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We consider a high-dimensional random constrained optimization problem in which a set of binary variables
is subjected to a linear system of equations. The cost function is a simple linear cost, measuring the Hamming
distance with respect to a reference configuration. Despite its apparent simplicity, this problem exhibits a rich
phenomenology. We show that different situations arise depending on the random ensemble of linear systems.
When each variable is involved in at most two linear constraints, we show that the problem can be partially
solved analytically, in particular we show that upon convergence, the zero-temperature limit of the cavity
equations returns the optimal solution. We then study the geometrical properties of more general random
ensembles. In particular we observe a range in the density of constraints at which the system enters a glassy
phase where the cost function has many minima. Interestingly, the algorithmic performances are only sensitive
to another phase transition affecting the structure of configurations allowed by the linear constraints. We also
extend our results to variables belonging to GF(q), the Galois field of order q. We show that increasing the value
of q allows to achieve a better optimum, which is confirmed by the replica-symmetric cavity method predictions.
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I. INTRODUCTION

The closest vector problem (CVP) is a constrained opti-
mization problem in which the objective is to find the vector in
a high-dimensional lattice that is closest to a given reference
vector (in principle, external to the lattice). In this work we
will study lattices defined by linear subspaces of GF(q)n, the
n-dimensional vector space over the Galois field GF(q). In
particular for the case q = 2 (which we will mainly study),
the lattice is defined as the solution set of a XORSAT instance,
and the CVP can also be recast in the problem of finding the
ground state of an Ising spin-glass model with external fields.

CVP is a fundamental problem in theoretical computer
science: some versions of CVP were among the first ones
where an equivalence between worst case and average case
complexity has been shown. Such an equivalence has been
exploited to propose a robust cryptosystem [1]. Nonetheless
the CVP has been proven to be computationally NP-hard [2]
and hard to approximate, even allowing a potentially slow
pre-processing step [3,4].

The main motivation for studying this model is that it is
an ideal framework to understand, via statistical mechanics
computations, the mechanisms underlying the hardness in
approximating optimal solutions. As we will see, it shows
a wide range of nontrivial properties in the geometry of the
solution landscape, while (partially) conserving some analytic
feasibility coming from the fact that its configurations are
solutions of a linear system in GF(q).

*louise.budzynski@gmail.com

Surprisingly, we will show that approximating optimal so-
lutions is hard even in a region of parameters where the space
of solutions is “well connected.” In this region the model cor-
responding to the uniform measure over solutions looks nice
enough (e.g., it is in a paramagnetic phase, correlations de-
cay fast enough, a replica-symmetric solution well describes
the Gibbs measure). Nonetheless when we add the external
field to search for the closest solution to a reference vector,
the scenario changes dramatically: ergodicity breaking phase
transitions take place and the problem becomes very hard.

Given that the search space is always the same [solutions
to a XORSAT constraint satisfaction problem (CSP)] the ad-
dition of the external field can be seen as a reweighting of
the CSP solution space. It is well known that the reweighting
of the solution space can induce ergodicity breaking phase
transitions [5] and change the location of the phase transi-
tions [6,7]. In the present model we are going to show how
important the effects of the reweighting can be and how they
can affect algorithms searching for optimal solutions, which
are relevant is several common applications.

A. Compression

The CVP has a straightforward application to the lossy
compression of a symmetric binary source (source coding).
In this context, the compression task is to take an input y ∈
GF(2)n and to reduce it into a compressed version c ∈ GF(2)k

with k < n. The decompression task transforms c into x̂ ∈
GF(2)n. The distortion is defined as the Hamming distance
dH (y, x̂), i.e., the number of differing components between the
two vectors. A good compression scheme is designed to result
in the smallest possible distortions, and the performance of
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the scheme can be measured in terms of average distortion on
random binary inputs.

As an example, one trivial compression scheme consists
in truncating the input to the first k components (compres-
sion) and reconstructing randomly the last n − k components
(decompression). Of course, it is possible to do much better.
In fact, the best possible performance for a given input dis-
tribution has been characterized by Shannon [8–10] thanks
to a duality with the channel coding problem. The smallest
achievable average distortion for a given pair n, k on a binary
symmetric source is given by the equation

D = H−1(1 − R), (1)

where R = k
n is called the compression rate, and where

H (p) = −p log2(p) − (1 − p) log2(1 − p)

is the binary entropy function and H−1 is its inverse.
Interestingly, a theoretical asymptotically optimal (but com-
putationally inefficient) scheme is formed by random codes.
Random codes are constructed as follows: choose 2k random
vectors v1, . . . , v2k in GF(2)n. The compression scheme con-
sists in finding the vector vi that is closest to y. The binary
representation c of i will be the compressed vector. When
n, k → ∞ with fixed compression rate R = k

n , the average
distortion 〈dh(vi, y)〉 falls on the optimal line [8]. As it hap-
pens with the dual channel coding problem, a computationally
more efficient alternative can be constructed by replacing
random vectors by solutions of a random linear system (in
a discrete space), and this is the approach that has been taken
in Ref. [11] and that we will take here. In particular for q = 2,
random codes correspond to the solution set of instances of a
random XORSAT ensemble.

B. Relation with previous works

Let H be an m × n matrix with binary entries, and let
b ∈ {0, 1}m be a m-component vector. An instance of the
XORSAT problem is given by a pair (H, b), the solution set of
this instance being the set of vectors x ∈ {0, 1}n satisfying the
equation Hx = b modulo 2. The random XORSAT ensemble
is defined by taking b uniformly at random in {0, 1}m, and by
taking H from some random matrix ensemble. In this paper,
we will study the ensemble in which H is sampled uniformly
over the set of matrices having a prescribed distribution in
the number of nonzero entries per rows and per columns. The
random XORSAT problem has been studied extensively in the
past [12,13].

Note that the lossy compression problem of a random
uniform binary source is formally identically to the de-
coding problem in a binary symmetric channel (see, e.g.,
Ref. [14]). Although decoding using low-density parity-check
codes (LDPC) has been studied with the cavity method in
the past [15,16], the two problems differ on the ensembles
of source vectors. Indeed, in the channel coding problem the
source vector is formed by the perturbation of a codeword
instead of being a random uniform vector. In a sense, the
compression problem then corresponds to a channel cod-
ing problem in a regime with nonvanishing probability of
decoding errors instead of a vanishing one. This difference
makes the compression problem fundamentally harder (see

Appendix D), and the results not directly comparable. Note
that the ensembles of “good” codes for both problems also
fundamentally differ: for the channel coding problem, having
codewords that are “close together” renders the code useless
(as the error rate will be nonvanishing), while for the com-
pression problem it is essentially harmless (and may be indeed
convenient from a computational point of view).

A striking feature of random CSPs is the appearance of
phase transitions, or threshold phenomena in the thermody-
namic limit, when the number of variables n and the number
of linear constraints m go to infinity at a fixed value of the
ratio α = m/n, the density of constraints per variable. For
instance the satisfiability threshold αsat separates a satisfi-
able regime α < αsat where random XORSAT instances do
admit solutions from an unsatisfiable phase α > αsat where
no solution typically exists. Another transition occurs in the
satisfiable phase at αd < αsat, called the clustering transition.
Below αd the solution set of typical instances is rather well
connected, any solution can be reached by any other through
a path of nearby solutions. Above αd the solution set splits
into a exponential number of distinct groups of solutions,
called clusters, which are internally well connected, but well
separated one from the other. This transition also manifests
itself with the appearance of a specific type of correlations
between variables, known as point-to-set correlations, under
the uniform probability measure over the set of solutions.
These correlations forbid the rapid equilibration of stochastic
processes that respect the detailed balance condition [17],
which justifies the alternative “dynamic” name of the clus-
tering transition.

In Ref. [11], a belief propagation (BP) scheme has been
employed on an ensemble of linear codes called cycle codes.
These cycle codes correspond to systems of linear equa-
tions [in GF(q)] in which each variable participates in at most
two equations. It has been observed that the performance of
BP improves by adding some leaves (variables of degree one)
to the linear system, but not too many of them. In this work,
we compute the analytic achievable performance of such
codes through the cavity method, and provide a rigorous proof
of the exactness of the zero-temperature version of the cavity
equations on cycle codes. We then extend our results to codes
with higher degrees, and show that this allows to improve the
performance of lossy compression. We study the clustering
transition for the constrained optimization problem CVP, and
show that its clustering threshold αCVP

d arises for density of
constraints smaller than the clustering threshold α⊕

d associated
to the random XORSAT problem defining the set of con-
straints. We also study the performances of message-passing
algorithms designed to solve this constrained optimization
problem. Interestingly, we observe that these algorithms are
not affected by the clustering transition associated to the
constrained optimization problem (occurring at αCVP

d ), but
instead are only affected by the XORSAT clustering transition
occurring at α⊕

d .

C. Relation between sparse basis and clustering

Given a basis of the solution space, we define the weight
of the basis as the maximum Hamming weight of its ele-
ments. We can now establish a fundamental relation between
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a geometrical property of the solution space and the weight
of the lightest basis: for a linear system in GF(2), having a
basis with weight � k is equivalent to having all solutions
of the system connected between each other by “paths” of
solutions with jumps between consecutive ones of hamming
distance � k. This can be proven easily. Suppose indeed that
we have a basis B = {b1, . . . bd} in which each element has
Hamming weight � k. Take any two solution vectors v, v′,
and write in the basis v′ − v =∑d

i=1 cibi, where ci ∈ GF(2).
Let {i1, i2, ..., ir} = {i : ci = 1}. Construct the sequence v0 =
v, v j = v j−1 + bi j

for 1 � j � r. The difference between two
points in the sequence is a basis element, so has weight � k,
and the sequence forms a path from v to v′. Conversely,
suppose that all solutions can be connected to the vector 0
with paths of jumps � j = v j − v j−1 with hamming distance
� k. The set of all those vectors � j’s thus spans the full set
of solutions. It is possible then to extract a solution basis from
such a set, and all elements in the basis will have Hamming
weight � k. In summary, the weight of the sparsest basis
determines the largest separation between “clusters” or groups
of solutions. If the weight of the sparsest basis is k, then there
will be at least a subset of solutions which is separated by
hamming distance k from the rest.

D. Organization

The paper is organized as follows. In Sec. II we define more
precisely the constrained optimization problem under study
and the statistical physics model associated to it. We present
the equations that describe its behavior in the framework of
the cavity method from statistical mechanics, and the algo-
rithms that we used to solve its instances. In Sec. III we study
the case of cycle codes, i.e., when the binary variables are
involved in at most two linear constraints. In this particular
case we prove that when it converges, max-sum algorithm
finds the optimal solution. Moreover, we design an exact
greedy algorithm, that we call GO for “greedy optimal” that
is guaranteed to converge to the optimal solution. In Sec. IV,
we study a random ensemble in which the binary variables
are involved in more than two linear constraints, and we show
that in this ensemble the average minimal distance is smaller
than the one for cycle codes, thus providing a better code for
lossy compression. We show that CVP undergoes a clustering
transition before the clustering transition associated to the
XORSAT problem representing the constraints. We study the
behavior of three algorithms: belief propagation with deci-
mation, max-sum with reinforcement, and survey propagation
with decimation, and show that their performances are only af-
fected by the clustering transition associated to the XORSAT
problem. In Sec. V, we provide a more detailed picture of the
phase diagram obtained in Sec. IV. In particular we perform a
finite-temperature study to relate the two clustering transitions
occurring at αCVP

d and α⊕
d that correspond respectively to the

cases of zero and infinite temperature. We also argue in favor
of a full RSB transition occurring at higher densities of con-
straints, that prevented us to obtain a reliable prediction of the
minimal distortion in this regime. In Appendix A we present
the results obtained with variables in GF(q), the Galois field
of order q. We show that cycle codes with higher value of
q allows to achieve smaller average minimal distortion, thus

providing better codes for lossy compression. This trend is
confirmed by the zero-temperature replica-symmetric predic-
tion. We however argue in favor of a RSB transition as q
increases, that could prevent from an efficient compression
scheme when q becomes large. The RS and 1RSB formalism
specified for the CVP problem is given in Appendix B. In
Appendix C we show that for cycle codes with binary
variables, it is possible to build a basis whose weight is
upper bounded by minimal-size rearrangements computed in
Ref. [18] by Montanari and Semerjian. When this upper-
bound remains finite in the thermodynamic limit, this allows
us to conclude from the discussion in Sec. I C that the solution
set of XORSAT is well-connected.

II. DEFINITION OF THE MODEL AND STATISTICAL
MECHANICS FORMALISM

A. Definition of the model

The constrained optimization problem can be formulated
as follows. Given a reference vector y ∈ {0, 1}n and a linear
subspace C ⊂ {0, 1}n, find a vector x̂ ∈ C that is the closest
to y:

x̂ = arg minx∈CdH (x, y), (2)

where

dH (x, y) = 1

n

n∑
i=1

xi ⊕ yi (3)

is the Hamming distance. The linear subspace C is defined
as the solution set of an homogeneous XORSAT instance: let
H be an m × n matrix with boolean entries Hia ∈ {0, 1}, i ∈
{1, . . . , n}, a ∈ {1, . . . , m}, then

C = {x ∈ {0, 1}n : Hx = 0}. (4)

Here homogeneous means that the right-hand side (r.h.s.) of
the linear system is equal to the null vector b = 0. One can
encode the topology of a XORSAT instance into a bipartite
graph G = (V, F, E ). The set of variable nodes V represents
the binary variables x1, . . . , xn. The set of factor nodes F
represents the m constraints encoded in the m rows of H . An
edge (i, a) ∈ E is drawn if variable xi is involved in the ath
constraint: Hia = 1. By means of a simple change of variables,

σi = (−1)xi , si = (−1)yi , (5)

the problem can be rewritten as a statistical physics model. We
define the probability law:

μ(σ ) = 1

Z (β )

(
m∏

a=1

I

[∏
i∈∂a

σi = 1

])
eβ
∑n

i=1 siσi , (6)

with I[A] being the indicator function of the event A. The
problem (2) is then equivalent to finding the configuration σ

maximizing the probability law μ(σ ), or equivalently mini-
mizing the energy function

E (σ ) = −
n∑

i=1

σisi, (7)

under the set of constraints {∏i∈∂a σi = 1}m
a=1. Note that

E (σ ) can be related to the distortion as follows: E (σ ) =
2dH (x, y) − 1.
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It will be convenient to define a softened version of the
probability law μ(σ ), by replacing the hard constraints on the
factors I[

∏
i∈∂a σi = 1] by a soft constraint eβJ (

∏
i∈∂a σi−1), with

J a real parameter:

μJ (σ ) = 1

Z (β, J )
e−βEJ (σ ), (8)

where

EJ (σ ) = −J
m∑

a=1

(∏
i∈∂a

σi − 1

)
−

n∑
i=1

σisi. (9)

The first term is bringing an energetic cost 2J to each un-
satisfied clause, while the second term is the original energy
function, which favors configurations close to the source. In
statistical physics, this model is known as a spin-glass model
in presence of heterogeneous external fields s1, . . . , sn. Send-
ing J → ∞ allows to recover the probability law μ(σ ) defined
in Eq. (6).

B. Random ensemble of instances

We will be interested in the characterization of the “typ-
ical” properties of this constrained optimization problem,
where typical is defined with respect to a random ensemble
of instances, a property being considered typical if it oc-
curs with a probability going to one in the thermodynamic
(large size) limit. In particular, we will consider random ex-
ternal fields s1, . . . , sn in which each external field si is i.i.d.
uniformly in {−1, 1}. As we have seen in the previous sub-
section, the set of constraints can be represented by a bipartite
graph G = (V, F, E ). We will consider random graph ensem-
bles with fixed degree profiles, denoted Gn(�, P). Let � =
{λ1, . . . , λdmax} be the degree profile of the variable nodes,
with dmax the maximal degree, and λi the fraction of variable
nodes of degree i. Respectively, let P = {p1, . . . , pkmax} be the
degree profile of the factor nodes, with kmax the maximal de-
gree, and pi the fraction of factor nodes of degree i. The degree
profiles are normalized:

∑dmax
i=1 λi = 1 and

∑kmax
i=1 pi = 1, and

they satisfy the following relation:

m
kmax∑
i=1

ipi = n
dmax∑
i=1

iλi = |E |.

We will be interested in the thermodynamic limit n, m → ∞,
with a fixed ratio α = m/n, and fixed fractions λi, pi’s inde-
pendent of n. The ratio α is called the density of constraints
per variable and is related to the degree profiles as follows:

α =
∑dmax

i=1 iλi∑kmax
i=1 ipi

. In the thermodynamic limit, random graphs ex-

tracted from Gn(�, P) are locally treelike: the neighborhood
of an uniformly chosen vertex within a finite distance is
acyclic, with probability going to 1. Note that in the formalism
of lossy compression, the compression rate R = n−m

m can be
expressed in terms of the degree profiles:

R = 1 − α = 1 −
∑dmax

i=1 iλi∑kmax
i=1 ipi

. (10)

The equivalence between the CVP and the spin-glass model
with external fields allows us to apply the cavity method.
This method has been first developed in the context of

statistical physics of disordered systems, and has later on
been applied to random constraint satisfaction problems. The
aim of the cavity method is to characterize the properties
of the probability measure (6), for typical random graphs in
Gn(�, P) and realization of the external fields s1, . . . , sn, in
the thermodynamic limit. In particular, we will be interested
in the zero-temperature limit of the cavity method, at which
the probability measure (6) concentrates on the configura-
tions satisfying the constraints and achieving the minimal
energy. A simplified version of the cavity method, especially
of the 1RSB formalism, first derived in Refs. [19,20], can be
obtained in this limit. We will also be interested in the finite-
temperature (or finite-β) version of the cavity method (see
Sec. V B). We give the details of the cavity method applied
to the CVP in Appendix B.

C. BP equations and Bethe free energy

Belief propagation (BP) is a method that allows to study
the properties of the measure μ defined in Eq. (6) on a sin-
gle instance, and at finite inverse temperature β. When the
bipartite graph G representing the constraints is a tree, this
method is exact, and allows to compute the partition function
Z (β ), as well as the marginal probabilities of any variable
σi. In practice, the BP method is also used as a heuristic
on random sparse instances. For each variable node i ∈ V ,
we denote by ∂i = {a ∈ F : (ia) ∈ E} the set of factor nodes
connected to i, and similarly for each factor node a ∈ F the
set of variable nodes connected to a: ∂a = {i ∈ V : (ia) ∈ E}.
We introduce the belief-propagation (BP) messages mi→a and
m̂a→i on each edge (i, a) ∈ E as the marginal probability laws
of σi in the amputated graph where some interactions are
discarded: mi→a is the marginal of σi when the hyperedge a is
removed, and m̂a→i is the marginal of σi when one removes all
the hyperedges in ∂i \ a. The BP messages obey the following
recursive equations:

mi→a(σi ) = 1

zi→a
eβσisi

∏
b∈∂i\a

m̂b→i(σi ),

m̂a→i(σi ) = 1

ẑa→i

∑
σ ∂a\i

I

[∏
i∈∂a

σi = 1

] ∏
j∈∂a\i

m j→a(σ j ), (11)

where zi→a, ẑa→i are normalization factors. One can compute
the marginal probability of σi from the solution of the above
set of equations:

μi(σi) = 1

zi
eβsiσi

∏
a∈∂i

m̂a→i(σi ). (12)

The free energy F = −(1/β ) log(Z (β )) can be expressed
in terms of BP messages using the Bethe formula:

F Bethe(m, m̂) =
∑

(i,a)∈E

1

β
log Zia(mi→a, m̂a→i )

−
m∑

a=1

1

β
log Za({mi→a}i∈∂a)

−
n∑

i=1

1

β
log Zi({m̂a→i}a∈∂i ), (13)
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where Za, Zi, Zia are defined as follows:

Za =
∑
σ ∂a

I

[∏
i∈∂a

σi = 1

]∏
i∈∂a

mi→a(σi ), (14)

Zi =
∑
σi

eβsi,σi
∏
a∈∂i

m̂a→i(σi ), (15)

Zia =
∑
σi

mi→a(σi )m̂a→i(σi ). (16)

Finally, one can also compute the average energy in terms of
BP beliefs:

〈E (σ )〉μ = −
n∑

i=1

∑
σi

siσiμi(σi). (17)

D. Zero-temperature limit: Max-sum equations
and Bethe energy

The max-sum (MS) equations can be seen as the zero-
temperature limit of the BP equations. The goal here is to
describe the set of configurations σ which maximize the
probability μ(σ ) in Eq. (6), i.e., which solves the constrained
optimization problem (2). We define max-sum messages as

hi→a = lim
β→∞

1

2β
[log mi→a(+) − log mi→a(−)],

ui→a = lim
β→∞

1

2β
[log m̂a→i(+) − log m̂a→i(−)]. (18)

Using this definition and the BP equations we get the fol-
lowing MS equations (associated to the probability law μ(σ )
defined in Eq. (6) for hard constraints):

hi→a = si +
∑

b∈∂i\a

ub→i,

ua→i = sign

( ∏
j∈∂a\i

h j→a

)
min
j∈∂a\i

(|h j→a|). (19)

Once a solution to the MS equations is found, one can com-
pute the max-sum belief hi:

hi = lim
β→∞

1

2β
[log(bi(+)) − log(bi(−))]

= si +
∑
a∈∂i

ua→i, (20)

which corresponds in case of a tree to the difference in energy
�Ei = Emin

i (+) − Emin
i (−), where Emin

i (σ ) is the ground-
state energy when σi is fixed to the value σ . Since the energy
function E (σ ) takes only integer values, one can deduce that
the max-sum messages satisfying equations (19) and max-
sum beliefs (corresponding to differences in energy) also take
integer values. Replacing the hard constraints by soft con-
straints is equivalent to introducing a cut-off on the values
of the factor-to-variable ua→i ∈ [−J, J]. The variable-to-
factor messages then take values h ∈ [−1 − J (dmax − 1), 1 +
J (dmax + 1)]. Note that the MS equation (19) on ua→i is

replaced by

ua→i = sign

( ∏
j∈∂a\i

h j→a

)
min

(
min
j∈∂a\i

|h j→a|, J

)
. (21)

One can compute the minimal energy Emin as the large β

limit of the free energy (13):

EBethe(h, u) =
m∑

a=1

Ea({hi→a}i∈∂a) +
n∑

i=1

Ei({ua→i}a∈∂i )

+
∑

(i,a)∈E

Eia(hi→a, ua→i ), (22)

which is exact when the factor graph is a tree. In the above
expression Ei, Ea, Eia are defined as follows:

Ea({hi→a}i∈∂a) = 2 min
i∈∂a

(|hi→a|)	
(∏

i∈∂a

hi→a

)
,

Ei({ua→i}a∈∂i ) = −
∣∣∣∣∣si +

∑
a∈∂i

ua→i

∣∣∣∣∣+∑
a∈∂i

|ua→i|,

Eia(hi→a, ua→i ) = −|ua→i + hi→a| + |ua→i| + |hi→a|. (23)

With soft constraints, i.e., J finite, the factor contribution
Ea({hi→a}i∈∂a) to the Bethe minimal energy (22) is replaced
by

Ea({hi→a}i∈∂a) = 2 min
(

J, min
i∈∂a

|hi→a|
)
	

(∏
i∈∂a

hi→a

)
. (24)

E. Decimation

The output of the BP algorithm is just an estimate of
single-site marginals, and to find a solution to the optimization
problem, one needs to convert these marginals into a spe-
cific spin configuration. However, note that picking σ ∗ where
σ ∗

i = arg maxbi(σi) does not lead to a good result in general,
as it disregards existing correlations between variables (e.g.,
in case of problems with hard constraints this strategy can
lead to inconsistencies, since σ ∗ in general does not satisfy
the constraints). To overcome this issue one typically resorts
to decimation, i.e., a sequential assignment of the variables
according to their beliefs.

In practice, we use the fact that the set of XORSAT
constraints is a linear system of equations to improve our
algorithm. We first build a basis for this linear system (e.g.,
by means of Gaussian elimination), thereby identifying a
subset of independent variables. The decimation procedure
is then applied only to these independent variables. Once all
independent variables are fixed, the remaining variables are
determined by the linear constraints, thus ensuring that we
obtain a solution to the linear system. At each time step,
the algorithm solves iteratively the belief-propagation equa-
tions (11) and computes the marginal probabilities of each
variable. Then, the algorithm picks the most biased variable,
i.e., i∗ = arg maxi[μi(+) − μi(−)] among the independent
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variables that are not yet decimated, samples σi ∈ {−1, 1}
according to its marginal μi and switches on a strong external
field in the corresponding direction, in such a way that σi

is now fixed in the direction of its belief. We worked with
sufficiently large value of β (in practice we used β = 3),
such that the measure (6) is reasonably concentrated around
configurations achieving the minimal energy E (σ ). In the
limit of β → ∞ (max-sum equations), the system should be
fully concentrated on the configurations of minimal energy.
If the minimum is not unique, then decimation is still needed
to break the symmetry between equivalent ground states. Al-
ternatively, one can add a small symmetry-breaking random
external field so that the ground state becomes unique. This is
the strategy we adopted for max-sum.

F. Reinforcement

An alternative to decimation is reinforcement, which con-
sists in updating the external field on a variable according to
its belief, thus guiding the system to full polarization. Rein-
forcement is also sometimes called soft decimation, as it sets
at each iteration a soft external field of all variables instead of
a strong field on only one variable.

The reinforcement procedure can also be employed to help
convergence of MS equations, the small external fields accu-
mulate during time (before convergence) to drive the system
to a model with strong external fields for which convergence
is easier to achieve.

At each iteration t of the max-sum algorithm (19), the
external field on each variable is updated according to its
belief

s(t+1)
i = s(t )

i + γ (t )h(t )
i , (25)

with h(t )
i the max-sum belief (20) computed at time t , and γ (t )

a used-defined reinforcement schedule. In practice we used
the same value at each iteration γ (t ) ≡ γ ∼ N−1

iter where Niter

is the number of iterations.

G. Survey propagation

In regions of the parameter space in which the 1RSB
formalism is more appropriate, one could try to employ an
iterative algorithm based on its description. One possibil-
ity is survey propagation, that in a completely analogous
way to the belief-propagation algorithm, iterates 1RSB equa-
tions [described later in Eq. (B35)]. Survey propagation is
complemented with a decimation procedure.

III. A SIMPLE CASE: CYCLE CODES

We start our analysis with a family of linear systems
called cycle codes. They correspond to systems of linear equa-
tions [in GF(2)] in which each variable participates in at most
2 equations. In the graphical representation, a cycle code is
a bipartite graph G = (V, F, E ) in which each variable node
i ∈ V has degree � 2. This particular ensemble has a simple
structure that allows to provide exact results. In particular,
we provide in Sec. III B a rigorous proof of the exactness
of max-sum solution. We also design a greedy optimal (GO)
algorithm that is guaranteed to find the optimal solution (see
Sec. III C).

FIG. 1. Results for cycle codes: rate-distortion performance for
the algorithms GO and max-sum with reinforcement on graphs of
size n = 1800, degree profile �(x) = x2, P(x) = pkxk + pk+1xk+1.
Points are the average over 20 random graphs and source vectors.

A. Comparison of cavity predictions and algorithmic
performances on single instances

We focus on a family of random graph ensembles with
factor degree profile P = {pk, pk+1}, with k a positive integer,
and pk, pk+1 ∈ [0, 1] with pk + pk+1 = 1. The variable degree
profile is � = {λ2 = 1}: each variable node has fixed degree
2. The rate for this family of instances can be expressed as a
function of k and pk+1:

R(k, pk+1) = 1 − 2

k + pk+1
. (26)

Varying k and pk+1 allows to span the range R ∈ [0, 1].
Figure 1 shows the performance of the algorithms GO (red
circles) and max-sum with reinforcement (green squares) for
graphs with variables of degree 2, compared to the zero-
temperature replica-symmetric prediction (gray dashed line).

As in the rest of the paper, results in Fig. 1 are presented
in the rate-distortion plane, using the framework of lossy com-
pression. The blue line corresponds to the exact rate-distortion
bound given in Eq. (1), i.e., the minimal distortion achievable
at a given rate R. The red line corresponds to the distortion
achieved with the trivial compression strategy described in
the introduction (see Sec. I A). Note that points relative to
max-sum have a slightly larger distortion than the results of
GO. This is due to the fact that max-sum does not converge
on all instances, contrarily to the algorithm GO that provides
the exact solution on all instances. In case of nonconvergence,
the strategy adopted was to split the variables in a set of in-
dependent and dependent variables, as explained in Sec. II E.
After some running time, although max-sum algorithm solv-
ing Eq. (19) has not converged, one fixes the value of the
independent variables according to their max-sum belief (20),
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and fixes the dependent variables to satisfy the set of linear
constraints.

For rate up to R = 0.6 [i.e., for k � 5)], we observe a good
agreement between the zero-temperature replica-symmetric
cavity prediction and the results of the algorithms (GO and
max-sum). Indeed, we found numerically that the unique so-
lution of the zero-temperature 1RSB equations (B36) is the
trivial RS solution (B37) for R < 0.6, which confirms that
we are in the replica-symmetric phase in this regime. For
larger rates (R > 0.6), there are several signs indicating that
the zero-temperature RS solution is not correct: first there is a
discrepancy between its predicted average distortion and the
results obtained with GO on large (n = 16 000) instances (see
Fig. 2). Above R = 0.95, the distortion computed with the RS
ansatz even goes below the exact rate-distortion lower bound.
We were able to obtain a physical solution by considering the
finite-temperature cavity method described in Appendix B 1
(see Fig. 2, black points are a large β extrapolation of the
RS prediction at finite β). We leave for future work a fur-
ther exploration of this regime, in particular to explain the
discrepancy between finite and zero-temperature cavity meth-
ods. It might be that in this regime one cannot exchange the
thermodynamic and zero-temperature limit, and therefore that
the zero-temperature cavity method is not correct. It is also
possible that a RSB transition occurs as k increases; however,
we could not confirm this hypothesis since we encountered
some convergence issues when trying to solve numerically the
1RSB equations at zero temperature (B36).

B. Exactness of the max-sum fixed points

For cycle codes, max-sum fixed points correspond to opti-
mal solutions. This can be seen as a consequence of Ref. [21]
(extension of Theorem 3 mentioned in the conclusive part),
plus a certain property that guarantees that local optimality
ensures global optimality for cycle codes. More explicitly,
any suboptimal configuration can be improved by modifying
it along a cycle or open path ending on leaves. We will provide
however a separate proof for the sake of completeness.

A key hypothesis is that degeneracy on the ground state is
removed (by, e.g., adding an small random external field on
each variable) so that the minimum is unique.

The main tool being used in the proof is the computation
tree, whose features are reviewed here, before stating the
proof.

1. Computation trees

A computation tree is a loop-free graph obtained from a
loopy one. Here we will follow the notation in Ref. [22].
In principle, computation trees can be built for any graph,
although here we will focus on factor graphs.

Given a bipartite graph G = (V, F, E ), the idea is to pick a
variable node i0 ∈ V to be the root and then unroll G around it,
respecting the local structure of each node. Starting from the
root, the first level of the computation tree is formed by the
root’s neighbors. The second level is made of the first level
nodes’ neighbors, except the root. The third level is made of
the second level nodes’ neighbors, except the ones already
connected from above. Proceeding in this way for a number

FIG. 2. Results for cycle codes: for rates R > 0.6 there is a dis-
crepancy between the RS zero-temperature prediction (gray dashed
line) and the GO results on large instances (red circles). A zero-
temperature extrapolation of the RS finite-temperature cavity method
(black diamonds) allows to recover the correct distortion.

k of levels produces the level-k computation tree with root i0
called T k

i0 .
The concept is best explained through an example, shown

in Fig. 3. Nodes in the original graphs have multiple counter-
parts in the computation tree. Sometimes it is useful to refer to
those counterparts with the same name as the respective nodes
in the original graph.

1

2

2

4
3

45 3
5

11

FIG. 3. A graph (left) and its computation tree rooted at variable
1 (right). Variables are indicated by circles and factors by squares.
The dashed lines at the bottom in the right graph indicate that the
tree can grow to arbitrary depths.

054101-7



ALFREDO BRAUNSTEIN et al. PHYSICAL REVIEW E 106, 054101 (2022)

2. Statement and proof

The problem of finding the minimum of the distortion or
energy E expressed as

min
x:Hx=0

E (x) = min
x:Hx=0

n∑
i=1

xi ⊕ yi, (27)

i.e., the Hamming distance between x and the source vector
y. Consider a MS fixed point on the factor graph G. Call
{hi→a, ua→i} i∈V

a∈F
, {hi}i∈V , respectively, the messages and be-

liefs and let

gi =
{

0 if hi > 0
1 if hi < 0 (28)

be the decision variables.
Claim. If there is a unique solution, and if the max-sum

algorithm has converged, then the set of decision variable
corresponds to the optimal solution.

Proof. Pick a node i0 and build the computation tree T k
i0

obtained by unrolling the original graph around i0 until there
are at least r counterparts of each vertex in V and so that all
leaves are variable nodes; i0 will be the root.

Now place messages {ua→i} on the edges of T k
i0 that corre-

spond to the original edges {(a, i)} on G. Attach to all nodes
that are leaves in the computation tree but were not leaves
in the original graph, a fictitious factor that sends a message
equal to the one flowing out of the leaf. By construction,
decision variables on the computation tree are now equal to
the ones in the original graph.

Consider now the optimization problem with the same
structure of the original one but defined on the computation
tree. Messages on T k

i0 constitute a solution for the MS equa-
tions: they are naturally fulfilled in the inner part of the tree
and imposed on the leaves by the fictitious factors. Since MS
is exact on trees, the assignment {gi} (replicated for each of the
counterparts in T k

i0 of each variable in G), is an exact solution
for the problem defined on the computation tree.

Now call the optimum for the original problem

x∗ = arg min
x:Hx=0

E (x). (29)

Suppose (absurd) that decision variable gi0 for the root is
different from its value in the optimal assignment, x∗

i0 . Namely,
gi0 = x∗

i0
, where x is the complement of x under GF(2). We

show that it is always possible to find a path P on T k
i0 such that

complementing every variable along such path results in an
improvement in the objective function of the problem defined
on the tree. This contradicts the fact that {gi} is an optimum.

The key idea is the following: suppose two vectors x1, x2
are both solutions of Hx = 0 but differ in the root variable i0.
If i0 is disconnected from the rest of the graph, then x1 and
x2 can have all the other bit equal to each other and be two
solutions. If i0 has degree 1, then the single factor attached
to it must have at least another incident variable with value
different in x1 and x2 for the parity check to be satisfied. If
i0 has degree 2, then the above must be true for both factor
neighbors. With these observation in mind, let us move to the
explicit construction of path P .

To construct path P , start from the root i0, pick any of its
factor neighbors, which by construction are at most two, and

do the following: look at all the variable nodes incident on the
factor and pick one for which the decision variable disagrees
with the optimal solution. There will always be at least one for
the parity-check to be satisfied, as explained before. Include
that variable in the path and move on to its other factor if there
is any. The process is halted when either a leaf is encountered
and the path ends or the root is found again.

In case the path ends on a leaf, go back to the root and
repeat the process in the other direction, or end the path on the
root if the root is a leaf. In case the path ends in a cycle, carry
on extending the path repeating the same choice of variables
to be included, until the leaves of the computation tree are
reached. Let us stress that the resulting path P only touches
variables which have different values in the solutions on G and
T k

i0 .
At this point, the path stemming on both sides from the root

can either end on a “true” leaf of T k
i0 (one that corresponds

to a leaf also on G) or continue until the bottom of the tree,
where the fictitious factors are. We prove our claim in the
worst case, where both branches of the path go all the way
down, the others follow easily.

Call P ′ the projection of P on G: it may contain cycles.
Again thanks to the fact that no parity check can be left
unsatisfied, if P ′ is an open path, then its endpoints must be
leaves of G. Call E0 the energy of the optimal configuration
x∗ and E0 + ε the energy of the first nonoptimal one. Further,
call xP and xP ′ the indicator functions of paths P on T k

i0 and
P ′ on G, respectively.

For sure, since x∗ gives a minimum, a transformation
x∗ ⊕ xP ′ that complements the variables touched by P ′ gives
a positive shift in energy,

E (x∗ ⊕ xP ′ ) � E0 + ε. (30)

Because the energy function (27) is a sum over functions of
single nodes, the shift in energy is only due to the flip of vari-
ables in P ′. After the flip, all the touched variables assumed
the value they have on T k

i0 . But this means that complementing
them on T k

i0 would reverse the shift, thus lowering the energy
of the problem defined there by at least ε for each repetition
of P ′, at least in the bulk.

If P ′ is a path, then the same negative shift in energy
happens along P on T k

i0 , finding a better optimum than {gi} and
thus contradicting the starting point. If instead, P goes down
all the way to the fictitious factors, then the improvement gets
multiplied times the number of repetitions of P ′, although it
might in principle be outbalanced by the change in energy due
to the interaction of the one or two leaves P ends on with their
fictitious factors. An upper bound for this changes is given by
the maximum absolute difference in messages on the tree,

umax = max
(i,a)∈P ′

|ua→i|. (31)

Since there is no limit to the tree’s depth, it suffices to repeat
the path enough times to be sure that energy will decrease.
This amounts to choosing k so that

kε > umax. (32)

Namely,

k >
umax

ε
. (33)
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The same argument can be repeated for all v0’s for which the
solution on the computation tree differs from the presumed
optimal one.

This completes the proof.

C. An optimal greedy algorithm

In this section we present the greedy optimal algorithm
GO that performs a local search in the energy landscape, de-
creasing at each time step the energy E (x) =∑n

i=1 xi ⊕ yi, by
flipping variables in the codeword x ∈ C to obtain a codeword
x′ with lower energy E (x′) < E (x).

For this algorithm all variable nodes should have fixed
degree 2, (If not, then one can add an equation to the system
involving all leaf variables. This equation is clearly linearly
dependent on the other ones, as it is the GF(2) sum of
all rows.) One considers a slightly simplified factor graph
G ′ = (F, E ′) in which the set of new vertices is the set of
factor nodes F , and the edges e′ = (a1, a2) ∈ E ′ are linking
two vertices a1, a2 ∈ F through the variable node i ∈ V such
that ∂i = {a1, a2}. For any codeword x = t (x1, . . . , xn) and
source vector y = t (y1, . . . , yn), one defines a weight func-
tion w(x,y) : E ′ → {−1, 1} on the graph G ′ as follows. The
edge e′

i ∈ E ′ passing through the variable node i associated
to the ith boolean component has weight w(x,y)(e′

i ) = +1 if
the components of the source vector y and of the current
codeword x coincides: xi = yi, and w(x,y)(e′

i ) = −1 otherwise.
One then looks for a negative cost cycle L, using the algorithm
presented in Ref. [23]. Let xL be the indicator function on the
negative cost cycle L. Flipping the variables belonging to L
results in a new codeword x′ = x ⊕ xL with a strictly smaller
energy.

The algorithm starts with a given codeword x0 ∈ C which
may not be the optimal codeword. Then at each time step
t it finds a negative cost cycle Lt for the weight function
w(y,xt ), and flip the variables in the cycle to get a lower energy
state: xt+1 = xt ⊕ xLt

. One repeats this procedure until con-
vergence, i.e., when the difference between energies �E =
E (xt+1) − E (xt ) becomes zero (up to numerical precision).
Finding a negative cost cycle can be done efficiently [24].

IV. MOVING TO HIGHER DEGREES

We have shown in the previous section that the constrained
optimization problem CVP on cycle codes (i.e., in which
variable nodes have degree at most 2) could be solved exactly.
In this section we study random graph ensembles in which
variable nodes have higher degree. We show that moving to
these ensembles allows to reach a smaller minimal energy.
We focus on random graph ensembles with variable degree
profile � = {λ2, λ3}, i.e., with a fraction λ2 of variable nodes
with degree 2, and a fraction λ3 = 1 − λ2 of variable nodes
with degree 3. The factor degree profile is P = {p3 = 1}, i.e.,
factor nodes have fixed degree 3. This is the simplest choice
providing a nontrivial phase diagram. In this ensemble the
compression rate can be expressed in terms of the fraction of
degree 3 variables:

R(λ3) = 1 − λ3

3
∈ [0, 1/3]. (34)

We will compare this random graph ensemble to cycle codes,
where the variable degree profile is P = {p3 = 1}, � =
{λ1, λ2} (i.e., there is a fraction λ1 of degree-1 variables, and
a fraction λ2 = 1 − λ1 of degree-2 variables). In this ensem-
ble we express the rate in terms of the fraction of degree 1
variables:

R(λ1) = 1 + λ1

3
∈ [1/3, 2/3]. (35)

A. Results from the cavity method

Figure 4 (left panel) shows the results of the zero-
temperature cavity method, under the RS formalism (plain
lines) and the 1RSB formalism (circles). For the ensemble
with variable nodes of degree 1 and 2 corresponding to
rate (35) (in green), we see that the RS and 1RSB predictions
are the same. Indeed for this ensemble the unique 1RSB
solution that we found was the trivial RS solution. For this
graph ensemble, the minimal distortion achievable is larger
than the one for the graph ensemble studied in the previous
section with rate (26), which is also reported in Fig. 4 (gray
dashed line). It is more interesting to look at the graph ensem-
ble in which variable nodes have degree 2 and 3 corresponding
to Eq. (34) (in pink). The RS prediction (pink line) is clearly
unphysical, because at small rates it goes below the rate-
information bound (blue line). The 1RSB formalism is needed
to give a reliable prediction of the minimal distortion for
this ensemble: pink circles correspond to the 1RSB solution
obtained at Parisi parameter y = yopt (R); see the discussion
in Sec. V A. We see that it enters in a 1RSB phase as soon
as there is a positive fraction of degree 3 variables λ3 > 0
(see in particular the details close to λ3 = 0 in the right
panel of Fig. 4). The clustering transition occurs therefore at
RCVP

d = 1/3, and is represented by the vertical dashed line in
Fig. 4 (left panel). This 1RSB prediction is confirmed by a
finite-size analysis presented in Sec. IV C. We could reach the
physical solution down to rate R = 0.15 (left-most pink cir-
cle). For smaller rates, we could not find a physical solution.
We give more details on the numerical resolution of the 1RSB
equations in the next section (see Sec. V A), in particular on
the difficulties encountered for small rates.

The vertical plain line indicates the rate at which the dy-
namical transition occurs for the XORSAT problem: R⊕

d =
0.197, which corresponds to the clustering transition associ-
ated with the measure (6) at β = 0. In V B, we compute the
clustering transition Rd (β ) for finite values of β, thus making
the interpolation between the clustering threshold R⊕

d at β = 0
and RCVP

d at β = ∞ (see Fig. 8). There is therefore a range
of the rate R ∈ [R⊕

d , RCVP
d ] for which the constrained opti-

mization problem is in a 1RSB phase, while the underlying
XORSAT problem defining the set of constraints is replica-
symmetric. This situation is interesting because it means that
the structure of the set of constraints is not enough to describe
the complexity of the constrained optimization problem.
In the range [R⊕

d , RCVP
d ], the set of allowed configurations

(defined as the solution set of the XORSAT instance) is rather
well-connected, yet, and despite the simplicity of the opti-
mization function (7), the optimization problem is in a glassy
phase: The energy landscape presents many local minima
that are separated by free-energy barriers. A similar situation
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FIG. 4. Left panel: zero-temperature cavity prediction of the minimal distortion. In green: for variable nodes of degree 1 and 2 (35),
in pink: for variable nodes of degree 2 and 3 (34). 1RSB points are obtained by optimizing on the Parisi parameter y, see Sec. V A. Plain
lines correspond to the RS prediction, circles correspond to the 1RSB prediction. The gray dashed line corresponds to the RS prediction for
the ensemble studied in the previous section (26). The two vertical lines corresponds to the clustering transitions occuring for the CVP (at
RCVP

d = 1/3, dashed line) and for the XORSAT problem (at R⊕
d = 0.197, plain line). Right panel: detail close to R = 1/3 obtained at fixed

y = 1.0 for the minimal distortion (top) and the complexity (bottom) showing that the clustering transition is continuous.

has been recently encountered in other high-dimensional con-
strained optimization problems; see Ref. [25] for a study of
the optimization of a quadratic function where the constraints
are modeled by a perceptron constraint satisfaction problem.
Moreover, we observe that the RS/1RSB transition is con-
tinuous; see Fig. 4 (right panel). In contrast, the RS/1RSB
transition for the underlying constrained satisfaction problem
(the XORSAT problem) is a random first-order transition.

The physical scenario we have found in this constraint
satisfaction problem can be summarized as follows: (i) the set
of allowed solutions is well connected until it undergoes a ran-
dom first-order transition (RFOT) and become clustered for
R < R⊕

d , (ii) however, already for R < RCVP
d , the application

of an external field in a random direction induces a continuous
transition. This is reminiscent of what happens in the p-spin
model [26], where the discontinuous phase transition becomes
continuous under the application of an external field. Let us
give a simple intuition of the structure of solutions in this
problem. The most abundant solutions are well connected for
any R > R⊕

d . However, this strong connectedness is no longer
true as soon as we put a bias in any direction and we concen-
trate the measure on a subset of solutions: leaving the region
where the most abundant solutions live, for any R < RCVP

d , the
space of solutions acquires a nontrivial structure that in turn
induces a continuous phase transition and requires the replica
symmetry to be broken to describe correctly this nontrivial
structure. Eventually at R⊕

d also the most abundant solutions
acquire a nontrivial structure (actually undergo a clustering
transition) and this is likely to have important consequences
for algorithms. Indeed, while a problem undergoing a con-
tinuous transition can be well approximated by polynomial
algorithms, we expect a RFOT to induce a much more serious

algorithmic barrier. We explore algorithmic consequences in
the next subsection.

B. Algorithmic results

In this subsection, we report the results obtained with the
algorithms described in Sec. II. Figure 5 shows the results of
max-sum with reinforcement (red stars), belief propagation
with decimation at finite inverse temperature β = 3 (blue
squares), and survey propagation with decimation (green dia-
monds) at y = yopt (R) maximizing the 1RSB free energy; see
the discussion in Sec. V A. The result of the zero-temperature
cavity method within the 1RSB ansatz is also reported (pink
circles). For rates in the range [0.25, 1/3] there is good
agreement between the cavity prediction and the algorithmic
results. As the rate decreases, one observes a jump toward
solutions with higher distortion found by the three algorithms,
while the cavity method predicts a smaller distortion. This de-
crease in performance arises around the XORSAT dynamical
transition occurring at R⊕

d = 0.197. In the clustered regime
R < R⊕

d , none of the three algorithms is able to find the opti-
mal solution.

This result is interesting, because the algorithmic tran-
sition does not match with the phase transition associated
to the constrained optimization problem that we found at
RCVP

d = 1/3, instead it matches with the clustering transition
for the XORSAT problem that models the constraints (and
which is not related to the optimization function). A possible
explanation for the fact that algorithms perform well in the
range [0.25, 1/3] and undergo a dramatic algorithmic transi-
tion only approaching R⊕

d = 0.197 is the following. As long
as R > R⊕

d the most abundant solutions are well connected
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FIG. 5. Rate-distortion performance for max-sum with reinforce-
ment (red stars), for belief propagation with decimation at β = 3
(blue squares), and survey propagation at y maximizing the 1RSB
free energy (green diamonds), on graphs of size n = 1800, degree
profile � = {λ2, λ3}, P = {p3 = 1}. Points are the average over 15
random graphs and source vectors.

(they undergo a clustering transition only at R⊕
d = 0.197) and

the phase transition induced by the external field (the linear
function to be optimized) is continuous.1 In this situation we
expect optimizing algorithms to perform in an efficient way:
on the one hand, the space of solutions is well connected by
passing through the most abundant (although not very opti-
mized) solutions, and, on the other hand, a continuous phase
transition induces correlations that can be well approximated
by polynomial algorithms. For these reasons, we expect smart
optimizing algorithms, like the ones we have used, to perform
reasonably well above R⊕

d . Obviously the performances of
these algorithms start degrading already above R⊕

d , because
approaching the clustering transition at R⊕

d the structure of
solutions starts acquiring a spongelike topology, that will
eventually break up in separated cluster at R⊕

d . When the
topology is spongelike, with tiny corridors connecting the
regions that will become soon clusters, the application of the
external field can have dramatic effect, effectively anticipating
the clustering transition.

Eventually for R < R⊕
d the most abundant solutions are

clustered and moving between solutions becomes very dif-
ficult, effectively inducing large algorithmic barriers. In this
regime the effects of the RFOT are manifest and all the al-
gorithms get stuck in solutions of very large distortion. This

1We stress than the problem in this region probably undergoes a
full replica-symmetry-breaking (FRSB) transition, but we are able to
perform only a 1RSB computation, that should approximate closely
the actual solution.

FIG. 6. Exact enumeration. The four top lines with points corre-
spond to (from top to bottom) n = 16, 32, 48, 96. Further down, the
n → ∞ predictions are made by means of a linear fit in 1/n. In pink:
prediction of the zero-temperature 1RSB cavity method.

reminds the threshold energy phenomenon, well known in
glassy models and hard optimization problems [27].

A last important comment about the connection between
the dynamical behavior of these smart algorithms and the
thermodynamic phase diagram of the problem is about the
possibility that smart algorithms do not converge on solutions
that dominates the equilibrium measure. This has been already
observed in constraint satisfaction problems [28] and in the
binary perceptron problem [29]. The finite-temperature study
reported in Sec. V B predicts that the clusters in this problem
are pointlike, i.e., they are made of only one solution, but
these solutions should be very hard to find by algorithms. It
is therefore more likely that the solutions found by message-
passing algorithms in Fig. 5 belong to atypical, large clusters.
We conjecture that these clusters are subdominant and thus
not described by the cavity method, but yet are the relevant
clusters from an algorithmic point-of-view, since they are
made of solutions that are more accessible for algorithms.

C. Exact enumeration

Given that no linear-time message-passing algorithm can
approach the optimal distortion predicted by the RSB cavity
method at zero temperature, we need a different numerical
approach to convince the reader that the analytical prediction
based on the cavity method is actually meaningful. We have
performed an exact enumeration for small sizes and a finite-
size study of the random graph ensemble with degree profile
� = {λ2, λ3}, P = {p3 = 1} to compare with the results of
the zero-temperature 1RSB cavity method. Figure 6 shows
the exact results for sizes n ∈ {16, 32, 48, 96}. The results
are averaged over several instances drawn at random from
the random graph ensemble Gn(�, P). For each instance, the
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FIG. 7. Left panel: y dependence of the RSB solution for R = 0.17: top left: 1RSB free energy F 1rsb
e , top right: internal distortion Dint (y),

the horizontal black line indicates the rate-distortion bound DI (R), bottom left: complexity �e(y), bottom right: weight Pavg(J ). Right panel:
optimal value of y computed for several rates. Population size is 5 × 105 and J = 20.

solution set of the associated XORSAT instance is computed
exactly, and the solution with minimal distortion is extracted.
A linear extrapolation is done in the large size limit, which
is in good agreement with the 1RSB cavity prediction. This
exact enumeration procedure allows to give predictions for
rates smaller than R = 0.15, below which the 1RSB cavity
method does not provide a physical solution. We remind that
the physically correct solution probably requires the breaking
of the replica-symmetry infinite times (FRSB), so instabilities
in the 1RSB solution at very small rates do not come as a
surprise.

V. A MORE DETAILED PICTURE OF
THE PHASE DIAGRAM

In this section, we give more details on the results obtained
with the cavity method, in particular for the random graph
ensemble with degree profiles � = {λ2, λ3}, P = {p3 = 1}.

A. Instability in the zero-temperature solution

The results of the zero-temperature cavity method (see
Fig. 4) have been obtained by taking simultaneously the limit
β → ∞ for the inverse temperature and x → 0 for the Parisi
parameter, with a finite value for y = βx. As explained in
the Appendix (B 2) we used the softened measure (8) for the
numerical resolution of the zero-temperature cavity equations,
as it allowed us to represent populations of max-sum messages
as finite vectors of size 2J + 1. In the large β limit, the soft-
ened measure (8) concentrates on configurations minimizing
the energy (9). In the 1RSB phase, the set of these configura-
tions is split into an exponential number of clusters separated
by free-energy barriers. Since x → 0, all the clusters are
weighted identically (independently of their size). The choice
of the value of y to describe correctly the cluster decompo-
sition is delicate. Following the seminal work of Ref. [19],

one should compute the 1RSB free energy F 1rsb
e defined in

Eq. (B33) and maximize it over y. In practice, for each value
of the rate plotted in Fig. 4, we studied the y-dependence of
the solution of the zero-temperature 1RSB equations (B36).
Figure 7. shows the study of the y-dependence for rate R =
0.17 (left panel), the vertical red line indicates the optimal
value yopt (R). The right panel shows the optimal value of y
as a function of the rate. For each value of the rate, from the
solution of the 1RSB equations we computed the 1RSB free
energy F 1rsb

e (y) and the zero-temperature complexity �e(y)
[see Eq. (B42)]. We also computed the internal distortion
Dint (y), from the internal energy as Dint (y) = 2Uint (y) − 1
[see Eq. (B40)]. For the appropriate choice of y, Dint (y) gives
a prediction for the minimal distortion. Finally, we also com-
puted the averaged distribution of cavity fields,

Pavg(h) =
∫

dP1rsb(P)P(h). (36)

From this study one deduces the optimal value of y for
each rate yopt (R), as the value maximizing the free energy
F 1rsb

e (y), under the following constraints: the complexity is
positive �e(y) > 0, the internal distortion is above the Rate-
Distortion bound Dint (y) > DI , with DI solution of Eq. (1),
and the averaged distribution Pavg has a zero weight in ±J .
To justify this last constraint, let us recall the interpreta-
tion of the max-sum beliefs hi as the difference between the
ground-state energy obtained when the variable σi is flipped:
hi = Emin

i (+) − Emin
i (−). If hi = ±J , when the variable i is

flipped, to obtain a solution with minimal energy one can
either rearrange O(J ) other variables, or one can violate a
constraint (see the definition of the soft energy function 9),
thus resulting in a configuration that is not satisfying all the
constraints. We therefore discard solutions having a nonzero
weight in ±J , as they could correspond to configurations that
are not solution of the XORSAT problem.
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FIG. 8. Top left panel: Dynamical (RS/RSB) threshold value βd (R) observed with the finite-temperature method. Top right panel: finite-
temperature (blue points) and zero-temperature (pink points) predictions for the minimal distortion, against BP performances at β = 3 (blue
squares). The finite-temperature prediction is made at the clustering transition β = βd . Bottom left panel: Inter-state overlap q0 (blue points)
and intrastate overlap q1 (red stars) as β increases, at fixed rate R = 0.25, showing the clustering transition at βd = 1.1. Bottom right panel:
complexity as β increases, at fixed rate R = 0.25, showing the clustering transition at βd = 1.1 and the condensation transition at βc ≈ 1.3.

From the study of rate R = 0.17, we see that F 1rsb
e (y)

increases smoothly as y increases, until y = 0.46 where there
is a jump toward a solution with Pavg(±J ) > 0. Since at
y = 0.46 all the constraints mentioned above are satisfied, we
therefore obtain yopt (R = 0.17) = 0.46 As the rate decreases,
this y-study becomes more and more difficult because this
transition becomes more and more pronounced, in particular
the jump in F 1rsb

e (y) increases thus lowering the accuracy
in the determination of yopt. For rate smaller than R = 0.15
we could not find a value of y satisfying all the constraints

(positive complexity, distortion above DI , and zero-weight in
J). Since we did not find a physical 1RSB solution despite our
efforts, we conjecture the existence of a transition toward a
2RSB or even full RSB phase at smaller rates. We leave this
investigation for future work.

B. A finite-temperature study

In this section, we perform a finite β study of the prop-
erties of the measure μ(σ ) defined in Eq. (6), using the

054101-13



ALFREDO BRAUNSTEIN et al. PHYSICAL REVIEW E 106, 054101 (2022)

finite-temperature cavity method described in Appendix B 1.
The objective is to explain the results obtained in the previ-
ous section. We saw indeed with the zero-temperature cavity
method that the optimization problem (obtained in the large
β limit) is in a 1RSB phase as soon as R < RCVP

d = 1/3 (i.e.,
as soon as λ3 > 0). However, we know that the underlying
XORSAT problem [described by the measure (6) at β = 0]
is in a RS phase down to R⊕

d = 0.197. We therefore computed
the clustering transition βd (R) line in the R-β plane, see Fig. 8
(top left panel), to make the interpolation between β = 0 and
β → ∞. What we are finding via this computation is that for
any R < RCVP

d = 1/3 increasing β soon or later the measure
undergoes a phase transition.

The top right panel shows the finite-temperature RS pre-
diction of the minimal distortion Dmin(β ) computed at the
clustering transition β = βd (R). For R large enough (i.e., for
R � 0.25), the finite-temperature prediction Dmin[R, βd (R)])
(blue points) is very close to the results obtained at β =
∞ (pink points). As R gets closer to R⊕

d = 0.197, the
clustering inverse temperature βd (R) decreases, and the finite-
temperature prediction Dmin[R, βd (R)] increases. What is
relevant to stress is that BP+decimation is following closely
the values of Dmin[R, βd (R)] and seems to undergo a very
similar transition. It looks like if BP were trying to optimize
the finite-β measure and got stuck at the dynamical transi-
tion βd . Obviously when βd is very small (and specially for
R < R⊕

d when βd = 0) it is unrealistic than BP can not do
better than a random guess, and indeed the distortion reached
by BP+decimation is always lower than 0.5 even for small R.

The bottom panels of Fig. 8 show in more details the
RS/RSB transition happening at fixed rate R = 0.25 (i.e., with
λ3 = 0.25), for a population of size 105, as β increases. The
overlaps q0 and q1 [see Eq. (B23) in Appendix B] are plotted
against β in the bottom left panel. One sees that the clustering
transition happens at βd = 1.1: for β < βd one has q0 = q1

while for β > βd one has q1 − q0 > 0 strictly. As soon as we
enter in the 1RSB phase, the overlap inside a state q1 becomes
equal to 1. This means that the clusters are pointlike (the same
phenomenon happens for the binary perceptron [30]).

The bottom right panel shows the complexity �(x = 1)
[see Eq. (B25)] computed at rate R = 0.25 and for increasing
β. The complexity has a large uncertainty and eventually
becomes negative for βc ≈ 1.3, which means that there could
be a condensation transition. From these data it is very hard
to say whether there is a RFOT or the transition is eventually
FRSB. In any case we have to remind that in models like this
one and the binary perceptron where clusters are pointlike,
the algorithms are unlikely to reach the pointlike clusters
are much more likely to converge to rare and subdominant
clusters of large entropy [29,31]

VI. CONCLUSION

In this paper we have performed a quantitative study of
a random constrained optimization problem called closest
vector problem (CVP). Notwithstanding the simple definition
of the model which has linear constraints in GF(2) plus a
linear function to optimize, we have uncovered several non-
trivial phase transitions, that turn out to be related to the

performances of the best algorithms searching for optimal
solutions (which are message-passing algorithms).

Using the zero-temperature cavity method, we have pro-
vided analytical predictions for the minimal energy in several
random ensembles of instances. For the special case of cycle
codes, where variables are involved in at most two constraints,
we were able to provide exact results, in particular we proved
the exactness of the output of max-sum algorithm.

Willing to get closer to the Shannon bound, one has to
consider the problem where variables are involved in more
than two constraints: in this case several interesting phase
transition take place lowering the rate. We have identified two
different clustering transitions, one affecting the solution set
of the linear system of constraints (occurring at R⊕

d = 0.197),
and the other one affecting the set of solutions achieving the
minimal energy (occurring at RCVP

d = 1/3). More precisely,
we found a regime R ∈ [R⊕

d , RCVP
d ] in which the solution set

of the linear system is rather well connected, yet the energy
landscape is glassy and the set optimal solutions is clustered.
Surprisingly, the message-passing algorithms perform well in
this regime, and start to be less efficient only in the phase
where the solution set of the linear system is itself clustered.
We provide a possible explanation to the above observations
based on the different nature of the transition, continuous
versus discontinuous. It seems that the random first-order
transition and the strong clustering of solutions happening
only for R < R⊕

d is at the heart of the computational hardness
of the problem. It is worth studying further how much this is
related to the overlap gap property [32].

APPENDIX A: MOVING TO GF(q)

As shown in the context of channel coding [33] and source
coding [34], distortion performance can be improved by work-
ing with variables in the finite field GF(q) with q = 2k, k ∈ N,
as a generalization of binary numbers. In this case the parity
check matrix H has elements Hai ∈ {0, 1, . . . , q − 1}, and
similarly for the source vector y.

The Boltzmann distribution (8) becomes

μ(x) = 1

Z

m∏
a=1

I

[⊕
j∈∂a

Ha jx j = 0

]
exp

[
−β

n∑
i=1

dH (xi, si )

]
,

(A1)
where by ⊕ we indicate the XOR function, which applies
point-wise to the binary representation of GF(2k ) numbers.
The Hamming distance dH (x, y) between two numbers in
GF(2k ) is the number of ones in the binary representation of
x ⊕ y. The operation Ha jx j is intended as the GF(2k ) multipli-
cation.

The max-sum equations in GF(q) read

ua→i(xi ) = max
xa\i :

⊕
k∈∂a Hakxk=0

[ ∑
j∈∂a\i

h j→a(x j )

]
− Ĉa→i,

hi→a(xi ) =
∑

b∈∂i\a

ub→i(xi ) − dH (xi, yi ) − Ci→a, (A2)

where Ci→a and Ĉa→i are constants ensuring respectively that
maxxi hi→a(xi ) = 0 and maxxi ua→i(xi ) = 0.
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FIG. 9. Rate-distortion performance for the GF(q) max-sum al-
gorithm on codes of n = 6720 bits (points), plotted against the
replica-symmetric prediction (plain lines). The degree profile is
�(x) = {λ2 = 1}, P(x) = {pk, pk+1}. Points are the average over 10
random graphs and source vectors. For each instance, max-sum was
run from five random initializations of messages, the one that gave
the minimum number of unsatisfied constraints was kept.

For a source vector y ∈ {0, 1}n, the corresponding GF(2k )
counterpart is obtained by grouping bits in groups of k and
interpreting them as binary code. Of course vector sizes must
be adjusted as to produce integer values. Likewise, given a so-
lution for the problem on GF(2k ), one unwraps each element
into k bits and concatenates them to obtain a binary vector.

Figure 9 shows the results of max-sum algorithm with re-
inforcement, plotted against the replica-symmetric prediction.
Increasing q, one observes indeed that the average minimal
distortion decreases. The results of max-sum and the RS pre-
diction starts to differ when q increases, especially at large
rate R. This phenomenon was already encountered for q = 2
(see main text, Sec. III A in particular, Fig. 2). We leave for
future work the investigation of this discrepancy, as already
argued in Sec. III A it is possible that the zero-temperature
cavity method is not correct in this regime. Another possibility
is the apparition of a 1RSB or full RSB phase transition as q, R
increases for cycle codes.

APPENDIX B: EQUATIONS FOR THE CAVITY METHOD

The aim of the cavity method is to characterize the proper-
ties of the probability measure (6), for typical random graphs
in Gn(�, P) and realization of the external fields s1, . . . , sn,
in the thermodynamic limit. In this Appendix we explain
the main steps of the cavity method. In particular, we de-
scribe the zero-temperature cavity method, which focus on the
zero-temperature limit at which the probability measure (6)
concentrates on the configurations satisfying the constraints

and achieving the minimal energy. We start by describing the
finite-temperature version of the cavity method (see Sec. V B).

1. Finite-temperature cavity method

We start with the study of the properties of Eq. (6) at finite
β. The cavity method allows to compute the quenched free-
energy density:

F (�, P, β ) = lim
n→∞

1

n
EG,s[F (G, s, β )], (B1)

and the average energy:

E (�, P, β ) = lim
n→∞

1

n
EG,s[〈E (σ )〉], (B2)

where EG,s is the average over the random ensemble of XOR-
SAT instances defined by a bipartite graph G drawn from
Gn(�, P) and a set of external fields s drawn independently
and uniformly in {−1, 1}, and the bracket is the average over
the measure μ [defined in Eq. (6)].

a. Replica-symmetric cavity method

There are several version of the cavity method. In the
simplest version, called replica-symmetric (RS), we assume
a fast decay of the correlations between distant variables in
the measure μ(σ ) defined in Eq. (6) in such a way that the BP
equations converge to a unique fixed point on a typical large
instance. Consider an uniformly chosen directed edge i → a
in a random bipartite graph G, and call Prs the probability law
of the fixed-point message mi→a thus obtained. Similarly, call
Qrs the probability of the message m̂a→i. Within the decor-
relation hypothesis of the RS cavity method, the incoming
messages on a given variable node (respectively, factor node)
are i.i.d. with the law Qrs (respectively, Prs). This implies that
the laws Prs and Qrs must obey the following equations:

Prs(m) =
∞∑

d=0

λ̃d

∑
s

1

2

∫ d∏
a=1

dQrs(m̂a)

× δ(m − f bp[m̂1, . . . , m̂d ; s)],

Qrs(m̂) =
∞∑

k=0

p̃k

∫ k∏
i=1

dPrs(mi )δ[m̂ − f̂ bp(m1, . . . , mk )],

(B3)

where f bp(m̂1, . . . , m̂d ; s) and f̂ bp(m1, . . . , mk ) are shorthand
notations for the r.h.s. of the BP equations (11), and λ̃d , p̃k are
the residual degrees:

λ̃d = dλd∑dmax
i=1 iλi

, p̃k = kpk∑kmax
i=1 ipi

. (B4)

We numerically solved these equations with population dy-
namics. The RS cavity prediction of the quenched free-energy
F (�, P, β ) is then obtained by averaging the Bethe expres-
sion (13) with respect to the message distributions Prs and Qrs:

− βF rs(�, P, β )

=
∑

s

1

2

dmax∑
d=1

λd

∫ d∏
a=1

dQrs(m̂a) log Zi(m̂1, . . . , m̂d ; s)
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+ α

kmax∑
k=1

pk

∫ k∏
i=1

dPrs(mi ) log Za(m1, . . . , mk )

− davg

∫
dPrs(m)dQrs(m̂) log Zia(m, m̂), (B5)

with α =
∑dmax

i=1 iλi∑kmax
i=1 ipi

the density of constraints, davg =∑dmax
i=1 iλi

the mean variable degree, and Zi, Za, Zia defined in Eq. (14).
Similarly, the RS prediction of the average internal energy is

E rs(�, P, β ) = −
∑

s

1

2

dmax∑
d=1

λd

∫ d∏
a=1

dQrs(m̂a)

×
∑

σ sσeβσ s
∏d

a=1 m̂a(σ )∑
σ eβσ s

∏d
a=1 m̂a(σ )

. (B6)

b. 1RSB formalism

The hypothesis underlying the RS cavity method must
break down when the density of constraints α become too
large, leading to the replica-symmetry-breaking (RSB) phe-
nomenon. In such a case it becomes necessary to use more
refined versions of the cavity method to describe the typ-
ical properties of the problem. The first nontrivial level is
called the one step replica-symmetry-breaking (1RSB) cavity
method. It postulates the decomposition of the configuration
space into clusters, such that the restriction of the measure
μ to a cluster has good decorrelation properties and can be
described by the RS cavity method. More precisely, we index
by γ the partition of the configuration space into clusters, and
denote Zγ (β ) the contribution to the partition function Z (β )
of the γ th cluster, as well as mγ

i→a, m̂γ

a→i the solution of the
BP equations that describe it. The 1RSB cavity method aims
at computing the potential

�1rsb(x, β ) = lim
n→∞

1

n
EG,s

(
ln

{∑
γ

[Zγ (β )]x

})
. (B7)

The Parisi parameter x allows to weight differently the various
clusters. The original problem is described by the choice x =
1. The potential (B7) contains precious information about the
cluster decomposition. Suppose that, at the leading exponen-
tial order, there are �(φ) clusters γ with Zγ = eNφ (neglecting
subexponential corrections). The complexity �(φ) plays the
role of the entropy density, in an auxiliary model where
the clusters are replacing usual configurations. The potential
�1rsb(x) and the complexity �(φ) are Legendre transform of
each other:

�1rsb(x) = sup
φ

[�(φ) + xφ]. (B8)

This relation can be inverted:

�(x) = �1rsb(x) − x
d

dm
�1rsb(x). (B9)

One introduces, for a given sample and a given edge (i, a) of
the bipartite graph G, two distributions Pi→a and Qa→i that
encode the laws mγ

i→a and m̂γ
a→i when the cluster γ is cho-

sen randomly with probability proportional to (Zγ )x. These

distributions obey the self-consistent equations:

Pi→a(mi→a) = 1

Z1rsb
i→a

∫ ∏
b∈∂i\a

dQb→i(m̂b→i )

× δ[mi→a − f bp({m̂b→i}b∈∂i\a; si )]zi→a

× ({m̂b→i}b∈∂i\a; si )
x,

Qa→i(m̂a→i ) = 1

Ẑ1rsb
a→i

∫ ∏
j∈∂a\i

dPj→a(mj→a)

× δ[m̂a→i − f̂ bp({mj→a} j∈∂a\i )]ẑa→i

× ({mj→a} j∈∂a\i )
x, (B10)

where zi→a, ẑa→i are the normalization constants in the BP
equations (11), and the factors Z1rsb

i→a, Ẑ1rsb
a→i ensure the normal-

ization of Pi→a and Qa→i respectively. To average over the
random ensemble of instances one introduces the probability
distributions over the 1RSB messages P1rsb(P) and Q1rsb(Q),
that obey the consistency relations similar to Eq. (B3):

P1rsb(P) =
∞∑

d=0

λ̃d

∑
s

1

2

∫ d∏
a=1

dQ1rsb(Qa)

× δ[P − F (Q1, . . . , Qd ; s)],

Q1rsb(Q) =
∞∑

k=0

p̃k

∫ k∏
i=1

dP1rsb(Pi )δ[Q − F̂ (P1, . . . , Pk )],

(B11)

where F (Q1, . . . , Qd ; s) [respectively, F̂ (P1, . . . , Pk )] is a
shorthand notation for the r.h.s. of the first (respectively, sec-
ond) equation in Eqs. (B10). The 1RSB potential (B8) can be
computed from the solution of these equations:

�1rsb(x, β )

= α

kmax∑
k=1

∫ k∏
i=1

dP1rsb(Pi ) log Z1rsb
a (P1, . . . , Pk )

+
∑

s

1

2

dmax∑
d=1

λd

∫ d∏
a=1

dQ1rsb(Qa)

× log Z1rsb
i (Q1, . . . , Qd ; s)

− davg

∫
dP1rsb(P)dQ1rsb(Q) log Z1rsb

ia (P, Q), (B12)

with

Z1rsb
a (P1, . . . , Pk ) =

∫ k∏
i=1

dPa(ma)Za(m1, . . . , mk )x,

Z1rsb
i (Q1, . . . , Qd ; s) =

∫ d∏
a=1

dQi(m̂i )Zi(m̂1, . . . , m̂d ; s)x,

Z1rsb
ia (P, Q) =

∫
dP(m)dQ(m̂)Zia(m, m̂)x, (B13)
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with Zi, Za, Zia defined in Eq. (14). Finally, the 1RSB predic-
tion of the quenched free entropy is

−βF 1rsb = inf
x∈[0,1]

[
�1rsb(x)

x

]
. (B14)

Note that the 1RSB equations (B11) always admit the RS
solution as a trivial fixed point, in which the distributions P
(respectively, Q) in the support of P1rsb (respectively, Q1rsb)
are Dirac measures:

P1rsb(P) =
∫

dPrs(h)δ[P − δ(· − h)], (B15)

with Prs solution of the RS equation (B3) and similarly for
Q1rsb. For small values of the density of constraints α, this
trivial solution is the only one, then F 1rsb = F rs and the pre-
dictions given by the RS and 1RSB cavity method coincide:
we are in the RS phase. Increasing α, nontrivial solutions
of Eq. (B11) can appear. The clustering threshold αd (β )
is defined as the smallest value of α for which the 1RSB
equations at x = 1 admit a nontrivial solution. If the asso-
ciated complexity �(x = 1) is positive, then the extremum
in Eq. (B14) is reached for x = 1 and therefore F 1rsb = F rs.
In that case the typical solutions of the measure (6) have
split into an exponential number of clusters, in such a way
that the total free energy is unable to detect the difference
with the RS situation. This phase is called the dynamic 1RSB
phase. If instead one has �(x = 1) < 0, then the extremum
in Eq. (B14) is is reached at a nontrivial value xs < 1 of the
Parisi parameter. The number of clusters is subexponential,
and the computation of the free energy allows to detect the
1RSB phenomenon. One calls condensation threshold αc(β )
the smallest value of α for which a solution of the 1RSB
equations (B11) with �(x = 1) < 0 exists.

c. Simplifications for x = 1

As explained in the previous subsection the dynamical-
1RSB phase is well described by the choice x = 1 for the
Parisi parameter. We have focused on this paper on the
computation of the clustering threshold αd (β ), which allows

us to restrict our analysis to x = 1. We can also detect the
condensation phenomenon by computing the complexity at
x = 1 and looking at the first value αc for which it be-
comes negative. The complete 1RSB equations can be largely
simplified for the special value of the parameter x = 1. As
explained in Ref. [35], the first step is to note that the
normalizations Z1rsb

i→a (respectively, Ẑ1rsb
a→i) depends only on

the distributions {Qb→i}b∈∂i\a (respectively, on {Pj→a} j∈∂a\i)
through their mean value. Define m̄[P], ¯̂m[Q] as the averages:

m̄[P](σ ) =
∫

dP(m)m(σ ), ¯̂m[Q](σ ) =
∫

dQ(m̂)m̂(σ ),

(B16)

then one can check that the normalization constant Z1rsb
i→a

depends on the distributions Q1, . . . , Qd only through the
averages ¯̂m[Q1], . . . , ¯̂m[Qd ] (and similarly for Ẑ1rsb

a→i):

Z1rsb
i→a(Q1, . . . , Qd , s) = zi→a( ¯̂m[Q1], . . . , ¯̂m[Qd ], s),

Ẑ1rsb
a→i(P1, . . . , Pk ) = ẑa→i(m̄[P1], . . . , m̄[Pk]) = 1. (B17)

Then, one can check that the random variable m̄[P], ¯̂m[Q]
obtained by drawing P (respectively, Q) from P1rsb(P)
[respectively, Q1rsb(Q)] obey the RS equations (B3), and
therefore are distributed according to the RS distributions
Prs, Qrs. One defines the conditional averages:

P(m|m̄) = 1

Prs(m̄)

∫
dP1rsb(P)P(m)δ(m̄ − m̄[P]),

Q(m̂| ¯̂m) = 1

Qrs( ¯̂m)

∫
dQ1rsb(Q)Q(m̂)δ( ¯̂m − ¯̂m[Q]). (B18)

We can get closed equations on these distributions (that we
will not write here, see Ref. [35] for a complete derivation of
these equations), that still have a reweighting term. To get rid
of it one defines

Pσ (m|m̄) = m(σ )

m̄(σ )
P(m|m̄), Qσ (m̂| ¯̂m) = m̂(σ )

¯̂m(σ )
Q(m̂| ¯̂m)

(B19)

and obtains the following closed equations:

Pσ (m|m̄)Prs(m̄) =
dmax−1∑

d=0

λ̃d

∑
s

1

2

∫ d∏
a=1

dQrs( ¯̂ma)δ[m̄ − f bp( ¯̂m1, . . . , ¯̂md ; s)]
∫ d∏

a=1

dQσ (m̂a| ¯̂ma)δ(m − f bp(m̂1, . . . , m̂d ; s),

Qσ (m̂| ¯̂m)Qrs( ¯̂m) =
kmax−1∑

k=1

p̃k

∫ k∏
i=1

δ[ ¯̂m − f̂ bp(m̄1, . . . m̄k )]
∑

σ1,...,σd

ν(σ1, . . . , σd |m̄1, . . . , m̄k, σ )

×
∫ k∏

i=1

dP(mi|m̄i )δ[m̂ − f̂ bp(m1, . . . mk )], (B20)

where

ν(σ1, . . . , σd |m̄1, . . . , m̄k, σ ) = I
[
σ
∏k

i=1 σi = 1
]∏k

i=1 m̄i(σi )∑
σ1,...,σk

I
[
σ
∏k

i=1 σi = 1
]∏k

i=1 m̄i(σi )
. (B21)

The above equations can be solved with population dynamics, with two populations of triples {(m̄i, m+
i , m−

i ) : i = 1, . . . ,N }
and {( ¯̂mi, m̂+

i , m̂−
i ) : i = 1, . . . ,N }. In this formalism, the trivial RS solution (B15) of the 1RSB equations takes the following

form:

Pσ (m|m̄)Prs(m̄) = δ(m − m̄)Prs(m̄), Qσ (m̂| ¯̂m)Qrs( ¯̂m) = δ(m̂ − ¯̂m)Qrs( ¯̂m). (B22)
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We use the intrastate overlap q0 and the inter-state overlap q1 to determine the apparition of the dynamical-1RSB phase at αd (β ):

q0 =
∫

dPrs(m̄)

[∑
σ

σ m̄(σ )

]2

, q1 =
∫

dPrs(m̄)
∑

σ

σ m̄(σ )
∫

dPσ (m|m̄)

[∑
σ ′

σ ′m(σ ′)

]
. (B23)

In the RS phase one has q0 = q1, while in the dynamical-1RSB phase q0 > q1 strictly. One can compute the thermodynamic
quantities from the solution of Eq. (B20). At x = 1, one can check that the 1RSB potential (B7) equals the RS free-entropy:
�1rsb(x = 1) = φrs = −βF rs(β ) [with F rs(β ) defined in Eq. (B5)]. The 1RSB internal free energy, i.e., the average over the
clusters of the free energy associated to one cluster can be computed from the 1RSB solution at x = 1 (see Eq. (54) of Ref. [35]):

φint (x = 1) =
dmax∑
d=1

λd

∑
s

1

2

∫ d∏
a=1

dQrs( ¯̂ma)
∑

σ

eβsσ
∏k

a=1
¯̂ma(σ )

Zi( ¯̂m1, . . . , ¯̂md , s)

∫ d∏
a=1

dQσ (m̂a| ¯̂ma) log[Zi(m̂1, . . . , m̂d , s)]

+ α

kmax∑
k=1

pk

∫ k∏
i=1

dPrs(m̄i )
∑

σ1,...,σk

I[
∏k

i=1 σi = 1]
∏k

i=1 m̄i(σi )

Za(m̄1, . . . , m̄k )

∫ k∏
i=1

dPσi (mi|m̄i ) log[Za(m1, . . . , mk )]

− davg

∫
dPrs(m̄)dQrs( ¯̂m)

∑
σ

m̄(σ ) ¯̂m(σ )

Zia(m̄, ¯̂m)

∫
dQσ (m̂| ¯̂m)dPσ (m|m̄) log Zia(m, m̂). (B24)

From the 1rsb potential �1rsb and the internal free energy φint

one can deduce the complexity,

�(x = 1) = �1rsb(x = 1) − φint (x = 1). (B25)

Finally, the 1RSB prediction for the internal distortion, i.e.,
the average over the clusters of the distortion associated to
one cluster can also be computed at x = 1. One can check that
it equals the RS prediction of the average distortion Dint (x =
1) = Drs = (1 + E rs )/2, with E rs defined in Eq. (B6).

2. Zero-temperature cavity method

We are interested in the computation of the average (over
the random ensemble of instances) of the averaged energy
〈E (σ )〉 over the measure (6) in the large β limit:

Emin = lim
n→∞

1

n
EG,s

[
lim

β→∞
〈E (σ )〉μβ

]
. (B26)

In this limit one obtains the minimal energy, or equivalently
the minimal distance Dmin = (1 + Emin)/2 achieved between
the source and the closest codeword, in average over the
random ensemble of instances. A simplified version of the
cavity method can be developed in this limit, called the zero-
temperature cavity method. We will work with the softened
version of the probability measure μJ defined in Eq. (8), with
J a real parameter that is conjugated to the number of unsat-
isfied constraints, because it allows to simplify the numerical
resolution of the zero-temperature RS and 1RSB equations.

a. Replica-symmetric formalism

In the RS formalism, one assumes that the max-sum equa-
tions (19) and (21) admit a unique solution, that describe
correctly the properties of the measure (8) in the large β limit.
For a uniformly chosen directed edge i → a in a random
bipartite graph G, we define prs the probability law of the
fixed-point message hi→a, and similarly the probability law qrs

of the message ua→i. The laws prs and qrs obey the following

self-consistency relations:

prs(h) =
∞∑

d=0

λ̃d

∑
s

1

2

∑
u1,...,ud

δ[h − f ms(u1, . . . , ud ; s)]

×
d∏

a=1

qrs(ua),

qrs(u) =
∞∑

k=0

p̃k

∑
h1,...,hk

δ[u − f̂ ms(h1, . . . , hk )]
k∏

i=1

prs(hi ),

(B27)

where f ms(u1, . . . , ud ; s) and f̂ ms(h1, . . . , hk ) are shorthand
notation for the r.h.s. of the MS equations (19) and (21). The
above equations can be rewritten in a simplified form. Define
p0(h) = 1

2 [δ(h, 1) + δ(h,−1)] and let � be the convolution
operation. We obtain for prs(h)

prs =
dmax∑
d=1

λ̃d

⎛⎝p0 � qrs � · · · � qrs︸ ︷︷ ︸
d times

⎞⎠, (B28)

while we obtain for qrs(u), when u > 0,

qrs(u) =
kmax∑
k=1

p̃k2k−1

{[∑
h�u

prs(h)

]k

−
[∑

h>u

prs(h)

]k}

and qrs(0) =
kmax∑
k=1

p̃k (1 − [1 − prs(0)]k ) when u = 0. (B29)

With a finite parameter J , the factor-to-variable ua→i take
integer values in [−J, J] while the variable-to-factor messages
hi→a take integer values in [−1 − J (dmax − 1), 1 + J (dmax +
1)]. Equations (B28) and (B29) can be solved numeri-
cally in an iterative way, with real vectors representing the
distributions prs and qrs. Once a solution to the RS equations is
found, the RS cavity prediction of the minimal Energy Emin is
then obtained by averaging the Bethe expression with respect
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to the message distributions prs and qrs:

E rs =
dmax∑
d=1

λk

∑
u1,...,uk

Ei(u1, . . . , ud )
d∏

a=1

qrs(ua) (B30)

+α

∞∑
k=0

pk

∑
h1,...,hk

Ea(h1, . . . , hk )
k∏

i=1

p(rshi ) (B31)

− davg

∑
h,u

Eia(h, u)prs(h)qrs(u), (B32)

with Ei, Ea, Eia defined in Eqs. (23) and (24).

b. 1RSB formalism

In the 1RSB zero-temperature formalism one takes simul-
taneously the limit x → 0 and β → ∞ with a fixed finite
value of a new parameter y = βx. Taking this limit in the
expression of the 1RSB potential �1rsb(x) [Eq. (B8)] one
obtains the zero-temperature version of the 1RSB potential:

�1rsb
e (y) = −yF 1rsb

e (y) = sup
E

[�e(E ) − yE ]. (B33)

The zero-temperature complexity �e(E ) counts the (exponen-
tial) number of clusters with a given minimal energy E , these
clusters being counted independently of their size. It can be
computed via an inverse Legendre transform of the potential
�e(y):

�e(y) = �1rsb
e (y) − y

d

dy
�1rsb

e (y). (B34)

As in the finite β formalism, we assume the partition of
the configuration space into clusters indexed by γ , in such
a way that each cluster is described by a solution of the
max-sum equations (19) and (21). The parameter y allows
to weight the clusters according to their Bethe Energy Eγ =
EBethe({hγ

i→a, uγ
a→i}) [see Eq. (22)]. We introduce for a given

sample and a given edge (i, a) of the factor graph, two
distributions pγ

i→a and qγ
a→i that encode the laws hγ

i→a and
uγ

a→i when the cluster γ is chosen randomly with probability
proportional to e−yEγ . These distributions obey the follow-
ing self-consistent equations [similar to the equations for the
finite-temperature case (B10)]:

pi→a(hi→a) = ey|hi→a|

z1rsb
i→a

∑
{ub→i}b∈∂i\a

∏
b∈∂i\a

qb→i(ub→i )

×
( ∏

b∈∂i\a

e−y|ub→i|
)

× δ[hi→a − f ms({ub→i}b∈∂i\a; si )]

qa→i(ua→i) = 1

ẑ1rsb
a→i

∑
{h j→a} j∈∂a\i

∏
j∈∂a\i

p j→a(h j→a)

× δ[ua→i − f̂ ms({h j→a} j∈∂a\i )]. (B35)

We can now average over the random ensemble of instances.
Let (i, a) be a uniformly chosen edge in a factor graph drawn
from the random ensemble with degree profile (�, P). One in-
troduces the probability distributions over the 1RSB messages
P1rsb

e (p) and Q1rsb
e (q) over the messages pi→a, qa→i. They

obey the consistency relations, that are the zero-temperature
version of the 1RSB equations (B11):

P1rsb
e (p) =

∞∑
d=1

λ̃d

∑
s

1

2

∫ d∏
b=1

dQ1rsb
e (qb)

× δ[p − Fe(q1, . . . , qd ; s)],

Q1rsb
e (q) =

∞∑
k=1

p̃k

∫ k∏
j=1

dP1rsb
e (p j )δ[q − F̂e(p1, . . . , pk )],

(B36)

where Fe(q1, . . . , qd ; s) [respectively, F̂e(p1, . . . , pk )] is a
shorthand notation for the r.h.s. of the first (respectively, the
second) equation in Eqs. (B35). These equations always admit
a trivial fixed point,

P1rsb
e (p) =

∑
h

prs(h)δ[p − δ(· − h)],

Q1rsb
e (q) =

∑
h

qrs(u)δ[q − δ(· − u)], (B37)

with prs and qrs solution of the RS equation (B27). In the RS
phase, this trivial fixed point is the unique solution, while in
the 1RSB phase, the trivial solution becomes unstable and the
above equations admits a nontrivial solution. The clustering
transition in the β → ∞ limit is therefore defined as the
smallest density of constraints α such that the 1RSB equa-
tions (B36) admit a nontrivial solution. The 1RSB potential
�1rsb

e (y) can be computed from the solution of these equa-
tions:

�1rsb
e (y)

= −davg

∫
dP1rsb

e (p)Q1rsb
e (q)φe,ia(p, q; y)

+
∞∑

d=0

λd

∑
s

1

2

∫ d∏
a=1

dQ1rsb
e (qa)φe,i(q1, . . . , qd ; s, y)

+ α

∞∑
k=0

pk

∫ k∏
i=1

dP1rsb
e (pi )φe,a(p1, . . . , pk ; y), (B38)

with

φe,i = log

[ ∑
u1,...,ud

e−yEi (u1,...,ud ;s)
d∏

i=1

qi(ui )

]
,

φe,a = log

[ ∑
h1,...,hk

e−yEa (h1,...,hk )
k∏

a=1

pa(ha)

]
,

φe,ia = log

[∑
h,u

eyEia (h,u) p(h)q(u)

]
, (B39)

with Ei, Ea, Eia the terms in the Bethe Energy defined in
Eqs. (23) and (24). One can also compute the internal energy,
which is the average (over the clusters) of the Bethe Energy

054101-19



ALFREDO BRAUNSTEIN et al. PHYSICAL REVIEW E 106, 054101 (2022)

associated to one cluster:

U 1rsb
int (y)

= −davg

∫
dP1rsb

e (p)Q1rsb
e (q)Uia(p, q; y)

+
dmax∑
d=1

λd

∑
s

1

2

∫ d∏
a=1

dQ1rsb
e (qa)Ui(q1, . . . , qd ; s, y)

+ α

∞∑
k=0

pk

∫ k∏
i=1

dP1rsb
e (pi )Ua(p1, . . . , pk ; y), (B40)

with

Ui =
∑

u1,...,ud

Ei(u1, . . . , ud ; s)e−yEi (u1,...,ud ;s)∏d
i=1 qi(ui )∑

u1,...,ud
e−yEi (u1,...,ud ;s)

∏d
i=1 qi(ui )

,

Ua =
∑

h1,...,hk

Ea(h1, . . . , hk )e−yEa (h1,...,hk )∏k
a=1 pa(ha)∑

h1,...,hk
e−yEa (h1,...,hk )

∏k
a=1 pa(ha)

,

Uia =
∑
h,u

Eia(h, u)eyEia (h,u) p(h)q(u)

eyEia (h,u) p(h)q(u)
. (B41)

Note that at finite J , the internal energy contains a term
minimizing the number of violated constraints and a term
minimizing the distortion between the source and the configu-
ration [see Eq. (9)]. We can expect that for J large enough the
cost of violating a clause (cost 2J) becomes large compared
to the distortion cost in such a way that the support of the
measure μ is concentrated on configurations satisfying the
constraints. Finally, one can compute the zero-temperature
complexity �e(y) from the 1RSB potential �1rsb

e and the in-
ternal energy U 1rsb

int :

�e(y) = �1rsb
e (y) + yU 1rsb

int (y). (B42)

APPENDIX C: SPARSENESS OF THE BASIS

In this Appendix we focus on the case where variable nodes
have degree at most 2. We build a basis spanning the set of
codewords C = {x : Hx = 0, x ∈ {0, 1}n} using a version of
the leaf removal algorithm in which one chooses the variables
to be removed according to their depth. We show that the
Hamming weight of basis vectors is upper-bounded by the so-
lution of a message-passing equation introduced in Ref. [18]
by Montanari and Semerjian. Using the replica-symmetric
formalism, we can predict the value of this upper bound for
random XORSAT instances with a given degree profile, in the
thermodynamic limit. When the RS prediction for the upper
bound is finite, it indicates that the basis vectors constructed
with this procedure have a sublinear Hamming weight. There-
fore, the basis is sparse, which means that the set of codewords
is well connected, because from any codeword it is possible
to reach any other codeword by jumping between codewords
that differ in only a sublinear number of variables (see the
discussion in Sec. I C).

1. Construction of the basis

The construction of the basis uses the leaf removal (LR)
algorithm applied to the bipartite factor graph G = (V, F, E )

with variable nodes in V , factor nodes in F , and edge set
E . Variable nodes can have degree at most 2. If all variable
nodes have degree 2, then one removes a factor node (a
row in the parity-check matrix H) to uncover some leaves.
We will see at the end of this section (see Appendix C 5)
that it leaves the set of codewords C unchanged. At each
time step t , the LR algorithm removes a variable node vt

among the leaves present in the graph, according to its depth.
More precisely, the algorithm picks a variable uniformly at
random among the leaves with smallest depth (i.e., closest
to a leaf in the original graph). The unique factor node at

that was attached to vt is also removed, thus uncovering new
leaves in the new factor graph. Since in our setting variables
have at most degree 2, and assuming the graph to be con-
nected, the core of G must be empty, therefore the procedure
ends at t = m, when all the factor nodes in F have been
removed. The variables have been split in two sets: the m
variables removed v1, . . . , vm are called the dependent ones,
and the remaining ones are independent variables (denoted
w1, . . . ,wn−m). This procedure allows to rewrite H in upper
triangular form by a permutation of the rows and columns of
H . The first m columns correspond to the dependent variables
v1, . . . , vm. The rows are ordered correspondingly: the t th row
corresponds to factor node at (i.e., a1, . . . , am from top to
bottom). The last n − m columns correspond to the n − m
independent variables (in arbitrary order). This permutation
transforms H into a matrix (T |U ) with T a m × m matrix
in upper triangular form, and U is a m × (n − m) matrix.
Finally, one performs Gaussian elimination to transform the
matrix (T |U ) into (Im|U ′), with Im the identity matrix of size
m, and U ′ = T −1U a m × (n − m) matrix. The basis vectors
of the codebook C are obtained as the n − m columns of the
following matrix of size n × (n − m), built with two blocks:
on top there is −U ′, below there is the identity In−m of size
n − m. Let w be an independent variable, with ∂w = {a, b}
its two neighbors factor nodes. We call p∗

w→a (respectively,
p∗

w→b) the shortest path going from w to a leaf of G, with the
constraint that the first step goes through a (respectively, b).
We show in the following that the nonzero entries of the basis
vector associated of w correspond to the variables in the set
{w} ∪ ({p∗

w→a ∪ {p∗
w→b} \ {p∗

w→a ∩ p∗
w→b}).

2. Row operations

During Gaussian elimination, one performs additions of
the rows L1, . . . , Lm of the matrix T to obtain the rows
L′

1, . . . , L′
m of the identity matrix Im. By definition the row Lm

at the bottom does not have to be modified, it is already in the
right form, thus L′

m = Lm. Looking at the row above Lm−1, if
the unique element at the right of the diagonal term is nonzero
then one performs the row addition L′

m−1 = Lm−1 + Lm. If
not then it means that Lm−1 is already in the right form and
there is no need to change it: L′

m−1 = Lm−1. We can proceed
in that way going from bottom row to top row. When one
looks at the ith row Li, all the rows L′

j , with j > i below
are already in the right form (only the diagonal term is non
zero). One has to look for the nonzeros elements of Li, say
they are at position u > i, v > i, w > i, then one needs to do
the operation L′

i = Li + L′
u + L′

v + L′
w.
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The operation on each row can be written as L′
t = Lt +∑

s∈Bt
Ls, with Bt a subset of {t + 1, . . . , m}, that can be inter-

preted in terms of the paths explored by leaf removal. Say that
at time t − 1 during LR algorithm, the graph contains q leaves
with smallest depth d , denoted {u1, . . . , uq}, and possibly
other leaves with larger depths. At time t , the algorithm picks
one leaf with smallest depth d: vt = ui for some i ∈ {1 . . . , q}.
The variable vt is removed, as well as the unique factor node
at attached to vt at time t − 1. The degree of the variables in
∂at \ vt is decreased by 1. Those that had degree 1 at time
t − 1 become of degree 0 at time t , and are added to the set of
independent variables. Those that had degree 2 at time t − 1
become leaves at time t , and can be removed by the algo-
rithm at later times. These variables have depth exactly d + 1.
Indeed they cannot have a degree > d + 1 because they are
connected to vt which is of degree d . They cannot have a
degree < d , otherwise they would have been removed at a
previous time. They cannot have degree exactly d , because
in that case they would be connected (in the original graph)
to another variable of depth d − 1, which therefore has been
removed at a previous time < t and this would mean that
they have degree 1 at time t − 1. The set Bt can be defined
recursively as the set of all the variable nodes that have been
visited by a path starting from node vt . More precisely, Bt is
a tree of root vt , and the variables in the first generation of Bt

are the variables ∂at \ vt that have depth d + 1 and that has
been picked by the algorithm at times t ′ > t . A variable vt ′′

of the second generation have depth d + 2, and is linked to a
variable vt ′ ∈ ∂a \ vt that belongs to the first generation. The
variable vt ′′ has become a leaf at time t ′, and have then been
visited by the algorithm at time t ′′ > t ′. The next generations
are built similarly, the variables of the rth generation in Bt

having depth d + r. The tree ends in dependent variables v

that are surrounded by variables that have not been picked
by the algorithm (i.e., that belongs to the set of independent
variables w1, . . . ,wn−m). The tree Bt is represented in Fig. 10
on a small example. If at a later time t < s � t + q another
leaf u j in {u1, . . . , uq} is explored: vs = u j , then a new subset
Bs, disjoint from Bt , will be built starting from vs.

3. Effect of row operations on U

We want to know how many nonzero entries are created
in U ′ when the row operations L′

t = Lt +∑s∈Bt
Ls are per-

formed. The columns of U correspond to the independent
variables w1, . . . ,wn−m that have not been removed by the
LR algorithm. This means that at some time step the degree of
these variables has become zero. One can distinguish between
two cases: either the independent variable wi had degree 2 in
the initial graph G, or it had degree 1.

(1) In the first case let s, t be the two time steps at which
the two factor nodes as and at linked to wi have been re-
moved. In the ith column of U there is 2 nonzero entries
at positions s and t . The variable vs (respectively, vt ) that
have been removed at s (respectively, at t) belongs to ∂as \ wi

(respectively, to ∂at \ wi). Moreover, there is an unique s0 < s
(respectively, an unique t0 < t) such that vs0 (resp vt0 ) is a
leaf in the initial graph, and such that vs ∈ Bs0 (respectively,
vt ∈ Bt0 ). It might be that these two leaves coincides: vs0 = vt0 .
Let Ps0→s ⊆ Bs0 (respectively, Pt0→t ⊆ Bt0 ) be the path going

FIG. 10. On a small example, the tree B4 (in red) started from the
variable v4 removed at t = 4. The row operation for the fourth row is
thus L′

4 = L4 + L8 + L9.

from vs0 to vs in the tree Bs0 (respectively, from vt0 to vt in the
tree Bt0 ).

(a) If vs0 �= vt0 , then one can check that in the ith col-
umn of U ′ there is nonzero entries in all the positions
corresponding to the variables belonging to one of the two
paths Ps0→s and Pt0→t . This is the case for the variable w5

(see Fig. 11).
(b) If vs0 = vt0 , then the beginning of the two paths

coincides for some variables {vs0 → · · · → vr} = Ps0→s ∩
Pt0→t . After some factor node ar the paths splits in two
parts. The subset {wi} ∪ Li with Li = (Ps0→s ∪ Pt0→t ) \
(Ps0→s ∩ Pt0→t ) forms a loop (or a set of disjoint loops)
that passes through as, at , and ar . One can check that the
nonzero entries in the ith column of U ′ coincides with the
variables belonging to Li. This is the case for the variable
w7 (see Fig. 11, with L7 = {v8, v9})
(2) In the second case wi has degree 1 in the initial graph

(i.e., wi has depth 0). Let t be the time at which the unique
factor node at linked to wi has been removed. Since the
LR algorithm picks always variables with smallest depth,
this means that the variable vt that has been picked by the
algorithm has also depth 0. Therefore, in this case the path
is reduced to the unique variable vt : Pt→t = {vt }. In the ith
column of U ′, there is a unique nonzero entry at the t th
position, and zeros elsewhere. This is the case for the variable
w2 on Fig. 11, the associated column in U ′ has a nonzero entry
at position t = 3.

By construction, Ps0→s (respectively, Pt0→t ) is a path of
strictly decreasing depth, going from wi to a leaf s0 (respec-
tively, t0), where the first step goes through as (respectively,
at ). Since a path of strictly decreasing depth must be the
shortest path to a leaf, Ps0→s is actually the shortest path
from w to a leaf, with the first step going through at :
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FIG. 11. The two paths P2→6 = {v2, v6} (in green) and P4→8 =
{v4, v8} (in blue) going from leaves v2 and v4 toward the independent
variable w5. The nonzero entries in the fifth column of U ′ corre-
sponding to w5 are at the 2nd, 4th, 6th, and 8th positions.

Ps0→s = p∗
wi→as

using the notations introduced in the first
section of this Appendix (and similarly Pt0→t = p∗

wi→at
).

Note that we restrict ourselves to nonbacktracking paths,
i.e., paths of the form p = [p(1) = i1, p(2) = a1, . . . , p(2w −
1)] = iw (alternating variable nodes and factor nodes), such
that p(t ) �= p(t + 2) ∀t .

4. Upper bound

We just showed that the basis vector bw relative to the inde-
pendent variable w is of the form bw = xp∗

w→a
⊕ xp∗

w→b
⊕ x{w}

where ∂w = {a, b}, and p∗
w→a (respectively, p∗

w→b) is the
shortest path going from w to a leaf, where the first step goes
through a (respectively, b). We have used the notation xI , with
I ⊆ V , where the vector xI contains nonzero entries only at
indices i ∈ I . The Hamming weight of the basis vector bw

relative to independent variable w can be upper bounded as
follows:

w(bw ) � w(xp∗
w→a

) + w(xp∗
w→b

).

Therefore, if the two paths p∗
w→a, p∗

w→b have length o(n), then
so do the basis vector, making the basis sparse. Note that when
measuring the length of a path or a distance, we count +1
every time a variable node is met (i.e., we do not count the
factor nodes present in the path).

The length w(p∗
i→a) for any variable node i ∈ V can

actually be computed exactly as the solution of the message-
passing equations for the minimal size rearrangement, defined
in Eq. (36), Sec. V A of Ref. [18], that we rewrite here with an
additional update scheme:

h(t+1)
i→a = 1 +

∑
b∈∂i\a

min
j∈∂b\i

h(t )
j→b, h(t )

i = 1 +
∑
b∈∂i

min
j∈∂b\i

h(t )
j→b,

(C1)

where the set b ∈ ∂i \ a is made of either one or zero elements,
because the degree of variables is � 2. As usual, we use the
convention that summing over an empty set gives zero, and the
minimum over an empty set is +∞. In case of a tree, the quan-
tity hi corresponds exactly to the weight of the minimal size
rearrangement, which is the smallest set of variables that are
needed to be flipped when the variable xi is flipped. Notice that
these equations are nothing but the max-sum updates for our
problem (19) with all si = +1, i.e., with the zero codeword as
the source. We initialize all messages to h(0)

i→a = u(0)
a→i = +∞.

In the following we will prove that h(t )
i→a converge on any

graph (not only on trees) to 1 if i has degree 1, and to w(p∗
i→b)

if ∂i = {a, b}. Iteration of Eq. (C1) resembles the breadth-
first search algorithm, with the slight complication that it
applies to nonbacktracking paths. Consider an edge (ia). Let
p(ia) = (v1 = j, ..., . . . , vk−1 = i, vk = a) be the shortest non-
backtracking path (i.e., such that vt �= vt+2 ∀t) starting from
a (variable) leaf and ending in the two vertices i, a (in this
order). If i is of degree 1, then p(ia) = {i, a} and w(ia) = 1.
If instead i is of degree 2, then let b be the other factor
node attached to i, in that case the weight of the path p(ia)

equals the weight of the path p∗
i→b: w(ia) = w(p∗

i→b). Define
w(ia) = k

2 the number of variable vertices in this path. It is
easy to see that ht

i→a is nonincreasing in t , as the expression is
monotonous and can only decrease in the first step because the
starting point is all +∞. We show now that (a) ht

i→a = w(ia)
for t � w(ia) and (b) ht

i→a = +∞ for t < w(ia). Let us pro-
ceed by induction in t . The result is clearly true for t = 1,
because w(ia) = 1 implies that i is a leaf, but then the r.h.s. of
Eq. (C1) is 1. Suppose the statement true for every t ′ < t and
take (ia) with w(ia) = t . Consider its corresponding shortest
nonbacktracking path p = (..., j, b, i, a) starting on a leaf an
ending in (i, a) containing w(ai) variable vertices. Then:

(1) w( jb) = w(ai) − 1 because the subpath ending in j, b
must be optimal, so h(t−1)

j→b = w( jb) by IH, and
(2) w(kc) � w(ai) − 1 for any k ∈ ∂c \ i, c ∈ ∂i \ a as

otherwise, we could construct a strictly shorter path from a
leaf to i, a. As h(t−1)

k→c is either w(kc) or +∞ by IH, this implies
h(t−1)

k→c � w(ai) − 1.
By means of Eq. (C1), we conclude ht

i→a = w(ia). Sim-
ilarly, take (ia) with t < w(ia); we know that w(kc) �
w(ai) − 1 > t − 1 for all k ∈ ∂c \ i, c ∈ ∂i \ a so by in-
duction hypothesis the r.h.s. of Eq. (C1) is +∞ and then
w(ia) = +∞. As a consequence, Eq. (C1) converges in ex-
actly max(ia)∈E w(ia) � |E | steps. Applying the RS version
of Eq. (C1) for the ensemble of cycle codes with factor degree
fixed to 3 and a fraction λ1 of degree-1 variables gives the
result in Fig. 12. It is clear that all of the probability mass is
found at finite rearrangement size. Since rearrangements are
an upper bound for the Hamming weights of basis vectors, we
conclude that the latter must be finite.

5. Effect of 1-reduction

If all variables in G have even degrees (as is the case with
all variables of degree 2), then the associated codebook is left
unchanged when one removes only one factor node a (i.e.,
when a 1-reduction is performed). The reason is simple: the
sum in GF(2) of all rows in the matrix H gives the all-0 row,
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FIG. 12. Cumulative probability distribution p(n) =
Prob(Rearrangement size � n) obtained via the RS computation for
fixed factor degree k = 3. Curves correspond to increasing values of
λ1 = {0.1, 0.3, 0.5, 0.7, 0.9} from right to left.

implying that any given row in H can be built as the sum of
the other rows and thus is linearly dependent on them.

APPENDIX D: RELATION TO LDPC DECODING

The problem of channel coding is formally identical to
source coding in the sense that it is stated as the minimization
of the same energy function (9) (see, e.g., Ref. [15, Eq. (3)].
However, there are two main differences that make one prob-
lem substantially harder than the other. The first difference
is a design choice: a set of codewords which is good for
channel coding is typically awful for source coding. In the
communication problem one wants codewords to be as far as
possible from one another, while for compression one wants
them covering the whole space, so that any point is close
enough to at least one codeword. The second difference lies
in the distribution of the source vector. While here we are
taking every bit of the source uniformly at random, in channel
coding the source vector is made of a codeword with a small
fraction of corrupted bits. This means that, provided the code
is well-designed, there will always be one codeword signifi-
cantly closer to the source than others, making the problem
typically easier.

The results of the two problems are not directly compa-
rable, however we give in Fig. 13 some evidence that the
compression problem becomes easy when the source vector is
close enough to a codeword. We place ourselves in a regime
where the compression problem with symmetric source is in a
1RSB phase, but modify the source starting from a codeword
and then flipping a fraction ε of the bits. The compression
is then performed by max-sum with reinforcement. For small
values of ε, max-sum is able to solve the problem exactly,
as the number of unsatisfied factors is zero and the distortion
is equal to ε. Indeed, by construction, ε is the (normalized)

FIG. 13. Performance of max-sum with reinforcement on
source vectors made by perturbing the all-zeros codeword
with εn bit flips. n = 1800, � = {λ2 = 0.45, λ3 = 0.55}, P = {p3 =
1}, R = 0.15, average over 50 instances. The upper panel shows the
average distortion, with the Shannon bound and 1RSB prediction for
a symmetric source as references. The lower panel shows the number
of unsatisfied factors.

Hamming distance from the starting codeword. By definition,
the closest codeword will always be at a distance smaller or
equal than ε. As ε increases, we observe a transition where
the algorithm stops converging to solutions, and the vectors
found (after fixing a set of independent variables as described
in Sec. III A) have a distortion which is even worse than the
1RSB prediction for the same graph (for a symmetric source).

[1] M. Ajtai and C. Dwork, A public-key cryptosystem with
worst-case/average-case equivalence, in Proceedings of the 29th

Annual ACM Symposium on Theory of Computing (ACM, New
York, NY, 1997), pp. 284–293.

054101-23



ALFREDO BRAUNSTEIN et al. PHYSICAL REVIEW E 106, 054101 (2022)

[2] M. Ajtai, The shortest vector problem in l2 is np-hard for
randomized reductions, in Proceedings of the 30th Annual ACM
Symposium on Theory of Computing (ACM, New York, NY,
1998), pp. 10–19.

[3] D. Micciancio and S. Goldwasser, Closest-vector problem,
in Complexity of Lattice Problems (Springer, Berlin, 2002),
pp. 45–68.

[4] U. Feige and D. Micciancio, The inapproximability of lattice
and coding problems with preprocessing, J. Comput. Syst. Sci.
69, 45 (2004).

[5] F. Ricci-Tersenghi and G. Semerjian, On the cavity method
for decimated random constraint satisfaction problems and the
analysis of belief propagation guided decimation algorithms, J.
Stat. Mech.: Theory Exp. (2009) P09001.

[6] L. Budzynski, F. Ricci-Tersenghi, and G. Semerjian, Biased
landscapes for random constraint satisfaction problems, J. Stat.
Mech.: Theory Exp. (2019) 023302.

[7] A. G. Cavaliere, T. Lesieur, and F. Ricci-Tersenghi, Opti-
mization of the dynamic transition in the continuous coloring
problem, J. Stat. Mech.: Theory Exp. (2021) 113302.

[8] C. E. Shannon, Coding theorems for a discrete source with a
fidelity criterion, IRE Nat. Conv. Rec 4, 1 (1959).

[9] C. E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J. 27, 379 (1948).

[10] C. E. Shannon, Certain results in coding theory for noisy chan-
nels, Info. Control 1, 6 (1957).

[11] A. Braunstein, F. Kayhan, and R. Zecchina, Efficient data com-
pression from statistical physics of codes over finite fields,
Phys. Rev. E 84, 051111 (2011).

[12] M. Mézard, F. Ricci-Tersenghi, and R. Zecchina, Two solutions
to diluted p-spin models and XORSAT problems, J. Stat. Phys.
111, 505 (2003).

[13] S. Cocco, O. Dubois, J. Mandler, and R. Monasson, Rigor-
ous Decimation-Based Construction of Ground Pure States for
Spin-Glass Models on Random Lattices, Phys. Rev. Lett. 90,
047205 (2003).

[14] D. J. MacKay, Information Theory, Inference, and Learning Al-
gorithms (Cambridge University Press, Cambridge, UK, 2003).

[15] K. Nakamura, Y. Kabashima, and D. Saad, Statistical mechanics
of low-density parity check error-correcting codes over Galois
fields, Europhys. Lett. 56, 610 (2001).

[16] S. Franz, M. Leone, A. Montanari, and F. Ricci-Tersenghi,
Dynamic phase transition for decoding algorithms, Phys. Rev.
E 66, 046120 (2002).

[17] A. Montanari and G. Semerjian, Rigorous inequalities between
length and time scales in glassy systems, J. Stat. Phys. 125, 23
(2006).

[18] A. Montanari and G. Semerjian, On the dynamics of the glass
transition on Bethe lattices, J. Stat. Phys. 124, 103 (2006).

[19] M. Mezard and G. Parisi, The cavity method at zero tempera-
ture, J. Stat. Phys. 111, 1 (2003).

[20] M. Mézard and R. Zecchina, Random k-satisfiability problem:
From an analytic solution to an efficient algorithm, Phys. Rev.
E 66, 056126 (2002).

[21] M. Wainwright, T. Jaakkola, and A. Willsky, Tree consistency
and bounds on the performance of the max-product algorithm
and its generalizations, Stat. Comput. 14, 143 (2004).

[22] M. Bayati, D. Shah, and M. Sharma, Max-product for maximum
weight matching: Convergence, correctness, and lp duality,
IEEE Trans. Inf. Theory 54, 1241 (2008).

[23] X. Gu, K. Madduri, K. Subramani, and H. Lai, Improved algo-
rithms for detecting negative cost cycles in undirected graphs,
Front. Algorithm. 5598, 40 (2009).

[24] X. Gu, K. Madduri, K. Subramani, and H.-J. Lai, Improved al-
gorithms for detecting negative cost cycles in undirected graphs,
in Frontiers in Algorithmics, edited by X. Deng, J. E. Hopcroft,
and J. Xue (Springer, Berlin, 2009), pp. 40–50.

[25] A. Sclocchi and P. Urbani, High-dimensional optimization un-
der nonconvex excluded volume constraints, Phys. Rev. E 105,
024134 (2022).

[26] A. Crisanti and H.-J. Sommers, The sphericalp-spin interaction
spin-glass model: The statics, Z. Phys. B 87, 341 (1992).

[27] F. Ricci-Tersenghi, Being glassy without being hard to solve,
Science 330, 1639 (2010).

[28] L. Dall’Asta, A. Ramezanpour, and R. Zecchina, Entropy
landscape and non-Gibbs solutions in constraint satisfaction
problems, Phys. Rev. E 77, 031118 (2008).

[29] A. Braunstein and R. Zecchina, Learning by Message Passing
in Networks of Discrete Synapses, Phys. Rev. Lett. 96, 030201
(2006).

[30] W. Krauth and M. Mézard, Storage capacity of memory net-
works with binary couplings, J. Phys. France 50, 3057 (1989).

[31] C. Baldassi, R. Della Vecchia, C. Lucibello, and R. Zecchina,
Clustering of solutions in the symmetric binary perceptron, J.
Stat. Mech.: Theory Exp. (2020) 073303.

[32] D. Gamarnik, The overlap gap property: A topological barrier
to optimizing over random structures, Proc. Natl. Acad. Sci.
U.S.A. 118, e2108492118 (2021).

[33] M. C. Davey and D. J. MacKay, Low density parity check codes
over gf (q), in Proceedings of the Information Theory Workshop
(IEEE, Piscataway, NJ, 1998), pp. 70–71.

[34] A. Braunstein, F. Kayhan, and R. Zecchina, Efficient LDPC
codes over GF(q) for lossy data compression, in Proceedings
of the IEEE International Symposium on Information Theory
(ISIT) (Seoul, Korea, 2009).

[35] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian, Clus-
ters of solutions and replica-symmetry breaking in random
k-satisfiability, J. Stat. Mech.: Theory Exp. (2008) P04004.

054101-24

https://doi.org/10.1016/j.jcss.2004.01.002
https://doi.org/10.1088/1742-5468/2009/09/P09001
https://doi.org/10.1088/1742-5468/ab02de
https://doi.org/10.1088/1742-5468/ac382e
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1016/S0019-9958(57)90039-6
https://doi.org/10.1103/PhysRevE.84.051111
https://doi.org/10.1023/A:1022886412117
https://doi.org/10.1103/PhysRevLett.90.047205
https://doi.org/10.1209/epl/i2001-00564-y
https://doi.org/10.1103/PhysRevE.66.046120
https://doi.org/10.1007/s10955-006-9175-y
https://doi.org/10.1007/s10955-006-9103-1
https://doi.org/10.1023/A:1022221005097
https://doi.org/10.1103/PhysRevE.66.056126
https://doi.org/10.1023/B:STCO.0000021412.33763.d5
https://doi.org/10.1109/TIT.2007.915695
https://doi.org/10.1007/978-3-642-02270-8_7
https://doi.org/10.1103/PhysRevE.105.024134
https://doi.org/10.1007/BF01309287
https://doi.org/10.1126/science.1189804
https://doi.org/10.1103/PhysRevE.77.031118
https://doi.org/10.1103/PhysRevLett.96.030201
https://doi.org/10.1051/jphys:0198900500200305700
https://doi.org/10.1088/1742-5468/ab99be
https://doi.org/10.1073/pnas.2108492118
https://doi.org/10.1088/1742-5468/2008/04/P04004

