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Deep-learning density functionals for gradient descent optimization
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Machine-learned regression models represent a promising tool to implement accurate and computationally
affordable energy-density functionals to solve quantum many-body problems via density functional theory.
However, while they can easily be trained to accurately map ground-state density profiles to the corresponding
energies, their functional derivatives often turn out to be too noisy, leading to instabilities in self-consistent
iterations and in gradient-based searches of the ground-state density profile. We investigate how these instabilities
occur when standard deep neural networks are adopted as regression models, and we show how to avoid them
by using an ad hoc convolutional architecture featuring an interchannel averaging layer. The main testbed
we consider is a realistic model for noninteracting atoms in optical speckle disorder. With the interchannel
average, accurate and systematically improvable ground-state energies and density profiles are obtained via
gradient-descent optimization, without instabilities nor violations of the variational principle.
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I. INTRODUCTION

Density functional theory (DFT) is the workhorse of
computational material science and quantum chemistry [1].
It is based on rigorous theorems [2–4] certifying that the
ground-state energy can be computed minimizing a (gener-
ally unknown) functional of the density profile, allowing us
to bypass computationally prohibitive wave-function-based
methods. However, the available approximations for the
density functional are reliable only for weakly correlated
materials, while in the regime of strong electron corre-
lations dramatic failures may occur [5]. In recent years,
machine-learning (ML) algorithms have reached remarkable
breakthroughs in various branches of physics research [6–9],
and they have also been adopted in the framework of DFT,
both for continuous-space [10–14] and for one-dimensional
tight-binding models [15–17]. These algorithms pave the way
to databased approaches to the development of density func-
tionals. Furthermore, they facilitate the implementation of
computationally convenient strategies based on orbital-free
DFT [18,19]. Most previous studies adopted relatively sim-
ple regression models, such as, e.g., kernel ridge regression,
showing that moderately large training sets of ground-state
density profiles and corresponding energies allow us to recon-
struct remarkably accurate density functionals. Also artificial
neural networks have been adopted (see, e.g., [13,19]), consid-
ering standard architectures such as the convolutional neural
networks (CNNs) popular in the field of computer vision.
Unfortunately, in the case of continuous-space models, severe
drawbacks have emerged when such ML functionals have
been employed in self-consistent calculations and in gradient-
based optimizations. Specifically, the functional derivatives

turned out to be too noisy, leading to unphysical density
profiles and to strong violation of the variational princi-
ple [10,19,20]. Some remedial strategies have already been
explored. Essentially, they resort to gradient denoising via
dimensionality reduction [20] or basis truncation [21], to con-
strained optimization, or they aim at exploiting additional
information (e.g., energy derivatives) in the training process
[14,19]. These strategies have provided significant benefits,
but they have some limitations, as they might lead to varia-
tional biases or they require additional data that are far less
accessible. Due to the pivotal role played by DFT, further
complementary strategies are highly desirable.

In this article, we investigate the use of deep neural net-
works as regression models to reconstruct continuous-space
density functionals from training data. Our main finding is that
a tailored convolutional network featuring an interchannel av-
eraging operation allows us to avoid the drawbacks mentioned
above. Following analogous previous studies [10,11,18–20],
the testbed we consider is a single-particle model, but we
mostly focus on a more realistic Hamiltonian that describes
ultracold atoms moving in one-dimensional optical speckle
patterns. Our analysis is complemented by addressing deep-
well models from the literature (see the Appendix). Our aim
is to develop a sufficiently effective deep-learned functional
to allow searching the ground-state energy and the density
profile of previously unseen instances of speckle disorder via
gradient-descent optimization. We show that the most popular
network architectures, namely, the standard CNNs, are inad-
equate for this task. Indeed, while they provide remarkably
accurate energy predictions when fed with exact ground-state
density profiles, their functional derivatives are too noisy.
This leads to instabilities in the gradient-descent search of
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the density profile which minimize the energy functional,
unless the accuracy is jeopardized via an early halting of
the optimization procedure. We demonstrate that these in-
stabilities can be avoided with the tailored neural network.
This is inspired by an ensemble-averaging mechanism, and
it features, beyond the standard multichannel convolutional
layers, additional layers that perform an interchannel averag-
ing operation. We show that this feature allows us to iterate
gradient-descent steps at will, providing accurate results that
can be systematically improved by increasing the number of
channels.

The rest of the article is organized as follows: In Sec. II we
describe the formalism of DFT based on deep learning, the
structure of the standard and of the average-channel neural
networks, as well as the gradient-descent technique used to
find ground-state energies and densities. The main testbed
model we address is described in Sec. III. Therein we also
report details on the dataset, on the protocol used for network
training, and on the accuracy reached in the regression task.
The results obtained in gradient-descent optimization with the
standard and with the average-channel neural networks are
compared in Sec. IV. The instabilities occurring with stan-
dard networks are highlighted, and their suppression with the
inclusion of the average layer is discussed in detail. Section V
provides a summary of the main findings and some comments
on future perspectives. To favor comparison with previous
studies [10,18], in Appendix we report the test of the average-
channel neural network in deep potential wells defined by the
sum of three Gaussian functions.

II. DENSITY FUNCTIONAL THEORY WITH ARTIFICIAL
NEURAL NETWORKS

ML provides novel promising approaches to learn energy-
density functionals for DFT from data. These functionals have
the potential to accurately describe strongly correlated sys-
tems. However, their variational minimization to search for
the ground-state density profile turned out to be problematic
due to noisy functional derivatives [10,11,20]. This problem
is already evident in noninteracting systems. Henceforth, in
the following we focus on single-particle problems, but the
technique we develop can be applied to interacting systems
via the creation of suitable training sets.

In this article, we consider one-dimensional single-particle
Hamiltonians written in the form

H = − h̄2

2m

d2

dx2
+ V (x), (1)

where h̄ is the reduced Planck constant and m is the parti-
cle mass. The external potential V (x) is compatible with the
adopted periodic boundary conditions. In the framework of
DFT, one aims at computing the ground-state energy egs of
the Hamiltonian (1) from a functional of the density profile:
egs = E [ngs]. Here, ngs indicates the density profile,

ngs(x) = |ψgs(x)|2, (2)

where ψgs(x) is the ground-state wave function. The first
Hohenberg-Kohn theorem guarantees that, in principle, this

TABLE I. Coefficient of determination R2 for two standard
CNNs with ReLU and with Softplus activation functions, and for
three CNNs with different numbers of channels Nc. The test set
includes 15 000 (previously unseen) instances of the optical speckle
pattern. The first column reports the number of convolutional blocks.

Blocks Activation Nc ks Neural network R2

2 ReLU 60 [4,2] CNN 0.99961
2 ReLU 140 [4,2] CNN 0.99969
2 ReLU 260 [4,2] CNN 0.99967
3 ReLU 30 2 CNN 0.99996
3 Softplus 30 2 CNN 0.99991

functional exists [2]. In practice, it is convenient to separate
the known potential energy contribution, seeking a functional
for the kinetic energy only [22]:

tgs = egs −
∫ L

0
dx ngs(x)V (x) ≡ T [ngs]. (3)

It is worth pointing out that we do not adopt the Kohn-
Sham formalism. As in previous studies on ML-based DFT
[10,11,18–20], the orbital-free formalism is used, attempting
to approximate the kinetic energy (eventually together with
energy terms in interacting systems) as a functional of the
density. If successful, this attempt would therefore also lead
to a significant reduction of computational cost compared to
the more demanding Kohn-Sham approach.

Deep-learning techniques can be adopted in the DFT
framework. The first task is to train a deep neural network to
map ground-state density profiles to the corresponding kinetic
energies, therefore learning the unknown functional T [ngs].
This can be achieved via supervised learning from a dataset
including many instances of density profiles associated with
the corresponding kinetic energies, {ngs,k, tgs,k}. The integer
k labels the instances in the dataset. The parameters of the
neural network, collectively denoted with ω, are optimized by
minimizing the loss function, namely the mean-squared error

L(ω) = 1

Ntrain

Ntrain∑
k=1

|tgs,k − T̃gs,k (ω)[ngs,k]|2, (4)

where T̃gs,k (ω)[ngs,k] denotes the kinetic energy predicted by
the neural network, and Ntrain is the number of instances in
the training set. This optimization can be performed using
the stochastic gradient descent algorithms or one of its many
successful variants.

A. Neural networks

The first regression model we consider is a standard CNN.
Its structure is familiar from many fields where deep learn-
ing has proven successful, such as, e.g., image recognition.
It is composed of Nb = 3 convolutional blocks. Each block
includes a convolutional layer with Nc channels (this hyper-
parameter is specified in Table I), whose filter size is k f = 13
and padding type is periodic, and an average pooling layer
with a kernel size ks = 2. Two variants of this network are
considered, using two popular activation functions, namely
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the ReLU function, defined as

ReLU(x) =
{

x if x > 0,

0 otherwise, (5)

and the Softplus function

Softplus(x) = ln (1 + exp(x)). (6)

The last convolutional block is processed through a flattening
layer and then connected to a dense layer with only one
neuron (identity activation function) to generate a scalar out-
put. As discussed in detail in Sec. IV, these standard CNNs
turn out to be inadequate for the DFT framework. In par-
ticular, their functional derivatives are too noisy to perform
a gradient-based search of the ground state. Therefore, we
introduce a novel tailored architecture that features an inter-
channel average operation. In the following, this network will
be referred to as average-channel CNN (CNN). Specifically,
this model is composed of two convolutional blocks, each
including Nc convolutional channels (k f = 13 and periodic
padding), an average pooling layer (ks = 4 in the first block
and ks = 2 in the second block), and, notably, an additional
layer, where each neuron computes the average of the acti-
vations of the corresponding neurons in all channels of the
previous layer. The activation function is ReLU. The last
convolutional block passes a flattening layer and is then con-
nected to one dense layer with only one neuron, as in the
standard CNN case. It is worth pointing out that this average
operation reduces the scaling of the number of parameters
from quadratic to linear in Nc. This allows us to consider
architectures with many channels without facing prohibitive
computational costs nor overfitting problems. In each archi-
tecture adopted in this article, all convolutional blocks feature
the same number of channels. Explorations performed with
different numbers lead to similar findings, so we do not dis-
cuss them to avoid burdening the presentation. Hereafter, we
describe the operations performed by the convolutional blocks
more formally.

In a standard CNN, the action of the nth convolutional
block corresponds to the following convolution operation:

hα
n (x) = 1

ks

∫ x+ks/2

x−ks/2
dy

× act

[∑
β

∫ y+k f /2

y−k f /2
dx′ W αβ

n (y, x′)hβ

n−1(x′) + vα
n

]
,

(7)

where act is the chosen activation function, the matrices W αβ
n

represent, for each filter α and input channel β, a kernel of
size k f , and vα are the set of biases for each filter. Instead, in
the CNN, the nth block has an additional interchannel average
operation, which is expressed as

h̄n(x) = 1

Nc

∑
α

hα
n (x), (8)

where

hα
n (x) = 1

ks

∫ x+ks/2

x−ks/2
dy

× act

[∫ y+k f /2

y−k f /2
dx′ W α

n (y, x′)h̄n−1(x′) + vα
n

]
(9)

represents the previous Nc parallel convolution operations.
Notice that in Eqs. (7) and (8) integrals actually indicate
discrete operations. All the neural networks considered in this
work are implemented and trained using the Pytorch library,
exploiting automatic differentiation to compute discrete func-
tional derivatives [23].

B. Formalism of gradient-descent optimization

Once the kinetic energy functional has been learned by the
neural network, and consequently we assume T [n] ≡ T̃ ω[n],
both the ground-state energy and the density corresponding
to a new instance of the Hamiltonian can be obtained from
the variational principle. Indeed, the second Hohenberg-Kohn
theorem ensures that the (exact) functional is minimized by
the ground-state density profile [2]. This can be expressed
using the Euler equation:

δT [n]

δn(x)
+ V (x) − μ = 0, (10)

where μ is a normalization constraint. Its solution can be
efficiently obtained using the gradient-descent algorithm, as
usually done in orbital-free DFT [24]. Specifically, one iter-
ates the following update rule:

nt+1(x) = nt (x) − η

(
δT [nt ]

δn(x)
+ V (x) − μt

)
, (11)

starting from a reasonably chosen initial profile n0(x). In this
equation, η > 0 is the chosen learning rate, the integer t =
0, 1, 2, . . . , tmax labels the steps, and the adaptive coefficient
μt is introduced to ensure the normalization condition:∫

dx nt (x) = 1. (12)

To ensure the density never becomes negative, it is convenient
to perform a variable change in Eq. (11): χ = √

n(x). This
leads to the following update rule:

χt+1(x) = χt (x) − η

(
δT [χ2

t ]

δχ (x)
+ 2χt (x)V (x) − 2χt (x)μt

)
,

(13)
where the normalization coefficient is computed as

μt =

∫
dx

(
1

2

δT [χ2
t ]

δχt (x)
χt (x) + χ2

t (x)V (x)

)
∫

dx χ2
t (x)

. (14)

The computation of the square of the function χ is performed
by an additional layer in Pytorch. Henceforth, the functional
derivative with respect to χ can be directly computed exploit-
ing automatic differentiation.

Whether the gradient descent algorithm reaches the
ground-state or not depends on two major issues. First, the
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optimization might get stuck in a local minimum. Indeed,
the optimization landscape is not proven to be convex, even
for the (unknown) exact functional. Convexity can be instead
proven for an extended functional, defined in a domain includ-
ing density profiles not corresponding to ground states [4].
This problem can be mitigated by repeated the minimization
process starting from different initial profiles, or by introduc-
ing random steps based on, e.g., Metropolis-type algorithms.
The second issue is the accuracy of the functional deriva-
tive. Noisy and inaccurate derivatives might create unphysical
density profiles, clearly not corresponding to ground states.
Since the regression model was not trained on such profiles, it
might provide very inaccurate energy predictions, even lower
than the exact ground-state energy egs. This leads to dramatic
failures of the gradient descent optimization, even to large vi-
olations of the variational principle. This problem has already
been emphasized in the literature, and it was indicated as a
major challenge to be overcome for the further development of
ML-based DFTs. In Refs. [10,11,20], the adopted regression
model was kernel ridge regression. This model typically re-
quires smaller datasets for training, but it is less efficient than
the deep neural networks in systematically extracting further
information from larger and larger datasets. Even kernel ridge
regression led to noisy derivatives. To circumvent this prob-
lem, the authors introduced two main techniques, referred to
as local principal component analysis and nonlinear gradient
denoising. They aim at projecting the functional derivative
to the manifold tangent to the one spanned by ground-state
density profiles. Other works included derivative data in the
training process—also adopting standard CNNs—using the
Sobolev Loss [18,19]. We emphasize that our goal is to train
the regression model using only ground-state density profiles
and the corresponding energies, avoiding resorting to less
accessible data such as excited-state properties or energy gra-
dients.

III. TESTBED MODEL AND TRAINING DATASET

The main testbed model we consider is the single-particle
model (1), where the (random) external potential V (x) is
designed to represent the effect of optical speckle patterns
on ultracold atoms. Notice that another testbed, borrowed
from the literature, is considered in Appendix, allowing us to
further characterize the domain of applicability of the CNN.
The speckle potentials can be created by applying a specific
filter in Fourier space to a random complex Gaussian field
[27]. The filter corresponds to the aperture of the optical
apparatus used to experimentally create the field, and it fixes
the characteristic size of the speckle grains. In fact, with this
choice the Hamiltonian (1) describes early cold-atom experi-
ments on Anderson localization in one dimension [25,26]. The
statistical and spectral properties of optical speckle patterns
are known [27–29]. The intensity of the potential V in a point
x follows the probability distribution

P(V ) = exp
(
− V

V0

)
(15)

for V � 0, and P(V ) = 0 otherwise; V0 � 0 is the average
intensity, and it also coincides with the standard deviation.
It is the unique parameter determining the disorder strength.

The two-point autocorrelation function satisfies the following
equation:

〈V (x′ + x)V (x′)〉
V 2

0

− 1 = sin(πx/γ )2

(πx/γ )2
, (16)

where γ determines the correlation length, namely the size of
the typical speckle grains. In the above equation, the brackets
〈·〉 indicate the average over many random realizations of
the speckle pattern. This ensemble average coincides with
the spatial average for sufficiently large systems. The corre-
lation energy Ec = h̄2

2mγ
separates the strong disorder regime

V0 � Ec, where the low-energy orbitals are localized on a
lengthscale of order γ [30] due to the Anderson localization
phenomenon [31], from the weak disorder regime V0 � Ec,
where their localization length is much larger. Notice that in
one dimension, any disorder strength induces Anderson local-
ization in a sufficiently large system [32]. In the following,
we consider the relatively large system size L = 14γ and the
intermediate disorder strength V0 = 0.5Ec. This choice allows
us to generate rather variegate ground-state density profiles
with different shapes and varying degrees of localization, de-
pending on the details of the specific realization of the speckle
pattern. Therefore, the Hamiltonian (1) represents a stringent
testbed for the DFT framework. Two representative instances
of the speckle pattern are shown in Fig. 1, together with the
corresponding ground-state density profiles.

Different random realizations of the speckle pattern can be
efficiently generated on a discrete grid with the algorithm de-
scribed in Refs. [33,34]. We choose a fine grid with Ng = 256
points, such that the grid step δx = L/Ng � γ . The ground-
state energy egs and the corresponding orbital ψgs(x) are
determined via exact diagonalization using a high-order finite-
difference formula. Computations performed with finer grids
show that the discretization error is negligible. The choice of
such a fine grid allows us to compute all spatial integrals [see,
e.g., those in Eqs. (3) and (14)] with the discrete approxima-
tion

∫ L
0 dx −→ δx

∑Ng

i=1. Higher-order approximations lead
to essentially indistinguishable results for our purposes. Fur-
thermore, the functional derivative in Eq. (13) is computed
as

δT [ψ]

δψ (x)
= ∂T [ψ]

∂ψ (xi )

1

δx
. (17)

For this, we exploit Pytorch automatic differentiation. The
training of the neural networks, namely the minimization
of the loss function Eq. (4), is performed using the Adam
algorithm [35]. The chosen learning rate is lr = 10−4, the
minibatch size is Nb = 100 and the training epochs are Ne =
1200. The other parameters of the Adam algorithm are set at
their suggested default values. Our global dataset is composed
of 150 000 instances. As is customary in deep-learning stud-
ies, we split it into a training set (81%), a validation set (9%),
and a test set (10%). To measure the accuracy in the regression
task, we consider the coefficient of determination, defined
as

R2 = 1 −
∑Ntest

k=1 |tgs,k − T̃ω[ngs,k]|2
Ntestσ 2

, (18)
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FIG. 1. Panels (a) and (b) show the external potentials V (x) rep-
resenting two instances of the optical speckle pattern (right vertical
axis, the unit is the correlation energy Ec) and the corresponding
ground-state density profiles (left vertical axis, units of 1/γ ). The
spatial variable x is in units of the correlation length γ . In panel
(a) the exact ground state is compared to the DFT result obtained
using the standard CNN with Softplus activation function and using
the CNN. In panel (b) the standard CNN with ReLU activation is
considered instead.

where Ntest is the number of instances in the test set and
σ 2 = 1

Ntest

∑Ntest
k=1(tgs,k − t̄gs)2 is the variance of their kinetic en-

ergies; with t̄gs = 1
Ntest

∑Ntest
k=1 tgs,k we denote the average kinetic

energy. After training, the two variants of standard CNNs
reach remarkable accuracies on the test set, meaning that,
when they are provided with an exact ground-state density
profile corresponding to a previously unseen speckle pattern,
they accurately predict the associated ground-state kinetic
energy and, via Eq. (3), also the total energy. The R2 scores
obtained with these two CNNs are reported in Table I. The R2

scores reached by the CNN are comparable, but slightly infe-
rior, to the ones obtained by the standard CNNs (see Table I).
Remarkably, despite this (slightly) lower performance in ki-
netic energy predictions, the averaging operation drastically
suppresses the noise in the functional derivative, allowing the

use of CNN in a gradient-based search of the ground-state
energy and density profile. This is discussed in Sec. IV.

IV. RESULTS FOR GRADIENT-DESCENT OPTIMIZATION

To be suitable for the DFT framework, the deep-learned
functional T̃ ω[n] should allow iterating the gradient descent
process as long as is required to reach the minimum of E [n] ≡
T̃ ω[n] + ∫

dx V (x)n(x). Hereafter, we denote with nmin(x) the
density profile reached after gradient-descent optimization,
and with emin = E [nmin(x)] the corresponding energy. The
latter represents our estimate for the ground-state energy egs.
Importantly, energies significantly lower than egs should never
occur during the optimization process, as they would consti-
tute a violation of the variational principle. As explained in
Sec. II, the possible freezing in a local minimum significantly
larger than egs can be circumvented by repeating the opti-
mization from a different initial profile. Figure 1 displays the
density profiles reached after tmax = 10 000 steps of gradient
descent for two representative instances of the speckle pattern.
For these and all other results reported below, the learning rate
used in gradient descent is η = 10−3. Clearly, the standard
CNNs lead to unphysical profiles, while the CNN provides
an accurate approximation of the exact profile ngs(x). To shed
light on this phenomenon, we analyze the behavior of the
energy discrepancy

e = egs − emin (19)

and of the density discrepancy

|n| =
√∫

dx[ngs(x) − nmin(x)]2, (20)

based on the L2 metric

|n| =
√∫

dx n2(x) (21)

along the gradient-descent process. Specifically, we consider
the average of the relative energy error 〈e/egs〉, of the rel-
ative absolute energy error 〈|e|/egs〉, and of the relative
density error 〈|n|/|ngs|〉 computed over a test set of 500 in-
stances. Their dependence on the number of gradient-descent
steps is shown in Fig. 2. The vertical bars indicate the stan-
dard deviation over this test set, meaning that they represent
the fluctuations among different realizations of the speckle
pattern. For both standard CNNs, after an initial decrease,
the average absolute error increases. This means that the
optimization process in not reliable, as it should be halted
at an unknown intermediate number of steps. The average
relative error becomes negative, indicating a violation of the
variational principle. The density error also increases after
many steps, corresponding to the formation of unphysical
density profiles with large spurious spatial fluctuations, as
exemplified in Fig. 1. Instead, the absolute relative energy
error corresponding to the CNN (with Nc = 260 channels)
systematically decreases until it saturates around a small value
corresponding to ∼0.5%. The average error saturates close
to 〈e/egs〉 ∼ 0, meaning that significant violation of the
variational principle does not occur. The histograms shown
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FIG. 2. Relative discrepancies of DFT predictions from exact
grounds-state results as a function of the number of steps t of the
gradient-descent optimization. The results are averaged over a test
set of 500 speckle-pattern instances. Three error metrics are shown:
absolute energy discrepancy 〈|e|/e〉 [panel (a)], energy discrepancy
〈e/e〉 [panel (b)], and density discrepancy 〈|n|/|n|〉 [panel (c)].
The results of the standard CNN with ReLU activation function
are compared to those of the CNN (Nc = 260). The vertical bars
represents the standard deviation over the test set.

in Fig. 3 compare the energy and the density errors obtained
with the CNN and with the standard CNN with ReLU activa-
tion function (this outperforms the corresponding model with
Softplus activation) after tmax = 10 000 steps of the gradient
descent optimization. The CNN energies are concentrated
around zero error, while the standard CNN results are broadly
distributed in the region of negative energy errors, correspond-
ing to strong violations of the variational principle.

Notably, the energy predictions obtained by performing
gradient-descent optimization with the CNN systematically
improve when the number of channels Nc increases. This
effect is shown in Fig. 4. Notice that, for small Nc, small
violations of the variational principle still occur in rare cases.
However, they vanish for larger Nc. In fact, the average
absolute energy discrepancy obtained after gradient descent
with the Nc = 260 CNN is 〈|e|/e〉 � 0.2%, which is ap-
proximately twice the corresponding discrepancy obtained
on a test set of exact ground-state profiles ngs(x), namely

FIG. 3. Histograms of the relative energy discrepancies e/e
[panel (a)] and the density discrepancies |n|/|n| [panel (b)] for a
test set of 500 speckle-pattern instances, after tmax = 10 000 steps of
the gradient-descent optimization. The results of the standard CNN
with ReLU activation function are compared to those of the CNN.

〈|eML|/e〉 � 0.1%. Notice that this approximate doubling
effect is expected, since the former error is also affected by
the approximation in the density profile, while the latter corre-
sponds to the CNN prediction on the exact profile. This means
that gradient-descent optimization successfully identifies the
ground state, within the residual uncertainty of the ML model.
Increasing Nc leads also to more accurate density profiles [see
panel (b) of Fig. 4] and to the reduction of the spatial noise
observed in the results provided by standard CNN (see Fig. 1
and also Refs. [10,18]).

To quantify this spatial noise, we consider the following
metric:

A = 1

Ng

〈 Ng∑
i=1

(∣∣∣∣∇nmin(xi )

∇ngs(xi )

∣∣∣∣ − 1

)〉
. (22)

It measures the error in the derivative of the density profile.
Inaccurate profiles are characterized by large positive values
A � 1, due to spurious spatial fluctuations, while exact
predictions lead to A = 0. We find that large Nc values
lead to accurate and smooth density profiles [see panel (c)
of Fig. 4], indicating the effectiveness of the average-channel
layer. Residual local spurious fluctuations in the density pro-
files might be further suppressed via filtering procedures in
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FIG. 4. Histograms of the relative energy discrepancies e/e
[panel (a)], of the density discrepancies |n|/|n| [panel (b)], and
of the noise metric A defined in Eq. (22) [panel (c)], for a test
set of 500 speckle-pattern instances, after tmax = 10 000 steps of the
gradient descent optimization. The results of the CNNs with different
number of convolutional channels Nc are shown.

postprocessing. Still, accurate DFT predictions are essential
to avoid introducing biases by strong filtering procedures.

It is worth further emphasizing that using the standard met-
rics of deep learning on training and test sets of exact density
profiles is not necessarily helpful to predict the performance
of the ML functional in the variational minimization of DFT.
This is exemplified by the scatter plots of Fig. 5. They display
the errors obtained after gradient descent optimization versus

FIG. 5. Absolute relative discrepancy 〈|e|/e〉 [panel (a)] and
scatter plot of density discrepancy 〈|n|/|n|〉 [panel (b)] after
gradient-descent optimization (tmax = 10 000, average over 500 in-
stances) vs coefficient of determination R2 over a test set of exact
ground-state densities. Three neural networks are compared: stan-
dard CNN with ReLU and with Sofplus activation functions, and
CNN.

the coefficient of determination Eq. (18) computed on a test
set of exact ground-state density profiles. The two standard
CNNs and the CNN with three values of Nc are considered.
No (anti)correlation is clearly noticeable, meaning that high
prediction accuracies on exact ground states do not necessar-
ily correspond to highly effective functionals for DFT. This
should be taken into account in the future development of deep
learning techniques for DFT.

V. CONCLUSIONS

The progress in databased DFT is currently being hindered
by the instabilities encountered when using ML functionals
in gradient-based optimization. We presented a promising
approach to circumvent this problem. This relies on the
implementation of a deep neural network tailored to DFT.
Specifically, we have shown that when an interchannel aver-
aging layer is included, beyond the standard convolutional,
pooling, and dense layers, gradient-descent optimization can
be iterated at will, obtaining accurate ground-state energies
and density profiles and avoiding violations of the variational
principle beyond residual uncertainties from the imperfect
training of the regression model. Our analysis has focused on
a realistic one-dimensional model for noninteracting atoms
in optical speckle disorder, which leads to rather variegate
density profiles compared to models addressed in previous
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studies on ML-based DFT. For completeness, in Appendix the
performance of the CNN in Gaussian-well models borrowed
from the literature is demonstrated. On the one hand, this
further analysis indicates the rather general range of appli-
cability of our tailored neural network. On the other hand,
it points out the need of training sets including significantly
variegate density profiles. To favor future comparative studies,
our training datasets are made freely available at Ref. [36].

Additional challenges are going to be faced in the further
development of ML techniques for DFT [37]. A further as-
sessment of the network effectiveness should focus on higher
dimensional and interacting models. In the DFT formalism,
moving from single-particle to many-body problems is less
challenging than in wave-function-based methods, since ob-
servables are still obtained from the single-particle density.
Therefore, we expect the CNN to be useful also in the
many-body context. Clearly, generating training datasets is,
in that case, more demanding [19,38]. The learning process
has to be accelerated, and the following strategies could
be adopted. Incorporating physics knowledge into the deep-
learning framework is a possible strategy [39,40]. Another
promising approach is transfer learning. This technique has
already proven suitable to accelerate the supervised learn-
ing of the ground-state properties of both noninteracting and
interacting quantum systems [41–43]. Interestingly, even ex-
trapolations were proven feasible, meaning that (scalable)
networks trained on relatively small systems provided accu-
rate predictions for larger sizes or larger particle numbers.
These techniques might be adopted also in the framework of
DFT. We leave these endeavors to future investigations.
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APPENDIX: GAUSSIAN-WELL POTENTIALS

To favor direct comparison, and to further characterize the
effectiveness of the CNN, here we consider a different testbed
model, borrowed from previous studies. It describes narrow
potential wells that confine the particle in the central region
of a finite box. Setting the units such that h̄2/(m�2) = 1,
where � is the length unit, the (adimensional) single-particle
Hamiltonian reads

H = −1

2

d2

dx2
+ V (x), (A1)

with the external potential

V (x) = −
3∑

i=1

ai exp

[
− (x − bi )2

2c2
i

]
. (A2)

FIG. 6. Histograms of the relative energy discrepancies e/e
[panel (a)] and the density discrepancies |n|/|n| [panel (b)] for a
test set of 100 Gaussian-well potentials, after tmax = 10 000 steps of
the gradient-descent optimization.

The model parameters ai, bi, and ci are sampled from uniform
probability distributions in the following ranges: ai ∈ [1, 40],
bi ∈ [1.8, 4.2], and ci ∈ [0.12, 0.4]. The box size is L = 6,
and hard-wall boundary conditions are adopted. The chosen
box is L = 6, rather than L = 1 as in Ref. [18], so that the
ground-state density profiles essentially vanish before reach-
ing the boundaries. This strongly suppresses the role of the
choice of the boundary conditions. Indeed, we find negligible
variations in the ground-state energies with hard-wall com-
pared to periodic boundary conditions. With the size L = 1,
the boundary effects are sizable, and the density profiles
corresponding to different potential instances display small
variations when hard-wall boundaries are adopted. This does
not allow an effective training of the deep neural network,
reintroducing instabilities in the gradient-descent optimiza-
tion. We find that this problem is solved either enlarging the
system size, e.g., to L = 6, as shown hereafter, or by adopting
periodic boundary conditions in a small box, as mentioned
later on in this paragraph.

A CNN is trained on a global dataset of 150 000 instances
(90% train, 10% validation), using the same structure (2
blocks, pooling size [4,2], kernel size 13, and 260 hidden
channels) and the same hyperparameters as in the case of
the speckle potential with a number of epochs Ne = 3000.
However, here the convolutional layers use zero padding,
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FIG. 7. External potential V (x) corresponding to an instance of
the Gaussian-well potential (right vertical axis, unit of h2

m�2 ) and
the corresponding ground-state density profiles (left vertical axis,
units of 1/�). � is the length unit, used on the horizontal axis. The
density configuration obtained by gradient-descent minimization is
compared to the exact density profile.

as opposed to the periodic padding adopted for the speckle
potentials, which are defined within periodic boundary con-
ditions. The gradient descent performance on a test set of
100 instances is visualized in Fig. 6. Again, we find that
gradient-descent optimization (tmax = 10 000) leads to accu-
rate ground-state energies (〈|e|/e〉 � 0.14%) and density
profiles (〈|n|/|n|〉 � 3%), without sizable violation of the
variational condition. For illustrative purposes, an example
of Gaussian-well potential, with the corresponding density

profile obtained with L = 6, is shown in Fig. 7. To fa-
cilitate comparison, we report the model details and the
performance metrics using the units and the conventions
adopted in some previous studies. These considered one-
electron models in atomic units, so that � corresponds to
the Bohr radius, and the energy unit h̄2/(m�2) corresponds
to one Hartree (Ha). The mean kinetic energy of the L = 6
model is t̄gs � 3.994 Ha and the standard deviation is quite
large, namely σ � 1.457 Ha, with maximum value 12.957 Ha
and minimum value 0.2605 Ha, corresponding to consid-
erably variegate ground states. The average kinetic-energy
prediction error on a test set of Ntest = 15 000 instances is
〈|tML|〉 ≡ N−1

test

∑Ntest
k=1 |tgs,k − T̃ω[ngs,k]| � 8 × 10−4 Ha; the

standard deviation of |tML| is σ � 11 × 10−4 Ha. After
gradient descent, the average absolute kinetic-energy er-
ror is 〈|T̃ω[nmin] − tgs|〉 � 0.0171 Ha and the corresponding
standard deviation is σ � 0.0191 Ha. The average absolute
density discrepancy is 〈|n|〉 = 0.031 and the corresponding
standard deviation is σ � 0.008.

It is also worth mentioning that, considering L = 1 and
periodic boundary conditions, the accuracy metrics are com-
parable to those mentioned above, namely 〈|e|/e〉 � 0.3%
and 〈|n|/|n|〉 � 3%. In this case, periodic padding is used,
and the first left and right periodic images of the Gaussian
wells are included to make the potential V (r) essentially
periodic. The potential parameters are sampled in the follow-
ing ranges: bi ∈ [0.1, 0.9], ai ∈ [1, 40], and ci ∈ [0.03, 0.1].
When combined with periodic boundary conditions, these al-
low us to create sufficiently variegate density profiles despite
the small system size. These findings indicate that the CNN
represents a flexible regression model to apply ML-based DFT
to rather arbitrary external potentials, whereby the density
profiles display significant variations among different random
realizations of the sample.
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