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Quantum computation builds on the use of correlations. Correlations could also play a central role for artificial
intelligence, neuromorphic computing or “biological computing.” As a step toward a systematic exploration of
“correlated computing” we demonstrate that neuromorphic computing can perform quantum operations. Spiking
neurons in the active or silent states are connected to the two states of Ising spins. A quantum density matrix is
constructed from the expectation values and correlations of the Ising spins. We show for a two qubit system that
quantum gates can be learned as a change of parameters for neural network dynamics. These changes respect
restrictions which ensure the quantum correlations. Our proposal for probabilistic computing goes beyond
Markov chains and is not based on transition probabilities. Constraints on classical probability distributions

relate changes made in one part of the system to other parts, similar to entangled quantum systems.
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I. INTRODUCTION

The particularity and strength of quantum computations
relies on the use of correlations between different parts of a
quantum system. For entangled quantum states the state of a
given qubit is intrinsically related to the state of other qubits.
Correlated systems act as a whole and cannot be separated into
individual parts. This “global character” of the computation
constitutes the potential of the novel algorithms for quantum
computing. In a quantum system the correlations are encoded
in the wave function, or more efficiently in the density ma-
trix whose elements are related directly to certain correlation
functions.

Correlations are not a unique feature of quantum systems.
They are central ingredients for many aspects of nature. This
raises the question if correlations are used effectively for
other forms of “computing” by systems that do not obey the
strict requirements of quantum systems, such as isolation from
the environment, a nondissipative character of the preserved
information or the avoidance of decoherence. It seems to us
almost certain that “biological computation,” as pattern recog-
nition or memory in biological brains, employs correlations.
We suggest that also forms of neuromorphic computing or
artificial neural networks rely heavily on the use of corre-
lations. The formal understanding of the use of correlations
in computing is, however, not yet developed very far. The
present note should be considered as a step in the direction
outlined in Ref. [1], which proposes a general framework
for computations in a stochastic environment which can be
non-Markovian.
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It has already been argued that several important tasks
within quantum computation can be performed by neural
networks [2—4] and frameworks exist which enable the imple-
mentation of several of these techniques (cf. [5] and references
therein). Beyond this, the proposal of Refs. [1,6] suggests
that a full quantum computation may be possible by use of
stochastic information in a system of neurons. The present
paper proposes a concrete implementation of quantum oper-
ations by spiking neurons. Our system learns the preservation
of “quantum constraints” which guarantees the properties of
quantum correlations. We propose that our system of spiking
neurons can be realized as a physical system in a neuromor-
phic computer.

We demonstrate four important steps in the direction of
correlated computing:

(1) We describe spiking neurons by a system of dif-
ferential equations with synaptic weight parameters W.
Expectation values and correlations of Ising spins can be
extracted by following the evolution of the states of these
neurons according to the dynamical system of interacting
neurons. The correlations depend on the parameters W. We
demonstrate that for every given two-qubit density matrix
p the system of neurons can adapt or learn suitable pa-
rameters W such that expectation values and correlations
of the Ising spins can be used to encode this density
matrix.

(2) We show by a simulation of neuromorphic computing
that the correlation map [1] from expectation values and cor-
relations of classical Ising spins to a quantum density matrix is
complete in the case of two qubits. This means that for every
possible quantum density matrix p there exists a probability
distribution p for the configurations of classical Ising spins
such that p is realized by the correlation map. This complete-
ness was not proven before.
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(3) We establish how unitary transformations of p corre-
sponding to arbitrary quantum gates can be performed by a
change in probability distributions p.

(4) We demonstrate that the minimal correlation map is
not a complete bit-quantum map for three or more qubits. We
propose an extended correlation map.

The quantum operations are performed by changes in the
probability distributions and corresponding changes in the
expectation values and correlations. These changes cannot be
realized by Markov chains for which otherwise deterministic
operations are performed with certain “transition probabili-
ties.” Probabilistic computing beyond Markov chains opens a
rich area of new possibilities.

So far our approach centers on the use of expectation values
and particular correlations of Ising spins for the construction
of quantum density matrices. We concentrate first on two
qubits and discuss a possible scaling to a higher number of
qubits at the end. Correlated Ising systems are efficient models
for many biological systems [7], and several aspects of the
present paper can be taken over directly.

II. CLASSICAL AND QUANTUM CORRELATIONS

Also classical computing can use correlations but in a
rather restricted way. A given algorithm may imply that two
bits are always the same (maximal correlation) or opposite
(maximal anticorrelation). It is, however, in general, not pos-
sible to extract from the values or correlations of a few given
bits information on the state of many other bits. Quantum
correlations, and presumably the correlations in artificial neu-
ral networks, neuromorphic computing or biological systems,
are of a different more global nature. They link many parts
of the system, and changes in one part affect directly many
other parts.

Since quantum correlations are well understood formally,
and they are well suited for a first investigation of this more
global type of correlation. In this paper we demonstrate that
neuromorphic computing can preserve quantum correlations
for effective systems of two qubits by learning appropriate
parameters which govern the dynamics of the firing of neu-
rons. Whereas quantum systems are perhaps rather special
systems for our more general interest in “correlated comput-
ing,” a focus on the correlations in quantum systems offers
two important advantages. First, performing arbitrary unitary
transformations solves a well-understood task by the use of
correlations. Second, there is control of the formal aspects by
the quantum formalism. These two aspects contrast to other
systems which almost certainly use correlations as artificial or
biological intelligence and render first steps in an investigation
of correlated computing easier. Our aim is not to propose a
particularly efficient way of performing unitary operations. It
remains open if an extension of the present method to many
qubits is feasible with reasonable resources. We rather want
to progress in the conceptional understanding of computing by
use of correlations. The interesting perspectives are new or ex-
isting forms of probabilistic computing that use correlations,
even though these correlations may not be pure quantum cor-
relations. For example, biological systems are rather unlikely
to employ precise quantum correlations, whereas it seems

highly likely that some type of more global correlations are
the key to efficiency for certain tasks.

Beyond the important aspect of a controlled formalism our
investigation of a simple quantum system has also interest-
ing conceptual consequences for quantum mechanics. We not
only show that unitary transformations can be performed by
classical statistical systems. This task can be performed much
more efficiently by classical computers, which can be viewed
as limiting cases of statistical systems as well. In our approach
also the discrete nature of observables is directly realized,
given by the discrete values of the Ising spins associated to
active or quiet neurons or their correlations. Both the discrete
spectrum of possible measurement values and the continuous
expectation values are implemented directly. The possibility
to measure the discrete observables is not given by a nu-
merical solution of a discretized Schrodinger equation by a
classical computer.

We first focus on six-system neurons in an dynamical envi-
ronment of additional neurons. The correlation map constructs
a quantum density matrix from expectation values and cor-
relations of the six-system neurons. The probabilistic states
associated with a particular density matrix typically correlate
all six-system neurons. The system is, therefore, a good start-
ing point for an investigation of “global correlations.”

III. CORRELATION MAP FOR TWO QUBITS

The correlation map for a two-qubit quantum system in-
volves six classical Ising spins [1] that are grouped in two
pairs of three Ising spins s,({’). Here i = 1, 2 corresponds to
the two quantum spins, and k = 1 - - - 3 is associated with the
three Cartesian directions of a given quantum spin. One could,
in principle, employ a higher number of Ising spins for a
“classical computation” of a two-qubit quantum system. The
six classical spins are sufficient for an identification of the
Cartesian directions of quantum spins with the classical spins,
both for the possible measurement values of observables
(spectrum) and their expectation values. Also the classical
correlation functions for the spins of different qubits coincide
with the corresponding quantum correlations. A

We want to employ the expectation values (s,(c”) and the
correlations (s,(f)s;'j ))), i # j, for the construction of the den-
sity matrix for the two-qubit system. For this purpose we
can form a real 4 x 4 matrix x of expectation values and
correlations as

1 2 H.Q
xo0 =1, xoe = ("), xi0= () xw = s (D

If we denote by 1, k = 1 - - - 3 the three Pauli matrices and by
7o the identity matrix, we can define the U (4) generators,

Liw=7,®1, n=0--3 v=0-3 (2

The bit quantum map organizes the expectation values and
correlations (1) into a density matrix,

P = %X/.LULM.V' (3)

(Summation over double indices is implied.) We denote this
map by

SR 5 Oy p =Lyl 4)
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The density matrix p is a complex Hermitian 4 x 4 matrix
with tr(p) = 1. In terms of the real and imaginary parts Cg
and C; of a complex matrix C we define the real 8 x 8-matrix
A as

A=12®CR+12®C1=<€R _CC’>. (5)
1 R

This construction is compatible with matrix multiplication
and can be used to define a real representation of the density
matrix o and of unitary transformations acting on it.

A quantum density matrix has to be positive—all eigen-
values A of p have to obey A > 0. This imposes restrictions
on the classical probability distribution p or the expectation
values (1) that can realize a quantum density matrix. These
restrictions are called the quantum constraints. The quantum
constraints from the positivity of the density matrix entail
important relations between expectation values and correla-
tions for the two qubits. These are crucial for many quantum
aspects as the uncertainty relation for spins of a given qubit in
different directions. The quantum constraints are preserved by
unitary transformations. As long as the quantum constraints of
a positive density matrix are obeyed, the classical expectation
values and correlations (1) coincide precisely with their coun-
terparts in the quantum system.

In particular, all relations between the classical correlations
and the expectation values (1) follow precisely the laws of
quantum mechanics. For example, sil) and sgl cannot have
simultaneously sharp values. On the other hand, for a den-
sity matrix (3) realizing a pure quantum state with (s,((’)) =0
we know that some of the correlations (s,((")s,(j )) have to dif-
fer from zero. The quantum constraints enforce directly that
changes in one part of the system entail changes in other
parts. An important part of the present paper demonstrates
that a neuromorphic computer can learn transformations of
the expectation values and correlations (1) that preserve the
quantum constraints.

The states 7 =0---63 of the classical spin system
correspond to the 2% =64 configurations of Ising spins
{sgl), s(zl), sgl), siz), S;z)’ s§2)} that can take the values of
s = £1. The classical probabilistic system is defined by as-
sociating with each t a probability p, >0, >  p,=1.
The expectation values (1) are formed in the standard way,
multiplying the values %1 of (s, ). or (s, ):(ss); in a given
state T with p, and summing over t. This results in a weighted
sum of probabilities,

xw0 =08, xu=0"p., xu=0*p.,, (6
with signs 0@ = +1 given by

0 — (L 1)HbinIk] )

GO0 — ()l ®)

G KD — ()OI 1y HbinH] ©)

Here bin(t) denotes the six-bit binary representation of a
number 0---63 and bin(r)[k] the entry at index k of that
vector. For the example 7 = (1,—1,—1,1,1,1) one has
bin[t] = (1,0,0, 1, 1, 1), bin(t)[2] = 0 reads out the value
at the second place, and 0>” = —1 is the value of the spin
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FIG. 1. Classical probabilities for quantum states. In (a) we in-
dicate the probabilities corresponding to the density matrices of the
maximally entangled pure state ¥, = %( [00) + |11)) (blue) and a
randomly generated density matrix p (green). We also show their
transformation under a (b) CNOT gate. The labels O -- 63 are best
thought of as bit vectors and label the state of six classical Ising
spins s;(i), i=1,2,k=1---3. For example, the label 3 corresponds
to the spin state [—1, —1, —1, —1, 1, 1]. This figure demonstrates
that entangled quantum states can be realized by classical probability
distributions, and quantum gates by changes in these probability
distributions.

s;” in state 7. We denote this map by

2R 5> RY pi> . (10)
The bit quantum map b can be seen as a map from the
classical probability distribution p to the quantum density
matrix,
b=fogR* > C¥ pp. (11)
It has the property that the particular classical expectation
values and correlations (6) coincide with the expectation val-
ues of quantum spins in the Cartesian directions and the
corresponding quantum correlations. The density matrices can
be constructed (or reconstructed) by use of the particular
classical or quantum correlations. This is analogous to the
reconstruction of the density matrix for photons by appropri-
ate correlations [8—10]. Examples for probability distributions
p realizing particular quantum density matrices p are shown
in Fig. 1. In Fig. 2 we indicate the corresponding spin
expectation values and correlations.

IV. COMPLETENESS OF THE CORRELATION
MAPFORQ =2

Our first task is a demonstration that the bit quantum map
b is complete, in the sense that for every positive Hermitian
normalized quantum density matrix there exists, at least, one
classical probability distribution p which realizes p by use
of Eq. (11). For this task it will be convenient to work with
the “classical wave function” ¢ which is a type of probability
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FIG. 2. We show the 15 =2 x 3+ 9 spin expectation values
(s,(cl)) and correlations <s;1)552>> corresponding to (a) ¥, and (b) p.
The first row contains the three expectation values (s,(cl)), the first
column the three expectation values (s,(cz)). The remaining 3 x 3
entries are made up of the correlations (s,((')sfz)). The transformed spin
expectation values and correlations related to the density matrices
CNOT(¥4) and CNOT(p) are shown in (c) and (d) respectively. Note

the different color scale between (a) and (b) and (c) and (d).

amplitude. Its components g, are related to p,; by
2

q
Pr==5 (12)
PLE
This defines one further map,
pe
hER* - R%, g p= W (13)
qi;

In short, a classical wave function defines the classical proba-
bilities and, therefore, the expectation values and correlations
(5). In turn, these define the complex or real representations
of the density matrix by Eq. (4). This associates a density
matrix to every classical wave function. We will see that the
map from the classical wave function to the density matrix is
not invertible.

Changes in the probability distribution correspond to rota-
tions of the vector g with p; > 0 and )" p, = 1 guaranteed
by the construction (12). We need to find for each given
density 4 x 4 matrix p € C** a vector ¢ € R® such that it
maps to the density matrix p under the composition b o h. For
most density matrices ¢ is not unique as can be verified by
simple examples [1].

In order to find one such ¢ we minimize

1,(q) = |(bo h)(q) — pl3, (14)

by gradient descent on g. To verify numerically that this ap-
proach works we performed the following test: Starting with
a randomly generated density matrix pp, we iteratively apply
the three unitary transformations CNOT, Hadamard H ® I and
rotation Ryg ® I to obtain density matrices p;. The quantum

(@) (b)
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FIG. 3. Optimization results for finding vectors g; € R, such
that the loss 1,,(g;) (14) is minimized. We generate 10° density
matrices p; by starting from a randomly generated density matrix po
and iteratively apply three unitary transformations CNOT, Hadamard
H ® I and rotation R;3 ® I. The optimization is stopped once the
loss falls below 107!, (a) is a histogram of the resulting final losses,
and (b) is a histogram of the required iterations.

gates preserve the positivity of p. Applying them many times
leads to a dense covering to the space of quantum density
matrices, which becomes a full covering if the number of steps
goes to infinity. We further explore the space of p by inves-
tigating different py. For each p; we solve the optimization
problem with loss [,,(g) to obtain corresponding vectors g;.
The results of this optimization are shown in Fig. 3. For all
p;i’s we find vectors g realizing the bit quantum map b o i with
high precision already after rather few iterations. This strongly
suggests that for two qubits the bit quantum map is complete.

Considering one of the vectors g found in this way as a
representation of p, our second step asks how a given unitary
transformation of p can be represented as a transformation
of g. Considering ¢q as a classical probabilistic object, we ask
how the classical system can learn a quantum operation. The
goal is to find for any vector ¢ € R® a matrix M € R%>¢4,
such that the transformed vector Mg yields the density matrix
U pUT related to p by a given unitary transformation U . Since
unitary transformations preserve the positivity of the density
matrix, a probabilistic system that learns the transformation
Mg also learns how the preserve the quantum constraint for
the correlations of the system. Even further, since unitary
transformations preserve a pure quantum state, the associated
classical probabilistic system learns all the relations between
expectation values and correlations that characterize a pure
quantum state.

A simple learning or optimization goal consists of mini-
mizing the Frobenius norm between the two density matrices
UpUT =U(boh)(q)U" =Ul(boh)(g)] and (bo h)(Mg),

ly(M) = U[(boh)(q)] — (boh)(Mg)|3. (15)
Here we use the notation U(p) = UpU?. This minimization

can again be implemented using gradient descent. In Figs. 1
and 2 we show the resulting probabilities,

p=h(g), P =hMg), (16)
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as well as the corresponding matrices of expectation values
and correlations,

x' = (goh)(Mq), a7)

when this minimization procedure is applied to two example
initial density matrices and their associated g vectors. The
unitary transformation U is taken to be CNOT. We have in-
vestigated many different p’s and always found a satisfactory
M with this procedure. Thus, the classical system learns the
matrix M necessary for a unitary quantum gate. We emphasize
that M depends on g such that Mg = M(q)q is a nonlinear
map [1].

x = (goh)(q),

V. QUANTUM COMPUTING WITH SPIKING NEURONS

We finally turn to our third task of implementation by
neuromorphic computing. So far the Ising spins s entered only
indirectly through their state probabilities p and associated
correlations and expectation values x. We next want to study
classical systems for which correlations and expectation val-
ues can be determined from temporal averages. In the context
of neuroscience there is a long history of applying spin-glass
models to the study of biological neural networks [7]. The
general idea is to consider each biological neuron to have
two states active and silent. A neuron is considered active (or
refractory) if it has produced a spike within a certain sampling
time window and silent otherwise. Within this framework,
experimental work has been carried out to study pairwise and
higher correlations of biological neurons (e.g., Refs. [11,12]).

One immediate way of obtaining the state probabilities
p is from neural sampling [13,14]. Since we need only the
expectation values and correlations (1) we directly focus on
these quantities and do not aim to resolve the probability
distributions completely. The six spin variables s,({’ (t) are as-
sociated with six particular neurons in a larger network with
s = 1 if the neuron is active (refractory) and s = —1 if it is
silent. Expectation values can be formed by measuring the
duration of active and silent states,

) 1 T ..
(s = = / s (t)dr, (18)
T Jo

1 T
s =7 [ s a9
0

Instead of spin variables s which take values {1, —1}, we want
to consider variables z with values in {1,0}, s=2z—1. A
given selected neuron has the value of z = 1 during the refrac-
tory period (active state), and z = O otherwise (silent state).
We choose a simple so-called leaky-integrate and fire (LIF)
neuron model. The model is specified by 3n state variables
vi, lj, ri,i = 1---n, called the membrane voltages, synaptic
currents, and refractory states. The dynamics has phases of
continuous evolution and jumps or spikes. The continuous
evolution obeys the differential equations,

Tmem? = [1 — O(r)](v; — v + RI) (20)
Tsynj =—1+1I 2D
F=—- ! O(r). 22)

Trefrac

Here ® denotes the Heaviside function and multiplication in
(20) is pointwise for every i separately. Characteristic for a
spiking neuron model are the jumps or discrete changes in
the state variables v, I, r at particular times. Whenever one of
the membrane voltages v; reaches a threshold (vy, ); during the
continuous evolution,

v — (vm)i =0, (23)

the state variables undergo discontinuous jumps. The transi-
tion equations,

vh =07 + (v, — vn), (24)
I+=Ii+vvrec€a (25)
rt=r" 4§, (26)

specify the state before and after the transition, v* =
v(t*), IT = I(t%), and r* = r(t*). Here £ € R" is a binary
vector, & = 1 for the value of i for which the threshold voltage
is reached and (23) obeyed, and &; = 0 for v; # (vp);. In
Eq. (24) the multiplication is pointwise such that only the
voltage of the spiking neuron changes. In (23)—(26) vy, v,,
v; € R" are the threshold, reset, and leak potential. The
variables Tyem and Ty, are the membrane and synaptic time
constants and R is a resistance chosen to be 1. Finally [, is an
input current and W, is a matrix in R"*” which parametrizes
the response of the currents /; of all neurons to the “firing” of
the spiking neuron i.

Equation (22) specifies a linear decrease in r; until r; = 0
is reached. As long as r; > 0 the neuron is considered to be
active. The neuron remains active for a refractory period fefrac
after its firing at 7. For this period its voltage does not change,

i)i([tk’ Iy + trefrac]) =0, (27)

as implied by Eq. (20).
Ising spins s(¢) or the associated occupation numbers z()
are defined by

(1) = O[r@)], (28)

which is one during the refractory period and zero otherwise.
Six selected neurons define the Ising spins s,((l) = ZZ,((’) — 1 for
which the expectation values and correlations (18) and (19)
define the quantum density matrix p by equations (1) and (3).

The last quantity to be specified is the input current to
the n LIF neurons. We model spike input from m additional
input spike sources. At times #; the source neuron g; fires. The
response of the n LIF neurons is given by

)y =Y Win)jgdt —t1), qr€l,....om (29
l

Here §(t — 1;) is the Dirac-§ distribution such that we model
an immediate response of all n LIF neurons to every input
spike at #;. The n x m matrix Wy, € R™" parametrizes the
height of the jump in the currents /; upon arrival of a spike
at input source ¢;. In our experiments the arrival times #; of
the input spikes are the result of m-independent Poisson point
processes with rates Ay, g =1---m.
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FIG. 4. Fidelity of density matrices obtained by correlations of
spiking neurons as a function of training epochs. Shown are approx-
imation results for the density matrix of a maximally entangled pure
state ¢, = %(| 11) 4 100)) and a random density matrix p.

By solving the differential equations with jumps for given
input spikes we can compute z;(¢) and, therefore,

sO(t) =227(t) — 1. (30)

In the experiments we carried out we took n > 6. The six
spin variables s,((’) are recovered by projecting to the first six
components,

T R" >R (s1,....80) 0 (51,...,5). (3D

Given a density matrix p, we can now formulate an op-
timization problem for W, and W,... One obstacle in doing
so is that the jumps introduce discontinuities, which need to
be taken into account. We choose here to solve this issue by
introducing a smooth approximation to the Heaviside function
®. More specifically we use a fast sigmoid as in Ref. [15]
with parameter 1/e = 100. This is a common way in which
spiking neuron models can be made amendable to gradient
descent optimization [15—18]. The loss function is then,

Ly (Wree, Win) = |p — fix[m ()13, (32)

where x is defined as before (1) by the spin expectation values
and correlations in Egs. (18) and (19).

In Figs. 4 and 5 we show the result of the optimization
process for the spin expectation and correlation matrices .
We also indicate in Fig. 6 a view of the resulting recurrent
weight matrix W, restricted to the spins s,E'). The membrane
threshold is set to one, vy, = 1, and the leak and reset poten-
tials to zero, v; = v, = 0. The synaptic and membrane time
constants are Tey, =5 and Typem = 10ms, and we integrate
for T =10’ time steps. As a typical example for units in
present neuromorphic computing we may associate the in-
tegration step to dr = 1 ms. We choose an input dimension

(b)
0,
0.5 ]
0.1
0.0
0.0
—0.5 _01

FIG. 5. Spin expectation and correlation matrices x correspond-
ing to the pure state (a) ¥, and (b) p, respectively.

of m = 128 and consider n = 64 recurrently connected LIF
neurons. We set ffac = dt (this eliminates the need to take
the equations for the refractory state into account) and draw
the input spikes with Poisson frequency A = 700 Hz. The
learning rate of the gradient descent starts at n = 10 and is
exponentially decreased with a decay constant of 1/100. The
numerical implementation was performed in JAX [19] using
simple forward Euler integration.

For the result of the optimization we plot the fidelity,
which is a common measure to judge how well a given
quantum state is approximated. The fidelity is defined by
F(p,0)= (tr,/ﬁaﬁ)z. Instead of optimizing for the fi-
delity directly we minimize the square of the Frobenius norm
lp — o|§. By the Fuchs—van de Graaf inequalities we know

1
that 1 — /F(p,0) < §|p —ol1 £1—=F(p,o). Since the

trace norm is, in turn, bounded by the Frobenius norm the
fidelity approaches one as the square of the Frobenius norm
goes to zero. Computing the fidelity directly is computation-
ally more expensive and has the added disadvantage that it is
not real valued for arbitrary complex matrices p, o.

Whereas the learning for the entangled pure state takes
somewhat longer than for the randomly chosen state, it is clear
that after a reasonable learning time the neuronal dynamics
has adapted to represent the quantum density matrix with
acceptable fidelity. Combined with the learning of the unitary
quantum gates above one concludes that this type of neu-
ral network can learn unitary transformations for two-qubit
quantum systems. Details of an optimal learning algorithm for
spiking neural networks remain to be worked out.

(a) (b)

4

2
2
0 0
—2

-2
—4

FIG. 6. Final recurrent weight matrices W, of the six recurrently
connected neurons, whose refractory state corresponds to the spins
s,(cl) of the pure state (a) ¥, and (b) p, respectively.
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VI. GENERALIZATIONS TO MANY QUBITS

So far we focused on the case of two qubits. The correlation
map can be extended to n qubits. Using generators,

Ly, = Q) Tu pi=0--3, (33)
i=1
we write the density matrix as
1
p= ?xﬂl'“ﬂnl’ﬂ]“'lln' (34)

For the minimal correlation map the coefficients xy,...., are
determined by correlating 3 spins as follows: Write s/(j)(t) =
[1,s”@)] withi=1---n,k=1---3,and t =0---3. De-
fine

o) = sD(@) 50 1), (35)
and
1 T
Xty = ?/ Oy, ()dE (36)
0

This procedure involves up to n-point correlations. One may
ask if the minimal correlation map remains a complete bit-
quantum map for three qubits. We can employ the same
methodology for Q = 3 as previously for Q = 2. Expectation
values and correlations are evaluated by time averaging for
nine Ising spins and corresponding selected nine neurons.
Time averaging of Ising spins representing some quantity
above a threshold (s; = 1) or below a threshold (s; = —1)
is comparatively economical in this respect. It is sufficient
to measure for all Ising spins s; the times above or below
threshold. With 77 =T — t;r one can use identities of the

type,

th—t7 2F
<s,->=’T’=7’—, (37)
20 +15;7)
(Sjsi> = % -1, (38)
2T A T T
(spsjsi) = —LE—I& - w1, (39)

where 7;" is the time when both s; and s; are above threshold
and so on.

We find that for three qubits an obstruction prevents the
minimal correlation map to be complete. There are valid
quantum density matrices for which no classical correlation
functions can be realized that obey Eqgs. (34), (35), and (36).
For this purpose we concentrate on the gigahertz (GHZ)
states,

L
V2

The only nonvanishing elements of the corresponding pure
state density matrix pgyz are

v=—7(+++H +el———). le[=1 (40)

Pttt +++ = P ——— =

N =

(S

&
Pitt——m =70 Pt = 3 41

1 L " " 1 " L " 1 " L " 1 " " " 1 " L " 1

0.0 0.2 0.4 0.6 0.8 1.0
p

FIG. 7. Final loss after training up to 10* epochs to approx-
imate p(p) = ppcuz + (1 — p)p, where p is a randomly chosen
density matrix and pguz is the density matrix of the GHZ state in
dimension 3.

The elements o, ,,,,, are given by
o= %Gmuzus Ty @ Ty ® Tyuy
= Gl +m)@(+1)® (1 +13)
+1-16)@(1—-—15)’ (1 —13)
+e(t —in) @ (11 — i) ® (11 — i)
+e' (1 +in) @ (m+in)Q (n +in)}, 42

which results in nonzero values for

0000 = 0330 = 0303 = 0033 = 1, (43)
1 *
0111 = —0] = —0j2 = —0312 = 5(8 +¢&%), (44)
i
Ol12 = 021] =021 = —02 = —5(8 —&"). (45

For randomly chosen density matrices one finds for most
cases suitable probability distributions that realize them by
Egs. (34), (35), and (36). If we look instead at a special class
of density matrices,

p = ppguz + (1 — p)p, (46)

where p is chosen randomly and 0 < p < 1, for large enough
p no such probability distribution can be found anymore. This
is demonstrated in Fig. 7, where we plot the loss after training
for up to 10* epochs against p.

This is reflected in the fidelity and relative entropy for
a comparison of the finally optimized matrix and the true
GHZ-density matrix, shown in Fig. 8. Again we observe
a clear insufficiency of the minimal correlation map for a
reproduction of the density matrices close to the GHZ state.
This insufficiency sets in rather sharply at a certain value of p.
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FIG. 8. (a) Final fidelity and (b) relative entropy after training up
to 10* epochs to approximate p(p) = poguz + (1 — p)p, where p is
a randomly chosen density matrix and pguz is the density matrix of
the GHZ state in dimension 3.

One can understand the obstruction analytically. For this
reason we consider the GHZ-density matrix with ¢ = 1. The
expectation values (43), (44), and (45) can be realized by a
factorizing probability distribution,

p=pi[s3] pafsi". 3] @7)
The first factor p; has to realize the correlations,

(02) = [s0s) = (42) = 1.

(s) =0, (s$VsPsV) = 0. (48)

This is achieved by the probabilities,

P+++ =P— = % (49)

The second factor p, depends on the Ising spins s(li) and s
and has to realize the correlations,

(@)
2

(1) 2) By _ (D) (2) B _ (D (2) 3 _
s17537s57) = (s )517's3") = {3 )53's)) = =1, (50)
and
(s{Vs?sP) = 1. (51)

This is not possible for a classical statistical setting. Equa-
tion (51) requires that for the three spins (s(ll)sﬁz)s1 )) only
the configurations (+ + +), (+ — —), (— + —), (— — +) can
have a nonzero probability. For the case of the configuration
(++ +) for s(l’) Eq. (50) requires that the only configurations
(2i) that can have nonvanishing probabilities must obey
s(zz)s?) =-1, s(21)s;2) =-1, sgl)s(;) = —1. Otherwise one of
the three three-point functions (50) would be larger than —1. If
s(zl) and s;z) have opposite signs, and s(zl) and s?) have opposite

for s

signs, one infers that s(zz) and 5(23) have the same sign in con-

tradiction to séz)sé3 ) = —1. One concludes that the probability

for (s(ll)siz)s(f)) = (+ + +) must be zero. Similar chains of

arguments show that the three other configurations for s(li),
namely, (+ — —), (— + —), (— — +), cannot have a nonzero
probability either. In consequence, Eq. (51) cannot be obeyed.
There is no probability distribution p, that can generate the
set of correlations (51) and (50). This argument generalizes to
probability distributions that are not of the direct product form
(47). We conclude that for three qubits the minimal correlation
map is not complete.

One may envisage an extended correlation map with ad-
ditonal 2? spins. (s,i},i) s,((:z: s,g;)) ki = 13 The spins
Oy, 1, With precisely one index zero are given by

_ (12 _ (13 —_ (23
Olik0 = Spbs OkiOks = Spjis OOkks = Sppps (92)

instead of Eq. (35) for the minimal correlation map. Equa-
tion (36) continues to hold for all x,,,,, With one, two, or
three indices equal to zero. The coefficients of the density
matrix with only nonzero indices are correlations of “pair

spins” s,i’l’ ) and “single spins” st

_ ([ (2) B _ (.(3) (2 _ /.(23) (1)

Xk1k2k3 - <Sk1k2sk3 ) - (Sklkgskz ) (Sk2k3sk1 ) (53)
Equation (53) requires new quantum constraints on the classi-
cal probability distribution since all three correlations have to
be the same. In the presence of this constraint knowledge of

: (12) (3) ; (13) (2)
one set of correlations, say (sk] 5o ks ), gives access to (skl ks Sk )

and (s,(jzz)s,((:)). This feature is typical for quantum systems.

The GHZ state with ¢ = 1 can be realized by the extended
correlation map. For an explicit construction of a classical
probability distribution realizing this state we choose proba-
bilities which only differ from zero if

T L IR
si) ==y =57 sy =sy = (59)
siy ==y =517, s =87 =57 (50)

This guarantees the relations (44),
o111 = —0p1 = —01n = —02 = I, (57)

together with the constraint (53) for the four quantities in (57).
The correlations in Eq. (43) are obeyed if nonzero probabili-
ties occur only for

12 13 23
sg3)=s§3)=sg3)=1. (58)

With Egs. (57) and (58) the configurations with nonzero prob-
abilities can be characterized by the values of the 21 spins
5, = (5/(:)’ s(]'_{ ). sg_g’), s;li’ ). sé’i’)). With the conditions,

(5a) =0, (545) =0, (59)

all other coefficients except o111, 0221, 0122, 0212, 0330, 0303,
0033, and oggp vanish. The relation (59) can be realized by
equipartition for the configurations of spins 5,. This proba-
bility distribution realizes the GHZ state. So far we did not
find other three-qubit density matrices that cannot be realized
by the extended correlation map, but we do not have sufficient
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material for a judgment if the latter should be considered as
complete.

One can generalize the extended correlation map to a
higher number of qubits Q > 3. One chooses independent
spins for all 0y,,...,,,’s with one or two-“space”-indices k,
taking values of k,/ =1---3 and all other u;’s equal zero.
These are %Qz — %Q Ising spins, such that the number of
classical spins grows quadratically with the number of qubits.
Coefficients x,...,, With one or two space indices are given
by the expectation values of the corresponding oy,....,,,. Coef-
ficients with three-space indices are correlations of one pair
spin and one simple spin with quantum constraint (53) ex-
tended correspondingly. For four-space indices of x,...,,, one
takes correlations of two pair spins with corresponding quan-
tum constraints. Five spin indices are realized by three-point
functions of two pair spins and one single spin, and so forth.
There is never more than one single spin in the correlations.
Again it is not known if this extended correlation map is a
complete bit-quantum map, or if new obstructions arise for a
certain number of qubits.

VII. INCOMPLETE PROBABILISTIC INFORMATION

The number 22 of elements of the density matrix grows
very rapidly with an increasing number Q of qubits. This issue
is common to all approaches which use at every step of the
computation the full information about the quantum state. We
find it unlikely that computations by real quantum systems or
artificial neurons need the full information contained in the
density matrix p. It becomes then an important task to find
out which part of the probabilistic information is involved for
practical questions.

As an example we consider the search for the ground-state
energy of the one-dimensional quantum Ising model with
Hamiltonian,

H=-J Z réi)réﬁl) — hzfl(i), (60)
i=1,...n i

.....

one of the benchmark tasks in Ref. [2]. The goal is to find a
density matrix p such that tr(H p) is minimized. This requires
only a small subset of the x,,...,,, hamely, those n two-point
functions for which u; = p;+1 = 3 and all other u; =0, as
well as n expectation values for which u; = 1 and all other
wx = 0’s. For the minimal correlation map the first set of x is
given by two point correlation functions. These two-point cor-
relation functions cannot take arbitrary values, however. The
positivity of the density matrix imposes quantum constraints
[1,20] that these correlation functions have to obey. Due to
these constraints the minimal value of (H) is higher than for
unconstrained correlation functions. For the extended correla-
tion map also the first set of x is given by expectation values.
Again, quantum constraints restrict the possible values.

The explicit use of all quantum constraints seems a difficult
task for a high number of qubits. It may, however, be sufficient
to impose only part of the quantum constraints for obtaining
already a reasonable approximation to the minimal value of
(H). These partial constraints could then be associated with
the information that is relevant for a given problem, whereas
additional information concerning the full set of quantum con-
straints may be discarded. A probabilistic view on expectation

values and correlations may help to focus on the relevant
information needed for a given quantum problem.

VIII. CONCLUSIONS

Neuromorphic computers can be trained to learn and trans-
form the correlations necessary for certain computational
tasks. We have explicitly demonstrated this for the quantum
correlations of a two-qubit quantum system. Already for this
very simple system the learned correlations are of a rather
global type, connecting typically all six classical Ising spins,
which represent the quantum system. In view of the large
amount of probabilistic information that can be stored in cor-
relations it seems likely to us that correlations involving many
neurons at once could be used for an efficient performance
of tasks in neuromorphic computing. The important question
for future investigations amounts to finding out which is the
precise form of such correlations.

In our model neuromorphic computing is probabilistic
computing. The dynamical equations realize expectation val-
ues and correlations for neurons. Whereas every neuron has
only two possible states at any given time, the sharp states
with given fixed values of all neurons play no role in the
computation. Only time-averaged probabilistic expectation
values and correlations matter. This probabilistic computing
is of a particular type, however. It is not of the type where
updating steps between sharp neuron or bit configurations
are performed with certain probabilities. Such probabilistic
updatings are Markov chains for which the initial information
gets diluted or lost after a certain number of updating steps.
Since our sample system can perform unitary quantum opera-
tions no information in the subsystem described by the density
matrix is lost. This demonstrates that “classical probabilis-
tic” computing is possible without loss of the relevant initial
information.

Other approaches to sampling with spiking neurons
[14] make use of an approximate correspondence between
Poisson-stimulated recurrently connected leaky integrate and
fire neurons in the “high-conductance” state and restricted
Boltzmann machines. This allows, in particular, to translate
between the weight parameters of the restricted Boltzmann
machine and the weight parameters of the network of spik-
ing neurons. Here in contrast we train the spiking neural
network directly using backpropagation through time [21]
without knowing or assuming a certain equilibrium distribu-
tion. In particular, the synaptic connections of the spiking
network are initialized nonsymmetrically and any structure
in the optimized weight matrix arises from the training pro-
cedure. Independent of the application reported here, this is
a demonstration of this approach to stochastic computation
with spiking neurons. We give a brief explanation of the
method in a purely classical context and a simple application
in Appendix B.

For the realization of tasks of quantum computing by
neuromorphic computers it seems hard to perform such op-
erations precisely for systems of many qubits. The total
information in the density matrix is simply too high to be
stored, even worse to be learned. What seems more promising
is the learning of the relevant correlations needed to perform
a given “quantum task” with an acceptable approximation.
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Finding out the relevant probabilistic information for a given
task seems to us a crucial question. It is conceivable that for
a given task for which quantum computers are very promis-
ing it is actually not necessary that the correlations obey the
particular quantum constraints. Other approaches employing
effectively nonquantum, but still “global” correlations could
be efficient as well. From the point of view of correlated
probabilistic computing the fields of quantum computing, arti-
ficial intelligence, neuromorphic computing, or brain-inspired
computing may appear as different facets of a more general
common setting based on correlations.

In our approach the computation of the expectation values
X, and the associated quantum density matrix involves
purely classical probabilistic settings as neurons firing in bi-
ological or artificial systems. No low temperature or a high
degree of isolation of small subsystems is needed for such a
realization of quantum features. Our findings are an exam-
ple how quantum evolution can be realized by probabilistic
classical systems [20,22,23]. This concerns the full evolution
of a quantum subsystem with observables and the quantum
law for expectation values realized in the same way as for
usual quantum systems. This goes far beyond the solution of a
Schrodinger equation, or its adaptation to discrete time steps,
by a classical computer. The latter can realize the computation
of expectation values as real numbers, but there is no possi-
ble measurement process with discrete values of observables
and a probabilistic distribution of outcomes associated such
a classical computer. In our proposal any measurement of
observables yields a discrete value—a neuron is active or not.
Expectation values and correlations of suitable observables
can be obtained by repeated measurements as in real quantum
systems.

A physical quantum system involves two ingredients. The
first are observables, represented by operators whose eigenval-
ues (spectrum) correspond to the possible measurement values
of the observable. Quantum mechanics makes probabilistic
statements about expectation values and correlations for the
observables. The second ingredient is the time evolution as
described by the Schrodinger or von Neumann equation or
its counterpart for discrete time steps. A numerical solution
of the Schrodinger equation or the corresponding sequence
of unitary transformations can realize the second ingredient
effectively up to a number of ca. 50 qubits. The first ingredient
of observables that can be measured is absent, however. Our
proposal for quantum operations by a neuromorphic computer
comes much closer to a physical quantum system with possi-
ble measurements of observables.

For our proposal the neurons are classical two-level ob-
servables that are represented in the quantum subsystem by
operators whose discrete spectrum reflects the possible mea-
surement values of the observables. All expectation values
and correlations for those classical observables that can be
computed from the density matrix have precisely the same
time evolution as for the associated quantum system. For a real
neuromorphic computer operating according to our prescrip-
tion the values for the classical observables can be measured
at a given time. Expectation values and correlations can be ex-
tracted by many identical measurements, in complete analogy
to quantum systems. The subset of classical bits employed for
the density matrix behaves as a physical quantumlike system.

Not all quantum observables are directly realized in this
way, however. The quantum spin observables in directions
different from the Cartesian directions have no direct analog
as states of neurons that can be directly measured. The number
of quantum observables that have a classical correspondence
can be increased by using additional neurons for the imple-
mentation of the density matrix for the quantum subsystem
together with additional quantum constraints [1]. With a finite
number of neurons the number of quantum observables that
have a direct classical correspondence remains finite as well.
In this sense a neuromorphic computer can be partially a phys-
ical quantum system without realizing a complete physical
quantum system for all the possible quantum observables.
This is another facet of the difference between more gen-
eral correlated probabilistic computing and precise quantum
computing.

The implementation uses the publicly available open
source software PYTORCH [24], JAX [19] and NORSE [25]. Code
and data to reproduce the experiments will be made available
here: [26] .
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APPENDIX A: SURROGATE GRADIENT LEARNING

In this Appendix we give more details on the method to
achieve the results in Sec. V. The overall strategy is to im-
plement the differential equations with jumps in some simple
numerical integration scheme and then use backpropagation
through time together with surrogate gradients to implement
end-to-end learning of the given objective function.

More concretely, we use simple forward Euler time-
discretization to implement the differential equations (20) and
(21,

dt
Upt+1 = Up + T (v — v, +RI,), (A1)
dt
In+1 =1, — —1I, (A2)
Tsyn

since we choose the absolute refractory time to be identical
with the integration time-step dt, it does not have to be tracked
explicitly.

The jump condition is computed as

Znt1 = OUps1 — Vi), (A3)

and jumps are computed as
Vpg1 = (1 = 2ot 1)DVnt1 + Zng 1 Vreset» (A4)
In+1 = In+1 + vvrecZnH + ‘/VinZ1i1n+1~ (AS)
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FIG. 9. Approximation of a categorical probability distribution by sampling from a recurrently connected spiking neural network of leaky-
integrate and fire neurons. The refractory state is treated as a binary random variable z; for each of the neurons. In (a) we indicate the state of
these binary random variables for one sampling run in a 200-ms interval with the spike times marked by vertical black lines and the resulting
absolute refractory period marked by gray rectangles. The resulting sampled probability distribution p, (blue) is compared to a given target
probability distribution p, (green) in (b), error bars indicate the minimal and maximal values over 16 sampling runs. The average loss and
standard deviation over five instances of this optimization problem is shown in (c). We use the ADAM optimizer with default parameters and
batch size B = 16. The final loss after 10° optimization steps is similar to the one report in Ref. [14] for T = 10* sampling time steps.

Overall this defines a function,

oty Wnts e )] = Iy 1), 2011,

which is not differentiable due to the occurrence of the Heav-
iside function. As already mentioned in the main article, this
can be resolved by using a scaled derivative of a (piecewise)
smooth approximation of the Heaviside function to compute
the derivative of f instead [16,18]. Here we use the approxi-
mation used in Ref. [15], whose derivative is

1
(arlx| + 1)*

It is then possible to regard the repeated application of the
function f as one differentiable function for which parameter
gradients can be computed using backpropagation through
time [21]. Concretely the repeated application is implemented
in JAX using the “scan” primitive.

Using an analogous approach it is also possible to treat the
case that the refractory time is a multiple of the time-step dfr,
whereas this was not use to obtain the results in the Sec. V,
the following section demonstrates this extension.

(A6)

B (x) = (A7)

APPENDIX B: STOCHASTIC COMPUTATION
WITH SPIKING NEURONS

Whereas in Sec. V we used surrogate-gradient based train-
ing of a recurrently connected population of neurons subject
to Poissonian input to perform end-to-end optimization ap-
proximating a given quantum density matrix, the method itself
can also be applied in a purely classical context. In this Ap-
pendix we show that we can approximate small categorical
probability distributions using a similar end-to-end learning
approach. “Neural sampling” was previously demonstrated
in either abstract models [13] or in LIF neuron models in
the high-conductance state utilizing an approximate connec-
tion to restricted Boltzmann machines [14]. Here we instead
train a network leaky-integrate and fire neurons subject to
Poissonian input noise without reference to some equilibrium

model. Approximating categorical probability distributions in
this way could be used to obtain the results in Secs. III and
IV. Moreover, it also connects our approach to other ways of
approximating quantum density matrices using spiking neural
networks.

To illustrate this, consider a concrete example: A recur-
rently connected population of N = 5 leaky-integrate and fire
neurons with v, = 0.9vy, and an absolute refractory period
of Tiefrac = 10 ms receive Poissonian input with frequency
300 Hz from K = 256 input sources. Just like in Sec. V, the
refractory state can be considered as a binary random variable
as defined in Eq. (28). Here the refractory time is a multiple
of the integration step so that the refractory state variable has
to be treated explicitly. We use the same surrogate gradient
function as before but use a publicly available implementation
of LIF neurons with refractory state [25].

Based on integration over some sampling time 7', we can
then compute the sample probability of a given binary state
vector, for example,

1 T
Py(1,0,0,1,0) = / ammzEsdl, (Bl
0

where 7; = (1 — z;). This is in contrast to Sec. V where we
instead interpreted the refractory state as a spin variable using
the transformation s = 2z — 1.

We use the Kullback-Leibler divergence between the sam-
pled probability distribution p; and a fixed target distribution
p; as a loss function for gradient-based optimization. In the
particular case of categorical probability distributions it is
simply given by

KL(pslp) = =) ps(z;w)log pi(2)

+Zps(z;w)log ps(zw). (B2)

Overall this can then be used to perform end-to-end
gradient-based optimization of the synaptic weight
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parameters w, where the derivative of the Heaviside function
is again replaced by the derivative of an approximation as in
Eq. (A7).

In Fig. 9, we show one example of such an optimization
problem as well as optimization results sampled over five
random initializations. The target distribution in all cases was
generated from sampling from a LIF network with randomly

initialized weights subject to Poissonian noise of the same
input frequency 300 Hz.

Clearly this method can be generalized to other neuron
models for which no correspondence to an equilibrium model,
such as the one considered in Ref. [14] is known. Moreover,
it also directly allows to use recent advances in surrogate
gradient-based training on neuromorphic hardware [27].
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