim
dB→∞

μA
dB

= μA
∞.

This requires a geometric quantum state μA
∞ on P (HA)

such that, for any ε > 0 arbitrarily small, one can always
find some finite dB such that for any dB � dB one has
that D(μA

dB
, μA

∞) � ε. Here, D(μ, ν) is a notion of distance
between geometric quantum states that we take to be the
measure-theoretic counterpart of the total variation distance:
D(μ, ν) := supS∈B |μ(S) − ν(S)|, where B is σ algebra of
P (H)’s Borel sets.

When the limit exists, we say that the thermodynamic limit
of the geometric quantum state is μA

∞ or, equivalently, PA
∞:

PA
∞[O] =

∫
P (HA )

μA
∞(dZ )O(Z )

=
∞∑

k=1

pA
kO(χA

k ).
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PA
∞ is a functional whose operational meaning is understood

in terms of ensemble theory, as explained above. Geometric
quantum states describe ensembles of independent and non-
interacting instances of the same quantum system whose pure
states are distributed according to a given probability distribu-
tion. Loosely speaking, if we pick a random pure state out of
the ensemble described by PA

∞, the probability of finding it in
a small region around Z is dPZ = μA

∞(dZ ).

IV. FROM GEOMETRY TO STATISTICS

Several observations serve to motivate defining statistical
mechanics using the geometric formalism. Consider a large
system consisting of a macroscopic number M of qubits from
which we extract, one by one, N qubit states. Describing
small subsystems of a macroscopic quantum system places
us in the realm of quantum statistical mechanics. It is there-
fore reasonable to assume that the qubit states are distributed
according to Gibbs’ canonical state γβ = e−βH/Zβ . This is
statistically meaningful by means of ensemble theory and,
thus, interpreted as a collection of identical noninteracting
systems, each in an energy eigenstate, with relative frequency
given by Boltzmann rule.

However, one can see how the assumption that all systems
must be in one of the energy eigenstates can be relaxed. After
we extract the kth sample from the macroscopic system, that
sample’s state is supposed to be an energy eigenstate |E (k)

i 〉
with probability p(Z (|E (k)

i 〉)) ∝ e−βE (k)
i . A priori, however,

there is no reason to assume that the Hamiltonians Hk of all the
samples are identical to each other. In fact, |Eh

i 〉 �= |Ek
i 〉 and

Eh
i �= Ek

i . Even if they are, in principle there is no reason why
the qubits should be in their energy eigenstates. This point was
originally made by Khinchin [29] and Schrödinger [30], who
advocated for the use of ensembles of wave functions.

To address this, a description of the system’s state that
does not contain this assumption is provided by the contin-
uous counterpart of Gibbs canonical state, first introduced in
Ref. [19], written as the following functional:

Pβ[A] = 1

Qβ[h]

∫
P (H)

e−βh(Z )A(Z )dVFS,

where

Qβ[h] =
∫
P (H)

e−βh(Z )dVFS,

with h(Z ) = ∑
αβ HαβZβZ

α
. While this distribution retains a

characteristic feature of the canonical Gibbs ensemble

pβ (Z (|En〉))
pβ (Z (|Em〉))

= e−β(En−Em ),

it also extends this “Boltzmann” rule to arbitrary states:

− ln

[
pβ (Z (|ψ〉))
pβ (Z (|φ〉))

]
= β[h(Z (ψ )) − h(Z (φ))].

Therefore, formulating the statistical mechanics of quantum
states via the geometric formalism differs from the standard
development, based on an algebraic formalism. This becomes
obvious when we write the Gibbs canonical density matrix γβ

in the geometric formalism

pGibbs(Z ) =
D−1∑
k=0

e−βEk

Tre−βH
δ[Z − Z (|Ek〉)]

�= e−βh(Z )

Qβ[h]
.

This makes explicit the standard formalism’s assumption that
the measure is Dirac like: peaked on energy eigenstates.

Despite quantum statistical mechanics’ undeniable suc-
cesses, this assumption is not, in general, justified. In point
of fact, it is the origin of the missing environmental infor-
mation noted above. These arguments motivate an alternative
formulation of the statistical mechanics of quantum systems,
first introduced in Ref. [19], one based on geometric quantum
states rather than on the familiar density matrices.

V. STATISTICAL TREATMENT OF GEOMETRIC
QUANTUM MECHANICS

Representing a quantum system’s state as a continuous
mixed state was first broached, to our knowledge, by Brody
and Hughston [19,20]. Our goal here is to advance the idea,
going from statistical mechanics to thermodynamics. To set
the stage for a geometric quantum thermodynamics, the fol-
lowing first presents our version of their results, derived via
the formalism defined in Sec. III, and then expands on them.
We begin with the fundamental postulate of classical statisti-
cal mechanics and its adaptation to quantum mechanics: the
microcanonical and canonical ensembles.

A. Classical microcanonical ensemble: A priori
equal probability

At its most basic level, the fundamental postulate of classi-
cal statistical mechanics is that, in an isolated system’s phase
space, microstates with equal energy have the same chance
of being populated. Calling �q and �p generalized positions and
velocities, which provide a coordinate frame for the classi-
cal phase space, the postulate corresponds to assuming that
the microcanonical probability distribution Pmc of finding the
system in a microstate ( �p, �q) is, at equilibrium,

Pmc(�q, �p) =
{

1/W (E ) if E (�q, �p) ∈ [E, E + δE],
0 otherwise.

Here, W (E ) is the number of microstates (�q, �p) belonging to
energy shell Imc := [E, E + δE]:

W (E ) =
∫

E (�q, �p)∈Imc

d �q ∧ d �p,

with
∫

d �q ∧ d �p Pmc(�q, �p) = 1.

B. Quantum microcanonical ensemble: A priori
equal probability

Quantum statistical mechanics relies on the quantum ver-
sion of the Gibbs ensemble. For macroscopic isolated systems
this is usually interpreted as the quantum system having equal
chance pmc to be in any one of the energy eigenstates |En〉, as
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long as En ∈ Imc:

pmc(En) =
{

1/Wmc if En ∈ [E, E + δE],
0 otherwise.

Here, Wmc = ∑
En∈Imc

1 is the number of energy eigenstates
that belong to the microcanonical window Imc. Thus, the
equal-probability postulate provides the following definition
for the microcanonical density matrix:

ρmc = 1

Wmc

∑
En∈Imc

|En〉 〈En| .

Geometric quantum mechanics gives an alternative way to ex-
tend equal probability to quantum systems, which we discuss
now.

C. Geometric quantum microcanonical ensemble: A priori
equal probability

The following summarizes an approach to the statis-
tical mechanics of quantum systems first presented in
Refs. [19,20,22]. In geometric quantum mechanics the role of
the Hamiltonian operator as the generator of unitary dynamics
is played by the real quadratic function

h(Z ) =
∑
αβ

HαβZαZ
β
,

where Hαβ are the matrix elements of the Hamiltonian oper-
ator in a reference basis [see Eq. (3)]. As h is the generator
of Liouville dynamics on the pure-state manifold P (H), it is
easy to see that there is a straightforward geometric imple-
mentation of the a priori equal-probability postulate in the
quantum setting:

pmc(Z ) =
{

1/�(E ) h(Z ) ∈ Imc for all Z ∈ P (H),
0 otherwise.

Due to normalization, �(E ) is the volume of the quantum-
state manifold enclosed by the microcanonical energy shell
Imc:

�(E ) =
∫

h(Z )∈Imc

dVFS,

where dVFS is the Fubini-Study volume element introduced in
Sec. II. In probability-and-phase coordinate Zα = √

pαeiνα the
volume element has the explicit form

dVFS =
n∏

α=1

d pαdνα

2
.

Following Heslot [4], we introduce dimensional coordi-
nates via

Zα = X α + iY α

√
h̄

,

where X α and Y α are real numbers with dimensions
[X ] = [

√
h̄] = length

√
mass/time and [Y ] = [

√
h̄] =

momentum
√

time/mass. The ratio X/Y is a pure number,
while their product XY has the dimension h̄ of an action.
Note that d pαdνα/2 = dXαdYα/h̄. This allows us to write the

Fubini-Study measure in a classical fashion:

dVFS =
D−1∏
α=1

dX αdY α

h̄

= d �X d �Y
h̄D−1 ,

where the X α play the role of generalized coordinates and
Y α that of generalized momenta. However, it is worth noting
that the global geometry of the classical phase space differs
substantially from that of P (H).

Given these definitions, it is now possible to calculate the
number of states �(E ) ≈ ω(E )δE , where δE is the size of the
microcanonical energy shell and ω(E ) is the density of states:

ω(E ) =
∫

h(Z )=E
dVFS

= πD−1

(D − 1)!

D−1∑
k=0

D−1∏
j �=k, j=0

(E − Ek )+
(Ej − Ek )

,

where (x)+ := max(0, x). Since E ∈ [E0, Emax], there exists
an n such that E ∈]En, En+1[. This means that we can stop the
sum at k = n(E ) since for all k > n we have (E − Ek )+ = 0.
This gives

ω(E ) = πD−1

(D − 1)!

n(E )∑
k=0

(D − 1)(E − Ek )D−2∏D−1
j �=k, j=0(Ej − Ek )

. (8)

This is in agreement with Eq. (5) of Ref. [20]. Appendix B 3
provides a detailed proof, using a convenient mathematical
result by Ref. [31].

D. Quantum canonical ensemble: Statistical physics
of quantum states

The geometric approach to microcanonical ensembles ex-
tends straightforwardly to the canonical case, defining the
continuous canonical ensemble as

pβ (Z ) = e−βh(Z )

Qβ[h]
, (9)

where

Qβ[h] =
∫
P (H)

e−βh(Z )dVFS.

Reference [19] first proposed the general form of the canon-
ical partition function Qβ[h], working it out explicitly in
several low-dimensional cases. Follow-on work provided an
exact formula valid for arbitrary finite-dimensional Hilbert
spaces [20]. Appendix B 3 provides an alternative proof and
explicit examples of

Qβ[h] =
D−1∑
k=0

e−βEk∏n
j=0, j �=k (βEk − βEj )

. (10)

This is in full agreement with Eq. (6) of Ref. [20].
It is important to stress here that such Geometric Canonical

Ensemble is genuinely different than the ensemble defining
Gibbs’ canonical density matrix. A visual comparision of the
two ensembles, with a simple Hamiltonian σx + σy + σz and
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FIG. 1. Alternate ensembles in the geometric and standard
settings: differences are plainly evident. Canonical probability dis-
tributions on a qubit’s state manifold CP1 with coordinates Z =
(Z0, Z1) = (

√
1 − q,

√
qeiχ ) where q ∈ [0, 1] and χ ∈ [−π, π ].

CP1 discretized using a 100 × 100 grid on the (q, χ ) coordinates
exploiting the fact that, with these coordinates, the Fubini-Study
measure is directly proportional to the Cartesian volume element
dVFS = dq dχ/2. The Hamiltonian is H = σx + σy + σz, with h̄ =
1 and inverse temperature β = 5 (kB = 1). (Right) Gibbs ensem-
ble, where the measure is concentrated around coordinates of the
respective eigenvectors (q(|E0〉), χ (|E0〉)) = (0.789, −2.356) and
(q(|E1〉), χ (|E1〉)) = (0.211, 0.785). (Left) Geometric canonical en-
semble. Notice the difference in scale, due to the fact that the
geometric canonical ensemble has continuous support on the quan-
tum state space, not just on single points (energy eigenstates).

inverse temperature β = 5 is given in Fig. 1. With the ensem-
bles laid out, we can now see the emergence of geometric
quantum thermodynamics, with its fundamental laws.

VI. GEOMETRIC QUANTUM THERMODYNAMICS

With a consistent statistical geometric quantum mechanics
in hand, we can now formulate geometric quantum thermody-
namics. This is modeled via the geometric canonical state (9).
Notice that, in this setting, an appropriate entropy definition
has yet to be given. Paralleling early work by Gibbs, one can
consider the functional

Hq[p] = −kB

∫
P (H)

p(Z ) ln p(Z )dVFS.

An information-theoretic analysis of this quantity and its re-
lation with the von Neumann entropy was done in Ref. [32].
This functional allows properly evaluating p(Z )’s entropy if
and only if the dimension of the support of p has the same real
dimension of CPn. Reference [33] defined and explored the
appropriate generalization to geometric quantum states with
generic support, including fractal distributions.

Let us consider Hq’s role, though, for the quantum foun-
dations of thermodynamics. For Eq. (9)’s geometric canonical
ensemble this gives

Hq = β(U − F ),

where

U :=
∫
P (H)

pβ (Z )h(Z )dVFS and

F := − 1

β
ln Qβ

are, respectively, the average energy and the free energy aris-
ing from the geometric partition function Qβ .

This means that we can directly import a series of funda-
mental results from classical thermodynamics and statistical
mechanics into the quantum setting, fully amortizing the effort
invested to develop the geometric formalism.

A. First law

The first result is a straightforward derivation of the first
law:

dU =
∫
P (H)

dVFS p(Z )dh(Z ) +
∫
P (H)

dVFSd p(Z )h(Z )

= dW + dQ. (11)

We call the contribution dW work since it arises from a change
in the Hamiltonian h(Z ) generated by an external control
operating on the system. We call the contribution dQ heat,
as it is associated with a change in entropy. Indeed, by direct
computation one sees that

dHq = βdQ and dF = dW.

This gives the standard form of the first law for isothermal,
quasistatic processes:

dU = T dHq + dF,

where T := (kBβ )−1. Conforming to the conventional statis-
tical approach to thermodynamics, beyond energy conserva-
tion, one can use the first law to extract phenomenological
relations (e.g., Maxwell’s relation) that hold at thermo-
dynamic equilibrium: ∂U/∂Hq = T . In this, the partial
derivatives are intended as infinitesimal changes occurring
while maintaining the system at thermal equilibrium.

B. Second law

The second law follows from the Crooks [34] and Jarzynski
[35] fluctuation theorems [26,36,37]. Their treatment can be
straightforwardly exploited, thanks to the Hamiltonian nature
of Schrödinger’s equation when written on the quantum-state
manifold P (H).

As summarized in Eq. (3), given a Hamiltonian h(Z, λ)
on P (H) that depends on an externally controlled parame-
ter λ = λ(t ), the unitary evolution is given by the Liouville
equation (3) as in classical mechanics:

∂ p(Z )

∂t
= {p(Z ), h(Z, λ)}.

Notably, one can apply Jarzynski’s original argument [38] to
driven quantum systems, without the need to exploit the two-
times measurement scheme [26]. The setup is standard.

The ensemble of quantum systems starts in a geometric
canonical state defined by Eq. (9) and is then driven with
a Hamiltonian that depends on a parameter λ following the
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time-dependent protocol λ = λ(t ) with t ∈ [0, 1]. This leads
directly to an ensemble of protocol realizations. That said, we
define the single-trajectory work as

W =
∫ 1

0
λ̇(t )

∂h

∂λ

(
Z (ψt ), λ(t )

)
dt,

where λ̇ = dλ/dt and Z (ψt ) are the homogeneous coordi-
nates on CPD−1 for |ψt 〉. Therefore, |ψt 〉 are the solutions of
Eq. (4).

With these premises, Jarzynski’s original argument applies
mutatis mutandis to give

〈e−βW 〉ens = Qβ[h(λ f )]

Qβ[h(λi)]

= e−�F , (12)

where λ(0) = λi and λ(1) = λ f and 〈x〉ens denotes the ensem-
ble average over many protocol realizations. From this, one
directly applies Jensen’s inequality

〈e−βW 〉ens � e−β〈W 〉
ens

to obtain the second law’s familiar form

〈W 〉ens � F. (13)

VII. GEOMETRIC THERMALIZATION IN A
PHENOMENOLOGICAL MODEL

The validity of geometric quantum thermodynamics, as
defined above, hinges on the assumption of (geometric) ther-
mal equilibrium. It therefore implicitly relies on a dynamical
mechanism driving the system towards the geometric canoni-
cal ensemble. This section shows that this occurs in at least
one model for the out-of-equilibrium dynamics of a single
qubit.

A quantum system interacting with its surroundings
evolves in a nonunitary fashion due to the fact that it ex-
changes energy (or other extensive quantities) and so becomes
correlated with its environment. This can be modeled using
the theory of open quantum systems and its dissipative dy-
namics [39–42]. While most approaches focus on establishing
an equation governing the dynamical evolution of the system’s
density matrix, here we are interested in the thermodynamics
of the geometric quantum state as the ensemble behind the
density matrix. A principled description and modeling of the
dynamics of an open quantum system within the geometric
approach is beyond the present scope, although, its develop-
ment is currently ongoing.

Instead, the following shows how to represent dissipation
within the geometric formalism for a stochastic model. This
serves a twofold purpose. First, it provides simple examples
of how geometric quantum mechanics evolves open quantum
systems in a variety of cases. Second, it supports the theory
developed above with a numeric analysis of an experimentally
relevant scenario.

While the emphasis is still on the geometric formalism,
and its natural phase-space geometry, this approach is not far
from “stochastic Schrödinger equations.” See, for example,
Refs. [39,43–46] that import techniques from the classical
theory of stochastic processes. The following exploits this

idea, applying it to the geometric language and drawing from
a variety of known approaches. It does so by examining a
phenomenological model for dissipative dynamics that, as we
show, exhibits thermalization towards the geometric canonical
ensemble.

It considers the stochastic dynamics of a two-level sys-
tem with state space P (H) ∼ CP1. Generally, this results
from a two-state approximation of a more complex system
interacting with an environment. It gives a standard approxi-
mation that provides sensible results in a variety of physical
regimes. These include systems that inherently consist of
two states, such as spin 1

2 , chiral molecules [47–53], and
atoms at low temperature, considering only the two lowest
states. They also include, though, continuous-variable sys-
tems in a double-well potential, Josephson junctions [54],
and effective descriptions of macroscopic condensates. As a
related technical aside beyond quantum mechanics, we note
that the proper analysis and simulation of stochastic dynam-
ics on Riemannian manifolds is a topic of its own interest
[55,56].

Accounting for the nonisolated nature of the system in-
volves modeling the environment and the latter’s effect on
the effective qubit. This, therefore, depends on the specific
case under study and leads to different effective equa-
tions governing the qubit’s nonequilibrium behavior. From
the system’s perspective, however, a general setup is avail-
able in a regime in which coupling with the environment
is weak and the environment is effectively large and dis-
ordered. These approximations are expected to hold for
large environments, where one can argue for the emer-
gence of stochastic dynamics for the evolution of the open
system.

The prototypical case, in which a specific form of these
equations can be derived by integrating out the environmental
degrees of freedom, is given by the Caldeira-Leggett model
[57–59] with an environment modeled by an infinite num-
ber of noninteracting harmonic oscillators. Respecting these
approximations’ validity, a generic model of Langevin-type
dynamics on CP1 is

ṗ = −∂φE + Vp + Wp, (14)

φ̇ = ∂pE + Vφ + Wφ,

in (p, φ) coordinates. In this, E = E (p, φ) is an effective
Hamiltonian generating the deterministic part of the dynamics
[see Eq. (4)]. This is a renormalized version of the system’s
Hamiltonian. Vp and Vφ depend linearly on (p, φ) and ( ṗ, φ̇).
They describe (i) dissipative mechanisms such as friction,
modeled with a dependence on ṗ or φ̇, as in standard Langevin
equations, and (ii) unstable states, modeled with a dependence
Vp = −kp to allow for exponential decay pdecay(t ) ∼ p0e−kt ,
as in a two-level atom decaying into its ground state.

Finally, Wp and Wφ are stochastic variables with no
drift that account for the environment’s mixing effect on
the system. When the environment is sufficiently large and
unstructured, they can be modeled as Gaussian processes
E[Wa(s + t )Wb(s)] = E[Wa(t )Wb(0)] ≈ δabγaδ(t ), with a, b ∈
{p, φ} and γa ∝ kBT , with T the temperature of the environ-
ment. This is true in the Caldeira-Leggett model for Ohmic
baths.
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As anticipated above, specific forms of these equa-
tions have successfully modeled the evolution of a variety
of two-level systems. We also note how, in several cases,
and also in Refs. [60–64], this approach to open quantum
systems is quite similar to GQM as it relies on canoni-
cal representations of the quantum state space. For chiral
molecules, for example, one has E (p, φ) = δ〈σx〉 + ε〈σz〉 =
δ2

√
p(1 − p) cos φ + ε(1 − 2p), Vp = −k ṗ, with k ∼ 10−1,

Wφ = Vφ = 0 and Wp(t ) white noise with strength γp ∝ kBT .
The thermodynamics arising from this set of dynamical equa-
tions has been studied in detail [47–53].

The goal here is rather to showcase the experimental rel-
evance of the geometric canonical ensemble. The following
does so showing, numerically, that the evolution provided by
the stochastic equations above leads to the dynamical emer-
gence of the geometric canonical ensemble. This is directly
relevant to the out-of-equilibrium dynamics of an ensemble
of chiral molecules or of an ensemble of experiments with
Josephson junctions.

The specific stochastic equations under study are

ṗ = δ2
√

p(1 − p) sin φ − kd p − k f φ̇ + √
γ ξ (t ), (15)

φ̇ = −δ
1 − 2p√
p(1 − p)

cos φ + 2ε,

where kd and k f are coefficients accounting for dissipation
mechanisms, such as instability of a state and friction. Up
to simple redefinition of variables, that does not change the
physics, the model with kd = 0 is the same as in Refs. [49,50].

Exploiting the Markovian character of Gaussian noise, the
statistics of many independent realizations of this stochastic
process on CP1 can be extracted by examining the time-
aggregated statistics of a single, very long, trajectory. We thus
simulate the long-time dynamics of a qubit initiated in a fully
out-of-equilibrium configuration q0(p, φ) = δ(p − p0)δ(φ −
φ0), corresponding to a pure state |p0, φ0〉 = √

1 − p0 |0〉 +√
p0eiφ0 |1〉, where |0〉 , |1〉 are the standard computational

basis. For chiral molecules, these are the (left and right)
chiral eigenstates. Here, we show the results for p0 = 0.9 and
φ = 4π/3 and checked that they do not depend on this choice.
Results are shown for parameter values δ = ε = 1, γ = 0.2,
and kd = 0. While these match the model in Refs. [49,50], the
results are largely independent of this specific choice and hold
for broad regimes in (δ, ε, kd , γ ) parameter space.

The analysis was performed as follows. After generating
a single long-time trajectory using the Milstein method, we
collected statistics P̃nk . We then generated a histogram to ap-
proximate the probability that, at any given time, the system is
found in a small region of the state space P̃nk ≈ Pr[Z ∈ Ink] =
limT →∞

∫ T
0

∫
Ink

qt (Z )dVFS. In this, {Ink}N
n,k=1 is a coarse

graining of CP1 in which each region Ink = [pn, pn+1] ×
[φk, φk+1] has the same Fubini-Study volume μFS(Ink ) =
N−2, pk = n/N , and φk = 2πk/N . Reference [33] gives a
detailed analysis of why this is an appropriate coarse graining,
its information-theoretic relevance, and how to generalize it to
arbitrary CPn.

Concretely, the numerical analysis used N = 50. The dy-
namics was generated setting T = 102 in units in which h̄ =
δ = 1. This was chosen by numerically checking that the
reconstructed histogram does not change significantly when

FIG. 2. Comparing time-aggregated data of a single trajec-
tory generated by Eq. (15)’s stochastic model (left) to the
fit to a geometric canonical ensemble with functional form
as in Eq. (9) (right). Here, h(Z ) = E (p, φ) = δ〈σx〉 + ε〈σz〉 =
δ2

√
p(1 − p) cos φ + ε(1 − 2p), with δ = ε = 1. The excellent

agreement is visually clear, and it is quantified by a total variation
distance between the two distributions of f ≈ 5.6 × 10−4.

increasing T . The time window [0, T ] was discretized to
use the Milstein algorithm to generate Gaussian noise with
dt = 10−4. These, again, are consistent with the choices in
Refs. [49,50]. In short, the number of time steps NT = 106,
with NT dt = T .

To extract the inverse temperature β the collected statistics
were used to perform a 2D least-square fit to the geometric
canonical ensemble. The latter’s appropriateness was estab-
lished by using the following figure of merit: f = ∑

n,k |P̃nk −
qfit

nk|2 ∈ [0, 1], where qfit
nk = Q−1β∗ ∫

Ink
dVFSe−β∗E (Z ) and β∗ is

the optimal value extracted from the least-square fit. This is
the total variation distance between the coarse-grained geo-
metric quantum states obtained from the data {P̃nk}n,k and the
one obtained from the best fit to the geometric canonical en-
semble {qfit

nk}n,k . It ranges from zero to one and is the classical
analog of the well-known trace distance for density matrices.
At selected parameters, f ≈ 5.6 × 10−4. This quantifies the
visually excellent agreement seen in Fig. 2.

Before drawing broad conclusions, a few comments are in
order regarding specific results. First, thermalization is ob-
served even when changing parameter values. This is true for
any of the Hamiltonian parameters δ and ε. Moreover, there
are good numerical indications that this holds for any kd > 0.
However, kd and γ do affect the effective (inverse) temper-
ature β∗ the system reaches. Analyzing how this happens
and the underlying mechanisms is beyond the present scope,
which aimed only at establishing the predictive relevance of
the geometric canonical ensemble in an experimentally realis-
tic setting.

Second, we ignored issues related to the timescale at which
the aggregated geometric quantum state reaches the canonical
form. These were bypassed by using a time window [0, T ]
that guaranteed the aggregated data does not change when
increasing T .

Third, Eq. (15)’s model arises from a bath that is a set of
noninteracting harmonic oscillators with Ohmic correlation
functions and interactions linear in the phase difference φ,
leading to a friction ∝φ̇. A different kind of interaction is
possible, linear in the population p, that leads to a friction term
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ṗ. While not reported here, there are numerical indications
that this alternative exhibits thermalization to the geometric
canonical ensemble as well. This supports the intuition that
thermalization is mostly driven by the lack of memory of the
stochastic term, ultimately due to the Ohmic nature of the
bath’s correlation functions.

Fourth, the effective nature of the description makes the
model widely applicable. And so, a number of straightfor-
ward generalizations would be quite interesting to explore.
These include, for example, changing the noise structure to
accommodate limited memory and allowing for competition
between the different ways in which the system interacts with
the harmonic bath and the decay in both p and φ. Of particu-
lar interest, both conceptually and practically, is determining
which terms lead to dynamical localization and what kinds
of system-bath interactions are necessary for these terms to
emerge by integrating out the bath degrees of freedom.

VIII. SUMMARY AND CONCLUSION

While historically quantum mechanics is firmly rooted in
an algebraic formalism, an alternative based on the differential
geometry of quantum state space P (H) ∼ CPD−1 is readily
available.

As previous works repeatedly emphasized [1,4,10], the
geometric approach brings quantum and classical mechan-
ics much closer, aiming to leverage the best of both. The
space P (H) of quantum states is a Kähler space, with two
intertwined notions of geometry: Riemannian and symplec-
tic. It also sports a preferred notion of measure, selected by
invariance under unitary transformations: the Fubini-Study
measure. One can exploit this rich geometric structure to
define generic probability measures on P (H). The result is a
new kind of quantum state, the geometric quantum state [27],
that generalizes the familiar density matrix but provides more
information about a quantum system’s physical configuration.
Essentially, it expresses the multitude of ensembles, induced
by different environments, behind a density matrix.

Leveraging parallels between the geometric formalism and
classical mechanics, the statistical treatment of geometric
quantum mechanics provides a continuous counterpart of
Gibbs ensembles. Section VI laid out how to establish quan-
tum thermodynamics on the basis of the geometric formalism.
Building on Sec. V’s statistical treatment of geometric quan-
tum mechanics, it derived the First and Second Laws of
geometric quantum thermodynamics. Despite the two results
appearing identical to the existing laws, derived within stan-
dard quantum statistical mechanics, they involve quantities
that are genuinely different. Understanding how Eqs. (11),
(12), and (13) connect to their standard counterparts [26]
is a challenge that we must leave for the future. We note
Ref. [65] obtained a similar result that, lacking the geometric
perspective, considered microcanonical and canonical ensem-
bles of pure states, as first advocated by Khinchin [29] and
Schrödinger [30].

Remarkably, predictions from standard quantum statistical
mechanics and its geometric counterpart differ. This poses
a challenge: Which theory should one use? Ultimately, this
problem does not have a generic solution. Answering the
question requires understanding the details of the long-time

dynamic of an open quantum system and, in general, this will
be be model specific. Here, to showcase the relevance of the
geometric approach, we showed that there is a class of known
stochastic models, aimed at describing chiral molecules and
Josephson’s junctions, that indeed does exhibit dynamical
evolution towards the geometric canonical ensemble. One
thus expects the predictions from geometric quantum thermo-
dynamics to hold in the cases where the dynamical model in
Eq. (15) is justified.

The geometric approach to quantum thermodynamics
opens the door to new and interesting questions and novel
research avenues. Let us mention two. First, the ensem-
ble interpretation of geometric quantum mechanics suggests
employing the geometric formalism to describe the thermo-
dynamics of ensembles, rather than relying on that of density
matrices. The main advantage is that this delineates the en-
vironmental resources required to support a given density
matrix. Indeed, while two different experimental setups can
give rise to the same density matrix, their difference implicitly
lies in the distinct ways the density matrix is created. This is
directly relevant to the energetics of information processing
technologies built from quantum computers and quantum sen-
sors.

Second, from a conceptual perspective, geometric quan-
tum thermodynamics and statistical mechanics are at least as
powerful as their standard counterpart. Yet, they can make
different predictions. Self-consistency of thermodynamic pre-
dictions suggests that this difference should be negligible in
a truly macroscopic regime in which both system and envi-
ronment are macroscopically large. This is, however, a highly
nontrivial statement whose proof requires a much better un-
derstanding of the emergence of thermodynamic predictions
from fully dynamical considerations. We believe the new re-
search avenues, together with the larger perspective provided
by geometric quantum mechanics, will greatly enrich our
understanding of the phenomenology of many-body quantum
systems.

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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APPENDIX A: INDEPENDENT RESULT

For completeness, the following summarizes the Ref. [31]
result called on in calculating the density of states. Given the
n-simplex �n : {�x ∈ Rn

+ : �e · �x � 1}, where �e is the vector of
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ones in Rn, a section of the simplex is defined by a vector �a ∈
Sn and we want to compute the n-dimensional and (n − 1)-
dimensional volumes of the following sets:

�(�a, t ) := �n ∩ {�x ∈ Rn : �aT · �x � t} and

S(�a, t ) := �n ∩ {�x ∈ Rn : �aT · �x = t},
where �aT is the transpose of �a. The result assumes flat
geometry, which is obtained from the volume element
d p1d p2 . . . d pn. Letting (x)+ := max(0, x) and a0 = 0, then

Vol(�(�a, t )) = 1

n!

n∑
k=0

(t − ak )n
+∏n

j �=k, j=0(a j − ak )

= 1

n!

t n∏n
k=1 ak

+ 1

n!

n∑
k=1

(t − a j )n
+∏n

j �=k, j=0(a j − ak )

and

Vol
(
S(�a, t )

) = 1

(n − 1)!

n∑
k=0

(t − ak )n−1
+∏n

j �=k, j=0(a j − ak )

= 1

(n − 1)!

t n−1∏n
k=1 ak

+ 1

(n − 1)!

n∑
k=1

(t − a j )n−1
+∏n

j �=k, j=0(a j − ak )
.

APPENDIX B: GEOMETRIC QUANTUM DENSITY
OF STATES AND CANONICAL ENSEMBLE

Again for completeness, we first recall the basic defini-
tions, given in the main text, used in the two sections that
follow to calculate the density of states and statistical physics
of quantum states in the geometric formalism.

1. Setup and notation

Consider a Hilbert space H of finite dimension D. The
manifold P (H) of states is the complex projective space
CPD−1. A point Z on the manifold is a set of D homogeneous
and complex coordinates {Zα}. A point corresponds to a pure
state with the identification Z ↔ |ψ〉 = ∑D−1

α=0 Zα |eα〉, where
{|eα〉}α is an arbitrary but fixed basis of H. This parametriza-
tion underlies the choice of a reference basis that, however,
is ultimately irrelevant. While concrete calculations of exper-
imentally measurable quantities can be made easier or harder
by an appropriate coordinate system, the overall result is
independent of such choices. The quantum mechanical expec-
tation value is a quadratic and real function on the manifold
of the quantum states:

a(Z ) := 〈ψ (Z )| A |ψ (Z )〉

=
D−1∑

α,β=0

Aα,βZαZ
β
.

When A = H is the system’s Hamiltonian, the function
a(Z ) = h(Z ) generates the vector field VH on CPD−1. The
associated Hamiltonian equations of motion become the
Schrödinger equation (and its complex conjugate) when using
the standard formalism with Hilbert spaces. In the geometric

formalism, states are functionals from the algebra of observ-
ables to the real numbers. Effectively, they are probability
distributions, both discrete and continuous, on the quantum-
state manifold CPD−1.

2. Microcanonical density of states: Proof of Eq. (8)

We start with the a priori equal-probability postulate and
build the microcanonical shell as follows:

pmc(Z ) =
{

1/W (E ) if h(Z ) ∈ [E, E + δE],
0 otherwise.

Due to normalization we have

W (E ) =
∫

h(z)∈Imc

dVFS,

where dVFS is the volume element of the Fubini-Study metric:

dVFS = 1

2n
d p1d p2 . . . d pndν1 . . . dνn.

This gives the manifold volume

Vol(CPn) = πn

n!
.

For concrete calculations, normalize the measure so that
CPD−1’s total volume is unity, using

dμn = dVFS

Vol(CPn)

= n!

(2π )n

n∏
k=1

d pk

n∏
k=1

dνk .

This does not alter results in the main text. On the one hand,
calculations of measurable quantities are independent of this
value. On the other, here, at the calculation’s end, we reintro-
duce the appropriate normalization.

We can now compute W (E ) for a generic quantum sys-
tem. Assuming that δE � |Emax − Emin|, we have W (E ) =
�(E )δE and �(E ) is the area of the surface � defined by
h(Z ) = E :

�(E ) =
∫

�

dσ,

where dσ is the area element resulting from projecting both
the symplectic two-form and the metric tensor onto the sur-
face �. To compute this we choose an appropriate coordinate
system

Zα = 〈Eα〉ψ (Z )

= nαeiνα

adapted to the surface �:

h(Z ) = 〈ψ (Z )| H |ψ (Z )〉

=
n∑

k=0

Ek| 〈ψ〉 Ek|2

=
n∑

k=0

Ekn2
k

= E .
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On both sides we subtract the ground-state energy E0

and divide by Emax − E0 to obtain the following defining
equation for � ⊂ CPn:

F (n0, n1, . . . , nn, ν1, . . . , νn) =
n∑

k=0

εkn2
k − ε = 0,

with

εk = Ek − E0

Emax − E0
∈ [0, 1] and

ε = E − E0

Emax − E0
∈ [0, 1].

We use octant coordinates for CPn:

(Z0, Z1, . . . , Zn) = (n0, n1eiν1 , n2eiν2 . . . , nneiνn ),

where nk ∈ [0, 1] and νk ∈ [0, 2π [. With the transformation
pk = n2

k the equation for � becomes

n∑
k=0

pkεk − ε = 0.

a. Qubit case

The state space of a single qubit is CP1. The latter’s
parametrization

pε0 + (1 − p)ε1 = 1 − p

means that h(Z ) � E is equivalent to 1 − p � ε. The volume
is therefore given by

Voln=1(E ) = 1

π

∫
h(φ)�E

dVFS

= 1

2π

∫ 1

1−ε

d p
∫ 2π

0
dν

= ε

= E − E0

E1 − E0
.

In turn, this gives

Wn=1(E ) = Voln=1(E + δE ) − Voln=1(E )

= 1

E1 − E0
δE .

In other words,

�n=1(E ) = 1

E1 − E0
,

which is a constant density of states.

b. Qutrit case

The state space of qutrits is CP2, with parametriza-
tion Z = (Z0, Z1, Z2) = (1 − p − q, peiν1 , qeiν2 ). With these
coordinates, the equation defining the constant-energy hyper-
surface is

(1 − p − q)ε0 + pε1 + qε2 = pε1 + q � ε.

And, it has volume

Voln=2(E ) = 2

(2π )2

∫ ∫
dq dq

∫ ∫
dν1dν2

= 2
∫ ∫

S
d p dq.

In this, we have the surface S := {(p, q) ∈ R2 : p, q � 0, p +
q � 1, q � ε − pε1}. Examining the geometry we directly see
that the region’s area is

A(S) =
{

1
2 − 1

2
(1−ε)2

1−ε1
when ε � ε1,

ε2

2ε1
when ε < ε1

or

A(S) =
{

1
2 − 1

2
(E2−E )2

(E2−E1 )(E2−E0 ) when E � E1,
1
2

(E−E0 )2

(E1−E0 )(E2−E0 ) when E < E1.

One can check that the function A(S)[E] and its first derivative
are continuous. Eventually, we have

Wn=2(E ) = Voln=2(E + δE ) − Voln=2(E )

=
{ 2(E2−E )

(E2−E1 )(E2−E0 )δE when E � E1m
2(E−E0 )

(E2−E0 )(E1−E0 )δE when E < E1.

c. Generic qudit case: CPn

To use the Ref. [31] result, summarized in Appendix A, we
must change coordinates. Again, using “probability + phase”
coordinates

n∑
k=0

pkEk = E

means that
n∑

k=1

pkak = t (E ),

ak = a(Ek )

= Ek − E0

R
,

R =
√√√√ n∑

k=1

(Ek − E0)2, and

t (E ) = E − E0

R
.

In this way, we can apply the result, finding

Voln(E ) =
n∑

k=0

(t − ak )n
+∏n

j �=k, j=0(a j − ak )

=
n∑

k=0

(E − Ek )n
+∏n

j �=k, j=0(Ej − Ek )
.

Since E ∈ [E0, Emax], there exists an n such that E ∈
]En, En+1[. This means that the sum in the second term stops
at k = n because after that (E − Ek )+ = 0. Hence, there exists
n(E ) such that for all k > n we have (E − Ek )+ = 0. This, in
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turn, shows that

Voln(E ) =
n(E )∑
k=0

(E − Ek )n∏n
j �=k, j=0(Ej − Ek )

.

This leads to the desired fraction of CPn microstates in a
microcanonical energy shell [E, E + dE]:

Wn(E ) = �n(E )dE

=
(

n(E )∑
k=0

n(E − Ek )n−1∏n
j �=k, j=0(Ej − Ek )

)
dE .

This allows defining the statistical entropy S(E ) of a quantum
system with finite-dimensional Hilbert space of dimension
D = n + 1 as

S(E ) = ln WD−1(E ).

3. Statistical physics of quantum states: Canonical ensemble

The continuous canonical ensemble is defined as

ρβ (ψ ) = e−βh(ψ )

Qβ[h]
,

where

Qβ[h] =
∫
CPD−1

e−βh(ψ )dVFS.

The following analyzes the simple qubit case and then moves
to the general treatment of a finite-dimensional Hilbert space
H.

a. Single qubit

The Hilbert space here is H while the pure-state manifold
is CP1. And so, we have

Qβ[h] = 1

4

∫ π

0
dθ sin θ

∫ 2π

0
dφ e−βh(θ,φ),

with h(θ, φ) = �γ · 〈�σ 〉 = �γ · �b(θ, φ).
Since we consider a single qubit, whose state space is S2

embedded in R3, we can write �γ · �b(ψ ) = ||�γ || cos θ , where
θ is the angle between �γ and �b(ψ ). Thus, we can use an
appropriate coordinate h(φ, θ ) = ||�γ || cos θ aligned with �γ to
find

Qβ[h] = π
sinh β||�γ ||

β||�γ || .

Or, using “probability + phase” coordinates (p, ν) we can also
write

1

2

∫ 1

0
d p

∫ 2π

0
dν e−β[(1−p)E0+pE1] = π

e−βE0 − e−βE1

β(E1 − E0)
.

The change in coordinates is given by the result of diagonal-
ization: E0 = −||�γ || and E1 = ||�γ ||. This yields the expected
result

Qβ[h] = π
e−βE0 − e−βE1

β(E1 − E0)

= π
sinh β||�γ ||

β||�γ || .

b. Generic treatment of CPn

We are now ready to address the general case of qudits:

Qβ[h] =
∫
CPn

e−βh(Z )dVFS

= 1

2n

∫ n∏
k=0

e−βpk Ek

n∏
k=1

d pkdνk

= πn
∫

�n

n∏
k=0

e−βpk Ek δ

(
n∑

k=0

pk − 1

)
d p1 . . . d pn.

To evaluate the integral we first take the Laplace transform

In(r) :=
∫

�n

n∏
k=0

e−βpk Ek δ

(
n∑

k=0

pk − r

)
d p1 . . . d pn

to get

Ĩn(z) :=
∫ ∞

0
e−zrI (r)dr.

Calculating, we find

Ĩn(z) =
n∏

k=0

(−1)k

(βEk + z)

= (−1)
n(n+1)

2

n∏
k=0

1

z − zk

with zk = −βEk ∈ R.
The function Ĩn(z) has n + 1 real and distinct poles: z =

zk = −βEk . Hence, we can exploit the partial fraction decom-
position of Ĩn(z), which is

(−1)
n(n+1)

2

n∏
k=0

1

z − zk
= (−1)

n(n+1)
2

n∑
k=0

Rk

z − zk
,

where

Rk = [
(z − zk )Ĩn(z)

]
z=zk

=
n∏

j=0, j �=k

(−1)
n(n+1)

2

zk − z j
.

The inverse Laplace transform’s linearity, coupled with the
basic result

L−1

[
1

s + a

]
(t ) = e−at�(t ),

where

�(t ) =
{

1, t � 0
0, t < 0
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gives

In(r) = L−1[Ĩn(z)](r)

= �(r)
n∑

k=0

Rkezkr .

And so, we finally see that

Qβ[h] = In(1)

=
n∑

k=0

e−βEk∏n
j=0, j �=k (βEk − βEj )

.
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