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We present a color-gradient-based lattice Boltzmann model for immiscible fluids with a large density contrast.
The model employs the velocity-based equilibrium distribution function, initially proposed for the phase-field-
based model by Zu and He [Phys. Rev. E 87, 043301 (2013)], with a modification necessary to satisfy the
kinematic condition at the interface. Different from the existing color-gradient models, the present model
allows to specify interface mobility that is independent of the fluid density ratio. Further, we provide a unified
framework, which uses the recursive representation of the lattice Boltzmann equation, to derive the governing
equations of the system. The emergent color dynamics thus obtained, through an analysis of the segregation
operator, is shown to obey the locally conservative Allen-Cahn equation. We use a series of benchmarks, which
include a stationary drop, a layered Poiseuille flow, translation of a drop under a forced velocity field, the
Rayleigh-Taylor instability, and the capillary intrusion test to demonstrate the model’s ability in dealing with
complex flow problems.
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I. INTRODUCTION

Lattice Boltzmann (LB) is increasingly becoming the
method of choice for the numerical study of multiphase flow
problems. Compared to the conventional ones like the volume
of fluid [1] or the level set method [2], LB methods offer an
advantage over dealing with interface tracking and complex
boundaries. For multiphase flow, LB schemes are typically
classified as the pseudopotential [3] model, the color-gradient
(CG) [4] model, the free-energy [5,6] model, and the phase-
field [7] model. Here, we restrict the focus of the present study
to the CG model.

One of the first two-phase models for immiscible fluids
within lattice Boltzmann framework, known as the chomo-
dynamic or the CG, was proposed by Gunstensen et al. [4].
Similar to its predecessor in cellular gas automata [8], the
model gets its name by the fact that it uses colored fluid
distributions to distinguish between the phases. Apart from
the usual collision operation, the CG method is characterized
by perturbation and segregation operations. The perturbation
operator is used to introduce surface tension while the segre-
gation operator is used to keep the fluids immiscible. Over the
past three decades, the CG model has evolved considerably.
Reis and Phillips [9] generalized the perturbation operator
for the rectangular lattices. In the initial CG models, the
segregation operation comprised iteratively maximizing the
projection of color flux onto the color gradient. This procedure
yields a nearly sharp interface, though it is accompanied by
lattice pinning. Later, based on the work of D’Ortona [10],
Latva-Kokko and Rothman [11] gave a formulaic prescription
of the segregation operator that greatly reduced lattice pin-
ning artifacts. The formulaic prescription also added a length
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scale to the scheme with a parameter that controlled the in-
terface width. Further, augmented with the wetting boundary
conditions and the multiple-relaxation-time (MRT) schemes,
the CG model has been employed in a variety of fluid flow
situations such as microfluidics [12] and porous media flow
[13,14].

Despite the success enjoyed, one of the major challenges
with the CG model is to simulate the fluid systems with a
large density contrast. Within the weakly compressible LB
framework, the fluid pressure is proportional to the density
with the squared lattice speed of sound as the prefactor. Con-
sider a planar interface between two immiscible fluids. Due to
the planar interface, the surface tension forces are zero. For
such a system to remain in equilibrium, the lattice speed of
sound must be adjusted. Using this principle, Grunau et al.
[15] tuned the lattice speed of sound of the individual fluids
to maintain the mechanical balance in the presence of density
contrast. This approach works well in situations when the fluid
velocities are negligible, for example, a stationary drop resting
in another fluid. It was later numerically demonstrated [16]
that such a construction introduces a momentum discontinuity
at the interface for a planar flow between two walls. Huang
et al. [17] employed the Chapan-Enskog analysis to point
out the term, which is proportional to the density gradient
and fluid velocity, responsible for such a discontinuity. In
this regard, Ba et al. [18] made further improvement by con-
structing an equilibrium distribution based on the third order
Hermite expansion of the Maxwellian distribution. The third
order lattice velocity moment of the equilibrium distribution
exactly cancels the term pointed out by Huang et al. [17]
for the nondiagonal elements. Using an additional correc-
tion to compensate for the diagonal elements, they reported
Rayleigh-Taylor instability with a density ratio of 3 and
Reynolds number of 2048. A similar approach was used by
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Wen et al. [19] to extend the model of Ba et al. [18] to three
dimensions.

The works described above ensure that the individual fluids
satisfy the fluid dynamical equations. The mass (density) and
momentum sum of the two fluids then also solve the target
equations. Another way to approach the problem is to formu-
late a system where a single fluid satisfies fluid dynamical
constraints in both the phases. Along the latter approach,
Leclaire et al. [20] adopted the equilibrium distribution func-
tion of Holdych et al. [21], and Che Sidik and Tanabashi
[22], which was proposed for a nonideal single component
fluid with a density contrast. Later this equilibrium distribu-
tion was generalized for rectangular lattices in two and three
dimensions [23]. With a judicious choice of the relaxation
parameters in the MRT scheme, Saito et al. [24,25] employed
this model for several complex unsteady problems that include
Rayleigh-Taylor instability (density ratio 3, Reynolds number
5120) and liquid jet break-up (density ratio 10, Reynolds num-
ber 106, Weber number 105). Lischuk et al. [26] postulated an
equation of state in terms of the fluid pressure and the color
(phase) field for an incompressible single-phase fluid. With
an interfacial term that accounts for both the surface tension
and density contrast, they simulated air bubble breaching at
density ratio of 10 and Weber number of 3.

Notwithstanding the developments above, the CG model
lags the pseudopotential and phase-field-based models in
terms of the density ratio and Reynolds number achievable
[27–29]. For example, the pseudopotential models are capable
of dealing with high-density and high-viscosity ratios at high
Weber numbers in three dimensions [30–32]. The phase-field-
based models have shown similar capabilities [33–35]. In
this work, we present a CG model to address this issue. We
modify the velocity-based equilibrium distribution function,
first proposed for the single-phase [36] and later for the phase-
field-based two-phase model by Zu and He [37]. We introduce
a constant term to the color blind fluid populations, which aids
in satisfying the kinematic condition at the interface. For the
model validation, we simulate a stationary drop and a layered
Poiseuille flow with a density ratio of 104 and compare the
results with the analytical and the finite difference solutions,
respectively. Further, we simulate Rayleigh-Taylor instability
with a density ratio of 103 and Reynolds number of 3 × 103.

The rest of the article is arranged as follows: The CG model
and its MRT extension are given in Sec. II. The kinematic
properties of the interface tracking are derived and discussed
in Sec. III. The model validation through various benchmarks
is presented in Sec. IV, while conclusions of the present work
are given in Sec. V.

II. CG MODEL WITH VELOCITY EQUILIBRIUM
FUNCTION

The CG models typically use colored convention (say blue
and red) to identify the two fluids. The total (color-blind) fluid
populations are obtained as a sum of the two colored fluid
populations,

Ni(x, t ) = Ri(x, t ) + Bi(x, t ), (1)

where x is position vector, t is time, and i denotes the lattice
direction. Further, Ri and Bi denote the fluid populations in the

lattice direction i for the red and the blue phases, respectively.
The LB equation for the total (color-blind) fluid populations
can be written as

Ni(x + ciδt, t + δt ) = Ni(x, t ) + �i + Fi(x, t )

= N∗
i (x, t ), (2)

where δt is time step, Fi is force term, N∗
i is total post-collision

fluid distribution, and �i is the collision operator. Under the
approximation of Bhatnagar-Gross-Crook (BGK) [38] colli-
sion operator, N∗

i is given as

N∗
i =

(
1 − 1

τ

)
Ni + 1

τ
Neq

i + Fi, (3)

where all the quantities are evaluated for the same position and
time, τ is the relaxation parameter and Neq

i is the color-blind
equilibrium population. Here, we make use of the so-called
velocity-based equilibrium distribution function [37] with a
modification. In the present work, the color-blind equilibrium
population is given as

Neq
i =

{
χi − (1 − wi )

p
c2
s
− wi

u2

2c2
s

i = 0,

χi + wi
[ p

c2
s
+ ci·u

c2
s

+ ci·u
c4
s

− u2

2c2
s

]
i �= 0,

(4)

where wi is lattice weight, ci is lattice velocity, cs is lattice
speed of sound, u is fluid velocity, and p is auxillary pressure
field. Also p = ph

ρ
with ph and ρ being the hydrodynamic

pressure and fluid density, respectively. For rectangular lat-
tices the lattice speed of sound cs = 1√

3
[39]. For the D2Q9

stencil, the lattice velocities c and lattice weights wi are given
as

c =
(

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

)
, (5)

wi =

⎧⎪⎨
⎪⎩

4
9 i = 0,
1
9 i = 1, 2, 3, 4,
1

36 i = 5, 6, 7, 8.

(6)

The color field ϕ is used to identify the two phases. We assign
the lighter (red) fluid as ϕ = 0 and the heavier (blue) fluid
ϕ = 1. The equilibrium distribution function for the individual
fluids is given as

Beq
i = ϕNeq

i ,

Req
i = (1 − ϕ)Neq

i .
(7)

The equilibrium distribution Eq. (4) differs from the one
proposed by Zu and He [37] with respect to the addition of
the term χi. We use χi to tune the mobility of the color field.
For the D2Q9 lattice, they are given as

χi =
⎧⎨
⎩

α i = 0,
1−α

5 i = 1, 3, 5, 7,
1−α
20 i = 2, 4, 6, 8.

(8)

The free parameter α in Eq. (8) is a positive constant. The
zeroth-, first-, second-, and third-order velocity moments of

045308-2



COLOR-GRADIENT LATTICE BOLTZMANN MODEL FOR … PHYSICAL REVIEW E 106, 045308 (2022)

the equilibrium distribution are

∑
i

Neq
i = 1,

∑
i

Neq
i ciα = uα,

∑
i

Neq
i ciαciβ =

[
9(1 − α)

5
+ p

]
δαβ + uαuβ,

∑
i

Neq
i cicici = (uαδβγ + uβδγα + uγ δαβ )c2

s . (9)

Comparing with the model of Zu and He [37], one finds
that the odd lattice velocity moments of the equilibrium dis-
tribution [Eq. (4)] remain the same while the even moments
differ by constants. The spatial and temporal derivatives of
these moments are thus identical to that of Zu and He [37],
who have shown that the total fluid satisfies the fluid dynam-
ical equations using the Chapman-Enskog analysis. Here, we
use a recursive representation of the LB equation to show the
same. This analysis is relegated to the Appendix.

The force term Fi in Eq. (3) is given by [37]

Fi = wi

(
1 − 1

2τ

)
F′ · ci

c2
s

, (10)

F′ being the total force acting on the fluid. Equation (10)
uses the Guo force scheme [40] where the fluid velocity terms
are dropped for simplicity. F′ contains both the physical and
correction forces, and it is defined as [37]

F′ = Fvisc + Fp + Fs + Fb. (11)

Fb and Fs in Eq. (11) represent the body and surface tension
forces. In addition, Fvisc and Fp are the viscous correction
force and pressure correction force, respectively. The expres-
sions for these forces are as follows [37]:

Fp = −p∇ρ, (12)

Fvisc = c2
s δt

(
τ − 1

2

)
(∇u + ∇uT) · ∇ρ. (13)

The density of the fluid ρ and kinematic viscosity ν are
computed by color field ϕ weighted interpolation of indi-
vidual fluid properties. In the present model, ρ and ν are
computed as

ρ = ϕρB + (1 − ϕ)ρR, (14)

1

ν
= ϕ

νB
+ 1 − ϕ

νR
, (15)

where ρB, ρR (νB, νR) are the constant densities (kinematic
viscosities) of the blue and red colored fluids, respectively.
The relaxation time is found as τ = 1

2 + ν

δtc2
s
. This relaxation

parameter update scheme is simple compared to the more
elaborate ones [18,41]. The dynamic viscosity μ = ρν is then
found from the kinematic viscosity and the density.

The color, fluid velocity and auxiliary pressure field are
computed as

ϕ =
∑

i

Bi, (16)

u =
∑

i

Nici + F′δt

2ρ
, (17)

p = 1

1 − w0

[
−w0

2
u2 − (1 − χ0)c2

s +
∑
i �=0

Nic
2
s

]
. (18)

Similar to the model of Zu and He [37], the pressure and
velocity terms are implicitly depend on each other in Eq. (17)
and Eq. (18). To see it clearly, Eq. (11) and Eq. (12) are used
in Eq. (17) to yield

u =
∑

i

Nici + (Fb + Fvisc + Fs)

2ρ
δt − p∇ρ

2ρ
δt,

p = 1

1 − w0

[
−w0

2
u2 − (1 − χ0)c2

s +
∑
i �=0

Nic
2
s

]
. (19)

We solve Eq. (19) iteratively for a couple of times. Given
that the pressure changes slightly over one time step duration,
the pressure from the previous time step provides a good
initial estimate for the iterative procedure.

A. Perturbation step

Traditionally, CG method incorporates the surface tension
effects using a perturbation operator. The force term for this
operator can be written as [9,42]

F σ
i = A|∇ϕ|

[
wi

(∇ϕ · ci )2

|∇ϕ|2 − Bi

]
, (20)

where A is proportional to the surface tension and coeffi-
cients Bi are lattice specific [9,42]. The scheme given by
Eq. (20) removes fluid populations in the tangential direction
and adds them to the normal direction while ensuring that the
local mass remains unchanged [43]. Other ways to model the
surface tension effects include the continuum definition as a
distributed force [44]

Fs = σκδ(η)n̂ = −σ∇ · n̂∇ϕ, (21)

where σ is the surface tension, κ is the interface curvature, δ()
is a delta distribution, n̂ = ∇ϕ

|∇ϕ| is the unit normal in a direction
perpendicular to the interface, η measures distance from the
interface and the difference between the extreme color field
values is unity. As we show below, the segregation scheme
Eqs. (27) and (28) allows to determine the equilibrium shape
of the interface profile as ϕ(η) = [1 − tanh( 2η

W )]/2. Given the
shape of color field profile near equilibrium, it is possible to
get a computationally cheaper estimate of local curvature and
thus the surface tension force. To see this, first, we express the
interface curvature in terms of the color field as

κ = −∇ ·
( ∇ϕ

|∇ϕ|
)

= − 1

|∇ϕ|
(

∇2ϕ − ∇ϕ

|∇ϕ| · ∇|∇ϕ|
)

.

(22)

Equation (22) can be simplified further by noting that |∇ϕ| =
∂ϕ

∂η
. Identifying ∇ϕ

|∇ϕ| · ∇ as the derivative in the normal
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direction, and using the equilibrium profile for color field
[Eq. (47)], Eq. (22) is written as [45]

κ = − 1

|∇ϕ|
[
∇2ϕ − 16

W 2
ϕ(1 − ϕ)(1 − 2ϕ)

]
. (23)

Equation (23) expresses the curvature in terms of Laplacian
of the color field and a local term, both of which are active
only at the interface. This simplification is one of the major
reason behind the success of the phase-field models applied
to the curvature driven processes as it allows to map the
jump boundary conditions at the interface into a second order
differential equation [46]. Now choosing |∇ϕ|2 = ( ∂ϕ

∂η
)2 as

the delta distribution with an appropriate normalizing factor,
and substituting Eq. (23) in Eq. (21), one obtains

Fs = σ

[
48

W
ϕ(1 − ϕ)

(
1

2
− ϕ

)
− 3W

2
∇2ϕ

]
∇ϕ. (24)

Equation (24) is widely used in phase-field-based two-
phase flow models [33,35,47,48], where it is derived from
minimization of free energy functional. In the present work,
we use Eq. (21) to include the surface tension force.

The computation of surface tension [Eq. (24)] and correc-
tion forces [Eqs. (12) and (13)] require the gradient and the
Laplacian of the color field. These are approximated as

∇ϕ = c2
s

∑
i

wiϕ(x + ciδt )ci, (25)

∇2ϕ = c2
s

2

∑
i

wi[ϕ(x + ciδt ) − ϕ(x)]. (26)

The truncation errors in the equations above can be shown
to be of the order O(∇3ϕ) and O(∇4ϕ), respectively [49].
Numerically the unit normal to the interface n̂ is evaluated
as ∇ϕ

|∇ϕ|+ε
, where ε [33] is a small positive constant.

B. Segregation step

While the total fluid population takes care of the macro-
scopic fluid dynamical equations in each of the phases, an
additional scheme is needed for interface tracking. Instead of
solving an explicit equation for the color field, the CG models
use the segregation step for this purpose. The segregation
step redistributes the individual fluid populations Ri and Bi

near the interface region, and thus preserves the distinction
between the phases. Most of the CG models define the color
field ϕ in terms of the normalized density difference between
the two phases. Here the color field is independent of the
fluid densities, rather the fluid density is computed from the
color field variable. In the present work, we use a slightly
modified version [50,51] of the segregation operator proposed
by Latva-Kokko and Rothman [11]. It is written as

B∗∗
i = ϕN∗

i + 2
ci · n̂
W

ϕ(1 − ϕ)Neq,u=0
i , (27)

R∗∗
i = (1 − ϕ)N∗

i − 2
ci · n̂
W

ϕ(1 − ϕ)Neq,u=0
i , (28)

where B∗∗
i and R∗∗

i are the post-segregation population of the
blue and red colored phases, respectively. Further, Neq,u=0

i
is the equilibrium distribution function evaluated for u = 0.
Note the omission of |ci| in the denominators of second terms

in Eqs. (27) and (28) that increases the isotropy of the result-
ing discrete differential operator [51]. In the spirit of the CG
philosophy [43,52], Eqs. (27) and (28) ensure that the indi-
vidual fluid populations as well as the total fluid populations
along each lattice direction are conserved, i.e.,∑

i

R∗∗
i = R∗

i ,
∑

i

B∗∗
i =

∑
i

B∗
i ,

R∗∗
i + B∗∗

i = N∗
i . (29)

C. MRT collision operator

Especially for the case of high-viscosity and high-density
contrast, MRT collision operator performs better than the
BGK collision operator in terms of numerical stability and
accuracy. The MRT extension of the present model is

N∗
i = Ni − (M−1SM)i j

(
Nj − Neq

j

)
+

[
M−1

(
I − S

2

)
M

]
i j

Fj, (30)

where M is the transformation matrix and S is the diagonal
relaxation matrix. The transformation matrix is given as [33]

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(31)

The diagonal relaxation matrix is chosen as [33]

S = diag(1, 1, 1, 1, 1, 1, s7, s8), (32)

with s7 = s8 = 1
τ

. A useful way to compute the velocity gra-
dients is to make use of the nonequilibrium part of the fluid
populations. We make use of this information to compute the
viscous correction force as [33]

Fα
visc =

[∑
i

ciαciβ (M−1SM)i j
(
Nj − Neq

j

)] ∂ρ

∂xβ

. (33)

The LB algorithm is complete with the propagation of the
fluid populations:

Ni(x + ciδt, t + δt ) = N∗(x, t ) = N∗∗(x, t ), (34)

Ri(x + ciδt, t + δt ) = R∗∗
i (x, t ), (35)

Bi(x + ciδt, t + δt ) = B∗∗
i (x, t ). (36)

Finally, the iteration cycle of the algorithm can be summarized
as:

(1) The color field is found from the fluid populations and
the corresponding spatial derivatives are computed, Eqs. (16),
(25), and (26).

(2) The macroscopic force F′, except for the pressure cor-
rection force Fp, is evaluated, Eqs. (11), (13), and (24).
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(3) The fluid velocity and pressure are evaluated from
iterative procedure, Eq. (19). The pressure correction force is
evaluated, Eq. (12), and the total force is updated, Eq. (10).

(4) Collision step is carried out for the total fluid popula-
tions, Eq. (30).

(5) For the purpose of interface tracking, it is sufficient to
consider either of the fluid populations. Segregation step is
carried out for the blue fluid, Eq. (27).

(6) The color-blind populations are propagated to the
neighbors, Eq. (34).

III. COLOR EVOLUTION

The segregation step is responsible for interface tracking in
the CG models. In the interfacial region, this step redistributes
the color-blind fluid populations depending upon the phase
fractions and thereby introduces equal and opposite forces on
the colored phases. These equal and opposite forces, acting in
the direction normal to the interface, induce phase separation
with a length scale of W . The local mass and momentum of
the color-blind fluid remains unchanged during this step. In
this section, we investigate the color evolution induced by the
segregation step.

The general analysis of the segregation step differs from
the single-phase LB equation, in that it couples the colored
populations to the color-blind ones on the microscopic level
[Eqs. (27) and (28)]. The kinematic condition at the interface
requires that the color field moves with the interface velocity,
i.e., it is advected with the interface velocity [43,52]. The
general purpose of analyzing the segregation step is to ensure
that the color field satisfies the kinematic condition and to
identify the length scale that separates the fluids. For the
latter purpose, steady-state situations have been considered
[11,50] while the Chapman-Enskog analysis is used to show
that the kinematic condition is satisfied. Recently, Burgin et al.
[53] and Subhedar et al. [51] used the consideration of local
density changes to show that the color field indeed satisfies
the kinematic condition while identifying the interface width
in a single framework.

In this work, we generalize the analysis of the segre-
gation step using the recursive representation of the LB
equation [54]. This method expands the fluid populations in
a Taylor series around the equilibrium populations to derive
the emergent macroscopic equations. The main characteristic
of this method is that, unlike the Chapman-Enskog analysis,
it recovers the governing macroscopic dynamics in a non-
perturbative way [39]. A supplementary order of magnitude
analysis is necessary to arrive at the governing macroscopic
equations [55]. Lycett-Brown and Luo [56] have demonstrated
the utility of this method to identify the truncation errors in the
forcing scheme and improve the thermodynamic consistency
of the pseudopotential LB model. To keep the analysis simple,
we use the BGK collision operator and expand the color-blind
populations up to second order in time and space. The con-
sideration of the higher orders in time and space results in
Burnett equations [56,57].

We start with the recursive representation of the color-blind
fluid populations [54,56]

Ni = Neq
i − τδtDiN

eq
i + δt2τ

(
τ − 1

2

)
D2

i Neq
i

+ τFi − τ2δtDiFi, (37)

where Di = ∂t + ci · ∇ is total derivative in the lattice direc-
tion i. Equation (37) expresses the color-blind populations in
terms of the corresponding equilibrium populations, which in
turn, are known in terms of the macroscopic pressure and fluid
velocity. Using Eq. (3) in Eq. (27), we write

Bi =
[(

1 − 1

τ

)
ϕNi + 1

τ
ϕNeq

i

]
(x − ciδt, t − δt )

+ ϕFi(x − ciδt, t − δt ) + Si(x − ciδt, t − δt ), (38)

where Si = 2 ci ·n̂
W ϕ(1 − ϕ)Neq,u=0

i is used for brevity. Now
Taylor expanding the quantities on the right-hand side around
position x and time t and using Eq. (37) one finds

Bi = ϕNeq
i − δt (τ − 1)ϕDiN

eq
i − δtDi

(
ϕNeq

i

) + δt2

2
D2

i

(
ϕNeq

i

) + δt2(τ − 1)Di
(
ϕDiN

eq
i

)
+ δt2(τ − 1)

(
τ − 1

2

)
ϕD2

i Neq
i + τϕFi + δt (−τ2 + τ)ϕDiFi − δtτDi(ϕFi ) + Si − δtDiSi. (39)

To simplify further, the following relations are obtained using Eqs. (4) and (10):∑
i

DiϕNeq
i = ∂tϕ + ∇ · ϕu, (40)

∑
i

D2
i ϕNeq

i = ∂t (∂t + ∇ · ϕu) + ∂t∇ · ϕu + ∇ ·
{

c2
s

[
p

c2
s

+ 9(1 − α)

5

]
∇ϕ

}
+ ∇ · (ϕ∇p + ∇ · ϕuu), (41)

∑
i

DiϕDiN
eq
i = ∂t (ϕ∇ · u) + ∇ · (ϕ∂t u) + ∇ · ϕ(∇p + ∇ · uu), (42)

∑
i

Di(ϕFi ) =
(

1 − 1

2τ

)
∇ · ϕF′

ρ
, (43)

∑
i

DiSi = 2c2
s

W
∇ · ϕ(1 − ϕ)n̂, (44)
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where ∂t is derivative with respect to time. Summation of Eq. (39) over all the lattice directions and using Eqs. (40)–(44) gives

∂ϕ

∂t
+ ∇ · ϕu = δtc2

s

2
∇ ·

[
9

5
(1 − α) + p

c2
s

][
∇ϕ − 4

W
ϕ(1 − ϕ)n̂

]
+ δt

(
τ − 1

2

)
∇ · ϕ

(
∂t u + ∇ · �(0) − F′

ρ

)

+ δt

2

∂

∂t

(
∂ϕ

∂t
+ ∇ · ϕu

)
+ δt

2
∇ · u

∂

∂t
ϕ + δt

2
∇ · ∇ϕ · uu

− (τ − 1)ϕ∇ · u + δt (τ − 1)

[(
τ − 1

2

)
ϕ∇ ·

(
∂t u + ∇ · �(0) − F′

ρ

)
+

(
τ − 1

2

)
ϕ∂t∇ · u + ∂t (ϕ∇ · u)

]
.

(45)

Equation (45) governs the color evolution of the blue
phase. Given that the terms in the third line on the right-hand
side are not in the conservative form, Eq. (45) may give the
impression that the color conservation is violated locally. This
discrepancy results from the finite truncation of the Taylor ex-
pansion of the color field and the color-blind fluid populations.
Color conservation is guaranteed with Eqs. (27) and (28) and
as we show below, up to the terms considered here, the final
equation obeys color conservation. A similar equation can
be derived for the red colored phase by transformation ϕ →
(1 − ϕ) in Eq. (45). As a necessary condition, Eq. (45), when
evaluated in the bulk phase (ϕ = 1), reverts to the single-phase
continuity equation, Eq. (A10).

The first term on the right-hand side of Eq. (45) is re-
sponsible for keeping the interface of fixed shape and width,
while the other terms generate additional coupling between
the color and fluid velocity. The presence of the terms in
the second and the third line can be understood as purely a
consequence of the segregation operator, which divides the
color-blind populations among the two phases based on their
phase fractions.

For the case of equal densities, the correction forces due
to the density gradient at the interface are absent, and F′ in
Eq. (45) represents the physical forces alone. A comparison of
the color evolution Eq. (45) with the one derived by Subhedar
et al. [51] for the equal density case reveals the terms have sec-
ond derivative with respect to time. Further, the effect of the
nonequilibrium part of the color-blind fluid populations on the
color evolution can be separated by substituting Ni ≈ Neq

i (or
τ = 1) in Eq. (38). In this case, the third line on the right-hand
side of Eq. (45) vanishes. The remaining terms are in agree-
ment with the work of Burgin et al. [53], where a uniform
flow field (Ni ≈ Neq

i ) was assumed to recover color dynamics.
Equation (45) extends these studies by taking into account a
general velocity field (via consideration of the nonequilibrium
color-blind fluid populations) and the density contrast.

Next, we estimate the order of magnitude of the terms other
than the first one on the right-hand side of Eq. (45). We use
Eq. (A12), Eq. (A13), and Eq. (45) itself in Eq. (45) to obtain

∂ϕ

∂t
+ ∇ · ϕu = ∇ · M

[
∇ϕ − 4

W
ϕ(1 − ϕ)n̂

]

+ O(δt2 + Ma2δt ), (46)

where M = c2
sδt
2 [ 9(1−α)

5 + p
c2
s
] is the mobility of the interface.

The equation is, in fact, a locally conservative Allen-Cahn
(AC) equation with a source term. The models that explicitly

solve AC or Cahn-Hilliard equation for interface tracking pro-
vide feedback to the color field only through the fluid velocity
in the advection term. Equation (46) thus differs slightly from
them in that an additional feedback, although a weak one of
the order δt2 + Ma2δt , is given to the color field. The equi-
librium solution of Eq. (46), with fluid velocity and temporal
derivative of the color field being zero, can be easily verified
as

ϕ(η) = 1

2

[
1 ± tanh

(
2η

W

)]
, (47)

where η measures signed distance from the interface.
The interface mobility M determines the relaxation rate of

the interface. Ideally, the interface mobility should be small
enough such that the interface does not move under the influ-
ence of artificial forces that tend to restore radial symmetry
[51]. For this reason, we choose the initial uniform pressure
of the system as p = 0. This choice does not affect the macro-
scopic governing equations as the hydrodynamic pressure of
the system is determined only within a constant. The fluctua-
tions of the hydrodynamic pressure ph are of the order of Ma2

for incompressible fluids [58,59]. Therefore, the fluctuations
δp = δph

ρ
are also of the order Ma2 and the interface mobility

changes only slightly during the simulations.

IV. NUMERICAL RESULTS

In this section, we test the model with various steady-state
and transient flow simulations. In all of the simulations p,
and therefore ph, is set to zero initially. The interface mo-
bility M reported corresponds to its constant part neglecting
the pressure fluctuations, i.e., M = 3(1−α)

10 . All the simulation
quantities in this section are given in the lattice units.

A. Stationary drop

The stationary drop test allows to judge the accuracy of
surface tension forces and the inherent (without contact with
the solid surface) spurious currents present in the model. Spu-
rious currents may compromise the accuracy of the overall
simulation, for example, when applied to flow in a porous
medium [60]. Initially, a fluid drop, with a higher density than
the surrounding fluid, is placed at the center of the system.
The system consists of a square domain of size L × L, with
L = 100 and the initial radius of the drop R0 = 25. Periodic
boundary conditions are applied on all the boundaries. The
kinematic viscosities of both the fluid are kept the same with
νB = νR = 0.1667, the density ratio is chosen as ρB

ρR
= 104
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FIG. 1. A comparison of the analytical pressure drop, found from
Eq. (49), with that evaluated from the simulations. The initial radius
of the drop R0 = 25, the density ratio ρB

ρR
= 104, the interface width

W = 5, and the viscosity ratio μB
μR

= 104 are kept constant.

and the interface mobility is M = 0.01. The system is initial-
ized with a zero fluid velocity everywhere and with the color
field as follows:

ϕ(r) = 1

2

{
1 − tanh

[
2(r − R0)

W

]}
, (48)

where r is the distance from the origin and the interface
width W = 5. Due to the surface tension forces, a pressure
difference inside and outside is developed over time. When
the viscous dissipative forces are settled in, the pressure dif-
ference (in two dimensions) is given by

�ph = σ

R
, (49)

where �ph is measured as the difference of pressure at the
center and at the boundary and R is the steady-state radius. R
is determined from a linear interpolation by transversing along
the line y = L

2 to locate the point ϕ = 1
2 . To test Eq. (49),

the surface tension is varied while keeping the radius of the
drop constant. Figure 1 compares the pressure drop measured
in the simulations and as predicted by Eq. (49). The pressure
drop measured in the simulations matches closely with the an-
alytical ones and the maximum relative error of 1.8% occurs
at the surface tension σ = 0.1 for these data points. Further,
it is instructive to compare the initial and the steady-state
color field profiles along a line passing through the center
of the drop (y = L

2 ) for different density ratios. For this
purpose, the interface width W = 5, the initial drop radius
R0 = 25, the surface tension σ = 10−2 and the viscosity ratio
νB
νR

= 1 are kept constant. Figure 2 shows such a comparison.
Due to the incompressible nature of the color-blind fluid, the
initial (analytical) and the steady-state interface profile almost
coincide with each other. This match suggests a minimum
numerical dispersion that is independent of the density ratio.

Spurious currents are the undesired velocity field near the
interfacial region that result from the distributed surface ten-
sion forces [61]. Figure 3 shows the steady-state spurious
currents for the same geometry and physical parameters ( ρB

ρR
=

104, νB
νR

= 1) with the surface tension σ = 10−2. Due to the
underlying rectangular lattice, the spurious currents exhibit
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FIG. 2. A comparison of the steady-state color field profiles
along a line passing through the center (y = L

2 ) for different density
ratios with the initial (analytical) solution. Surface tension σ = 10−2

is kept constant for all the cases. The steady-state color fields match
excellently to the analytical ones for all the density ratios.

an eightfold symmetry with an intensified activity near the
interface. The corresponding contour of interface (ϕ = 1

2 ) is
also shown in the figure. The maximum magnitude of the
velocity is |umax| = 1.64 × 10−9 in this case. Next, we look
at the effect of density ratio on the Laplace pressure error and
the activity of spurious currents. The geometry of the system
is kept same, and other parameters are: σ = 0.01, νB = 0.01,
νR = 0.1, W = 5, and M = 0.01. The relative error in the

FIG. 3. Spurious currents are shown in black solid arrow and the
interface profile with a red solid line, at the steady state. The system
size is L × L with L = 100 and the initial radius of the drop R0 =
25. The density and dynamic viscosity ratios are both equal to 104

and the surface tension σ = 10−2. The magnitude of the maximum
spurious velocity at the steady state is |umax| = 1.64 × 10−9.
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TABLE I. Relative pressure error and spurious currents magnitude.

Present work Ref. model [18]

M = 0.01 M = 0.26

ρ∗ �pE
h |umax| �pE

h |umax| �pE
h |umax|

10 1.7 1.44 × 10−7 1.6 7.56 × 10−7 0.28 9.67 × 10−7

102 1.35 2.08 × 10−8 1.34 2.37 × 10−7 0.37 5.71 × 10−6

103 1.07 1.21 × 10−8 1.07 4.35 × 10−8 4.21 1.27 × 10−5

Laplace pressure is quantified as follows:

�pE
h =

∣∣∣∣�ph − �psh

�ph

∣∣∣∣ × 100, (50)

where �ph and �psh are the analytically predicted and the
simulated pressure differences at steady state, respectively.
Table I compares �pE

h and |umax| values with the model of Ba
et al. (reference model) [18] for different density ratios. Rela-
tive to the present model, the reference model [18] has a lower
Laplace pressure error except for high-density ratio O(1000).
However, the present model produces lower spurious currents
magnitude |umax| for all the density ratios compared to the
reference model [18]. Table I also shows the corresponding
quantities for interface mobility M = 0.26. The Laplace pres-
sure error in the present work is nearly independent of the
interface mobility. The spurious currents magnitude |umax|,
however, increases with the interface mobility. Zu and He
[37] made similar observations, where they employed Cahn-
Hilliard equation for an explicit solution of the phase-field
equation.

B. Layered Poiseuille flow

The system geometry consists of a channel with length
L = 100, separated by two parallel walls. Initially, the heavy
(blue) fluid occupies the region x < L

2 while the rest is filled
with the light (red) one. Gravity force (0, ρgy), applied in
the y direction, is used to drive the flow. Periodic boundary
condition is applied in the direction of the length of the wall
while the halfway bounce-back rule [62] is used to impose
the no-slip boundary condition at the wall. Other simulation
parameters are: surface tension σ = 0, interface width W = 4,
and interface mobility M = 1.6 × 10−2.

The system is initiated with zero velocity everywhere. Un-
der the applied pressure gradient in the form of gravity, the
fluid velocity is developed while forming a diffuse interface.
The steady-state equation for the fluid velocity component uy

can be written as

0 = ∂

∂x

[
ρ(x)ν(x)

∂uy

∂x

]
+ ρ(x)gy. (51)

The analytical solution of the equation above can be found
by representing the kinematic viscosity and the density as a
step function across the interface. Such a solution, however,
does not account for the inherent diffuse interface nature of
the model. For this reason, we solve Eq. (51) with a finite
difference (FD) scheme for which the kinematic viscosity and
density are interpolated with Eqs. (14) and (15), respectively.

First, we consider the case of unit density ratio and variable
kinematic viscosity ratio. The kinematic viscosity of the red
fluid is fixed at νR = 0.01 while that of the blue fluid is varied
to obtain different νB

νR
ratios. The scaled steady-state velocity

profiles obtained with the present model, the reference model
[18] and the FD solutions are shown in Fig. 4. For all the
kinematic viscosity ratios considered, the LBM solutions are
well in agreement with the FD solution. Next, with a constant
dynamic viscosity ratio μB

μR
= 100, four different test cases

are considered where the density ratio is varied from 10 to
104. A comparison of solutions with the FD scheme, the
present model, and the reference model is shown in Fig. 5.
Solutions obtained with these numerical methods are in a good
agreement, although a slight difference is observed for higher
density ratios. At increasing density ratios, the discretization
errors due to correction forces [Eqs. (12) and (13)] continue
to increase. Thus, the spatial resolution of the interface and
the system size needs to adjusted to accommodate these dis-
cretization errors. In this regard, the Cahn number Cn = W

L
indicates the influence of the diffuse interface with Cn → 0
corresponding to the sharp interface limit. To quantify the
difference between the FD and LBM solutions, E2 is defined
as the normalized root mean squared error between the two
solutions:

E2 =
√√√√∑

x

(
uy − uFD

y

)2

∑
x

(
uFD

y

)2 . (52)

Choosing density ratio ρB

ρR
= 1000 and viscosity ratio μB

μR
=

100, E2 is evaluated for different channel lengths at a fixed
Cahn number Cn = 7 × 10−2. Figure 6 shows that the error
E2 continues to decrease with channel length L, indicating that
sufficient resolution of the system is necessary to deal with
high-density ratios to achieve a given accuracy.

C. Interface kinetics

The previous two benchmarks correspond to the steady
state of the system. A numerical model solving ∂ϕ

∂t + ∇ ·
(kϕu) = 0 for an arbitrary k as would pass these tests as
they do not involve fluid flow in the direction of the density
gradient. In this section, we verify that the fluid velocity
indeed advects the color field and that a stable interface is
maintained via the segregation step is, in fact, an AC equa-
tion. For the former purpose, we consider a circular drop of
radius of R0 = 25, translating through a square domain of
size L × L with L = 100. The drop is subjected to a forced
velocity field uforced = (U,U ) in the diagonal direction of
the system. At each time step, the equilibrium color-blind
fluid distribution is populated with the forced velocity uforced.
Other simulation parameters are: ρB

ρR
= μB

μR
= 5, σ = 0, M =

6.67 × 10−3,W = 5. Given the linearly symmetric nature of
the imposed velocity field, the interface advects along the
diagonal of the system and returns to the initial position in
time T = L

U . The interface Péclet number here is defined as
Pé = UW

M that indicates the dominance of the advection pro-
cess over the interface stabilizing numerical diffusion process.
In the present setting Pé = 5.

045308-8



COLOR-GRADIENT LATTICE BOLTZMANN MODEL FOR … PHYSICAL REVIEW E 106, 045308 (2022)

FIG. 4. Comparison of the numerical solutions obtained from the present method (LBM), the reference model [18] and the finite difference
scheme by solving Eq. (51). The kinematic viscosity of the red fluid is fixed at νR = 0.01. The density ratio ρB

ρR
= 1 is kept constant for all of

the cases. The dynamic viscosity ratio μB
μR

is (a) 1, (b) 10, (c) 102, and (d) 103.

Figure 7 shows the interface contour after one cycle ob-
tained using the present and the reference model [18]. The
interface contour of the present work coincides well with

the initial interface contour. The close match between the
two contours confirms that the color field indeed follows an
advection equation. Also, the interface profile of the refer-

FIG. 5. Comparison of the numerical solutions obtained from the present work (LBM), reference model [18] and the finite difference
scheme by solving Eq. (51). The kinematic viscosity of the lighter red fluid is fixed at νR = 0.1667. The viscosity ratio μB

μR
= 100 is kept

constant for all of the cases. The density ratio ρB
ρR

is (a) 10, (b) 102, (c) 103, and (d) 104.
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FIG. 6. Plot of the normalized root-mean-squared error E2

[Eq. (52)] as a function of channel length L. The density ratio ρB
ρR

=
103, viscosity ratio μB

μR
= 102, and Cahn number Cn = 7 × 10−2 are

fixed. For both, the present (in black color) and the reference model
[18] (in blue color), E2 behaves similarly and decreases with the
channel length L.

ence model [18] deviates slightly from the initial interface
contour indicating that the interfacial correction terms are not
sufficient to maintain the interface shape. As a further test,
the density ratio is increased to 103 while keeping the other
parameters the same. The interface profile after one cycle still
coincides well with the initial one as shown in Fig. 8.

To test the AC nature of the color segregation step, we
study the evolution of a square shaped fluid body at negli-
gible surface tension. The heavier (blue) fluid of size d × d is
placed at the center of the system filled with the lighter (red)
one. The system size is L × L with periodic boundary condi-
tions applied on all the boundaries. Besides, the system starts
with a zero fluid velocity everywhere, and no external force
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FIG. 7. A comparison of the interface profile at the start of the
simulation (black dashed line) with present method (blue solid line)
and the reference model [18] after time t = T . The system size is
L × L = 100 × 100, density ratio is 5 and the radius of initial profile
is R0 = 25. The interface is subjected to a forced advection along a
line parallel to the diagonal of the square system (shown with green
arrows).
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FIG. 8. A comparison of the interface profile at the start of the
simulation (black dashed line) and the one after time t = T for two
interface mobilities: M = 0.01, (blue dashed line) and M = 0.1667
(red dotted line). The system size is L × L = 100 × 100, density
ratio is 103 and the radius of initial profile is R0 = 25. The interface is
subjected to a forced advection along a line parallel to the diagonal of
the square system (shown with green arrows). For both the interface
mobilities, the interface profile after one cycle matches well with the
initial one.

acts on the system. Given that the surface tension is zero, the
fluid velocity remains zero at all the time. Other parameters of
the system are ρB

ρR
= μB

μR
= 100,W = 4, and M = 0.1667.

Under this setting, and in the sharp interface limit, the
fluid-fluid interface now should remain stationary for an in-
definite amount of time. Within the present diffuse interface
approach, however, the color evolution implicitly proceeds
with Eq. (46). Thus, any change in the interface shape will
be due to the segregation step. The evolution continues un-
til a radially symmetric interface shape is reached, in this
case, a circle [51]. The timescale of the evolution is given
by td = d2

M .
Figure 9 shows the evolution of the interface profile at

different times. Along with it, the solution of the standalone
AC equation with the same initial conditions and mobility
M = 0.1667 is also shown. This solution is obtained by using
a scheme outlined by Geier et al. [63]. Both of these solutions
match well throughout until a circular shape is reached. The
artificial interface motion due to the diffuse interface mod-
eling can be minimized by lowering the interface mobility
M. To see this, we set the interface mobility M = 1.6 × 10−2

and repeat the procedure above. Again, the explicit solution
of the AC equation matches well with the CG scheme, and
the artificial motion of the interface is reduced by lowering
the interface mobility. For a general fluid dynamical problem,
the numerical diffusivity time td should be sufficiently large
compared to the physical advective timescale ta = d

U with U
being the characteristic fluid velocity. Typically, the advective
timescale is specified by the system and the interface mobility
should be adjusted to ensure that the interface moves due to
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FIG. 9. Evolution of a square shaped fluid body at vanishing
surface tension. The initial position of the interface is shown in
black solid line. Top: The interface mobility is M = 0.1667. The CG
solution at time 5td and 20td (td = d2

M ) are shown with points and
the corresponding solution of the explicit AC equation are shown
with solid lines. The two solutions overlap each other and a nearly
circular shape is reached at t = 20td . Bottom: With interface mobility
M = 1.67 × 10−2, the interface evolution towards a circular shape is
slowed down when compared at the same physical time.

the fluid velocity alone. Arbitrarily small interface mobility
M, however, decreases the importance of a diffuse interface
maintaining mechanism and creates numerical instability.

Unlike the present model, for most of the existing CG
models, the interface mobility depends upon the density ratio
[53]. Here, we tuned the interface mobility by adjusting the
parameter α in the lattice coefficients χi. Although α can be
chosen independently of the fluid densities, this approach is
not without its limitations. Deviation of α from 4

9 results in
loss of fourth order isotropy of the lattice coefficients χi [64].
This loss results in the discretization errors that prevent the
segregation step to achieve mobility as low as in the explicit
solution of the AC equation (M ≈ 10−3) [33].

D. Rayleigh-Taylor instability

A heavy fluid lying on top of another lighter one and
separated by a planar interface may form a system in an
unstable equilibrium under the presence of gravity. A small
perturbation in the interface shape separating the fluid initiates
the interplay of surface tension, viscous and inertial forces
that may result in penetration of the heavier fluid inside the
lighter one. This phenomenon, known as the Rayleigh-Taylor

FIG. 10. The Rayleigh-Taylor instability at Re = 3000, capillary
number Ca = 0.24, and Atwood number At = 0.5. The interface
position is shown for time t = (a) 0, (b) 1.5t0, (c) 2t0, and (d) 3t0.
The system size is L × 4L with L = 256.

instability, provides a test to validate the model’s ability to
handle complex physics [18,37,65,66].

The system consists of a rectangular domain with the size
L × 4L and L = 256. The interface between the two phases is
given as

y(x) = 2L + L

10
cos

(
2πx

L

)
, (53)

where the second term corresponds to the perturbation applied
to the flat interface. The heavy (blue) fluid occupies the top
part, and the light (red) fluid occupies the bottom part of
the system. Periodic boundary conditions are applied on the
lateral boundary (x = 0 and x = L) and the halfway bounce-
back rule [62] is applied at the top and bottom boundary. The
density ratio is ρB

ρR
= 3 and viscosity ratio is νB

νR
= 1. Some

important dimensionless numbers of the system are Reynolds
number Re, Atwood number At, and capillary number Ca.
They are defined as

Re = LU

νB
, (54)

At = ρB − ρR

ρB + ρR
, (55)

Ca = μBU

σ
, (56)

where characteristic fluid velocity U = √
Lg. The compo-

nent of the gravity acting in the y direction is chosen as
gy = g = −2.0 × 10−6 and surface tension is chosen as σ =
2.45 × 10−3. These choice of parameters corresponds to At =
0.5, Re = 3000, and Ca = 0.26. In addition, the timescale of
the process is given as t0 =

√
L

gAt . Auxiliary parameters of the
system are selected as W = 4 and M = 1.67 × 10−2.

Figure 10 shows the evolution of the interface at vari-
ous times. The heavy fluid near the center comes down and
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FIG. 11. Scaled position of the (a) bubble position (x = 0) and
(b) spike (x = L/2) versus scaled time for the case of At = 0.5,
Re = 3000, and Ca = 0.26, compared with other numerical works
[18,33,37,66].

gradually rolls up. Around time t = 3t0, a breakup of smaller
droplets is seen. For a quantitative validation, we compare the
location of the spike (x = L/2) and the bubble front (x = 0)
with other numerical works. Figure 11 shows that the location
of both the spike and bubble front are in good agreement with
previous works.

To simulate systems with a high-density ratio, the initial
conditions require careful consideration. When the interface
is initialized with a sharp interface, the force terms dependent
upon the color field give rise to unphysical fluid velocities.
The fluid velocity then may quickly reach lattice speed of
sound cs that may result in a numerical instability, especially
at high-density ratios and Reynolds number. Therefore, we
find it necessary to ensure that the interface is stabilized and
reaches the given interface width before the fluid dynamical
effects are set in motion. For the systems with radial sym-
metry, the initial interface profile can be specified in terms
of its equilibrium solution. For more complex geometries,
we propose the following scheme for a smooth initialization.
First, the segregation for either of the fluid (say blue) is solved
using total equilibrium populations with zero fluid velocity
and zero pressure, i.e., u = 0, p = 0. The blue color fluid
populations are then propagated [Eq. (36)] and finally the
color field is found from the sum of the fluid populations
Eq. (16). This procedure is repeated for a number of steps,
roughly 3td , where td = W 2

M is the momentum diffusion time

FIG. 12. The Rayleigh-Taylor instability at Reynolds number
Re = 3000, Atwood number At = 0.998, capillary number Ca
= 0.44. The interface position is shown for time t = (a) 0, (b) t0,
(c) 1.5t0, and (d) 2t0.

of the interface. If the relaxation process is carried out for a
longer time, the interface shape may deviate from the target
one, due to the artificial forces that tend to restore the radial
symmetry [51]. It is noteworthy that a smooth initialization
technique for the CG models that employ momentum-based
equilibrium distribution function is outlined by Leclaire
et al. [67].

The typical density ratio employed in the CG models for
the Rayleigh-Taylor instability simulation is ρB

ρR
= 10 [18,24].

Using the scheme outlined above, we simulate a system with
Re = 3000 and density ratio ρB

ρR
= 1000. Here, the Atwood

number At = 0.998 and the capillary number Ca = 0.44.
Figure 12 shows the evolution of the interface at times t =
0, t0, 1.5t0, and 2t0. Due to the much higher density contrast,
the heavy fluid continues to move downwards without form-
ing a roll up. The positions of the bubble (x = 0) and spike
(x = L/2) are shown in Fig. 13 which are in good agreement
with the work of Dinesh Kumar et al. [68].

E. Capillary displacement

The multiphase flow in porous media is controlled by
the pore geometry, dynamic viscosity ratio, and the wet-
ting tendencies of the fluids. It is usually characterized by
low Reynolds and Capillary numbers, where the pore ra-
dius sets the length scale of the flow. The capillary intrusion
test [23,69,70] provides a good benchmark to mimic the
two-phase flow in porous media at relatively low capillary
numbers.

A typical simulation domain is shown in Fig. 14. The
rectangular domain has dimensions of Nx × Ny = 800 × 35.
A solid tube of width H = 20 and extending from x = 200
to x = 600 in length is placed inside the system. The red
fluid occupies the domain from x = 240 to x = 750 while the
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FIG. 13. Scaled position of the (a) bubble position (x = 0) and
(b) spike position (x = L/2) versus scaled time t/t0 for the case of
Atwood number At = 0.998, Reynolds number Re = 3000, and
capillary number Ca = 0.44. The bubble and spike positions agree
well with the work of Dinesh Kumar et al. [68].

blue fluid occupies the rest of the domain. Periodic bound-
ary conditions are applied in all directions. Other parameters
are M = 0.1667, σ = 0.01, and W = 5. The wetting contact
angle of the solid wall with fluids is set to θ = 45◦. The wet-
ting boundary condition is prescribed using the geometrical
scheme [70,71].

Given the net surface tension force acting on the blue
fluid, it starts to displace the other fluid. Under the assump-
tion that inertial forces are much mess compared to the
viscous ones, or Reynolds number is relatively small, the
rate of advancement of the fluid interface can be derived

FIG. 14. Schematic of the capillary intrusion test. A wall tube of
length L = 400 is placed at each side of the lateral edges with a total
system length being 2L in the x direction. The walls are separated
by a distance H = 20. Initially, the nonwetting (red) fluid is placed
inside the system from x = 240 to x = 750 while rest of the pore
space is filled with the wetting fluid. Periodic boundary conditions
are applied everywhere.

FIG. 15. Position of the interface in the capillary intrusion test
with dynamic viscosity ratio of 10 (ρB = 10, ρR = 1, νB = νR =
0.1). The interface position found from the reference [18] and present
model are in agreement with the analytical prediction.

as [72,73]

V = σH cos θ

6[μBx + μR(L − x)]
, (57)

where x is the distance of the fluid-fluid interface measured
from the end of solid walls. Equation (57) is derived by a
consideration of momentum balance where a Poiseuille type
of velocity field distribution is assumed inside the capillary
tube [72,73]. The velocity of the interface when it reaches half
way in the solid wall (x = L/2) is given by Vm = 1

6
σ cos θ

μeff
with

μeff = (μB + μR)/2. The corresponding capillary number is
then defined as Ca = μeffVm

σ
= 1

6
H cos θ

L = 5.8 × 10−3. First, we
choose ρB = 10, ρR = 1, and νB = νR = 0.1. The position
of the advancing interface as a function of time is shown in
Fig. 15. The interface position predicted by Eq. (57) agrees
well with the present and the reference model [18]. Note that
the analytical solution, Eq. (57) is plotted with the dynamic
contact angle θd = 46.9◦ which is slightly different from the
prescribed contact angle θ = 45◦.

Next the density ratio is set to ρB/ρR = 103 and the kine-
matic viscosity ratio to νB/νR = 0.1. Figure 16 shows that for
the present model still is in agreement with the prediction of

FIG. 16. Position of the interface in the capillary intrusion test
for density ratio of 103. The simulated interface position is still in
good agreement with the analytical prediction.
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Eq. (57). At this density ratio, we could not produce stable
numerical results from the reference model [18]. The analyt-
ical prediction is corrected for the contact dynamic angle of
θd = 47.6◦.

V. DISCUSSION AND CONCLUSIONS

Two-phase flow simulations at high-density and high-
viscosity ratios still remain a challenge for the LB models,
especially at high Reynolds numbers. To address this issue,
we present a model in one class of multicomponent LB simu-
lation, namely the CG or the chromodynamic method.

We adapt a velocity-based equilibrium distribution func-
tion for the color-blind fluid populations that was first
proposed for the single-phase fluids [36] and later employed
for the phase-field LB models [37]. The model of Zu and
He [37] uses an explicit fourth-order Cahn-Hilliard scheme
to track the interface. Solution of such a scheme using LB
equation requires construction and computation of a rather
elaborate equilibrium distribution function. Here the interface
tracking is taken care by a simple and efficient segregation
operator which makes use of post-collision color-blind fluid
populations. Existing CG models use ideal gas relation in
the bulk-two phase system. To maintain the pressure force
balance across a planar fluid-fluid interface, the lattice speed
of sound in individual phases must satisfy ρl c2

s,l = ρhc2
s,h

where the subscripts l and h stand for the light and heavy
fluids respectively. One of the consequence of this relation is
that lattice speed of sound in the heavier fluid cs,h =

√
ρl

ρh
cs,l

can get much smaller than cs,l for high-density ratios. To
satisfy the low Mach number assumption |u|

cs,h

 1, the max-

imum allowed velocity |u| in the heavier phase is limited
by the density ratio. One of the reasons for numerical in-
stability of CG models employing ideal gas relation for the
bulk pressure definition is attributed to this effect [41]. Here,
the velocity-based formulation of the equilibrium distribution
function allows to decouple density and pressure in the bulk
phases, thereby removing constraints related to the density
ratio.

The CG model has been extensively applied to various
steady and unsteady flow situations. Despite its use as a
popular tool, a careful analysis of the segregation rule has
attracted attention only recently [51,53]. In this work, we
further explore the segregation rule for a general case of
density contrast while taking into account the nonequilibrium
fluid populations. Using a recursive LB equation for the color-
blind fluid populations (with the Taylor expansion around the
equilibrium fluid populations up to second order in space and
time), we discuss the dynamics of the color evolution. Specif-
ically, we show that the color field follows a conservative AC
equation with a source term that scales as O(δt2 + Ma2δt ).
In line with the previous works aimed at analyzing the color
dynamics [50,51,53,74], we find that the color indeed satisfies
the kinematic condition at the interface within the implicit
diffuse interface nature of the model. Further, we show that
the present approach allows to tune the numerical mobility of
the interface independently of the fluid density ratio. Tunable
interface mobility plays an important role in dealing with flow
situations with large capillary numbers [51].

The similarity between the interface tracking schemes
of the CG and the AC phase-field models is remarkable.
Both models neglect the constraint of the thermodynamic
consistency and asymptotically solve the fluid dynamical
equations in the isothermal regime. The formulaic segregation
operator, responsible for the implicit interface tracking in the
CG model, was proposed by D’Ortona [10] in 1995. It was
built upon the principle that the recoloring should take place
only in the interface region and the individual microscopic
fluid populations should be redistributed proportionally to the
projection of the color gradient on the lattice direction. This
principle naturally conserves the local mass and the combined
momentum of the fluids. However, the nonconservative AC
equation has been used in the study of solidification phe-
nomena for the last five decades [75]. This nonconservative
form of the AC equation is derived from the minimization
of the free energy functional and includes the contribution
of interface curvature to the interface motion. Later, Sun
and Beckermann [76] formulated an AC equation where the
curvature contribution to the interface motion is negated by
the inclusion of a correction term. Finally, Lee and Lin [77]
improved upon the work of Sun and Beckermann to propose
a locally conservative AC equation. In this context, it is note-
worthy that phase-field LB models that prescribe an explicit
interface tacking equation have realized the advantage of the
locally conservative AC type of equation [33,35] over the
more conventional Cahn-Hilliard one [37,48], in terms of the
numerical efficiency and low numerical dispersion, only in the
last few years.

Given that the intrinsic segregation step remains the same,
the present model preserves the usual computational effi-
ciency of the CG models. A known problem that plagues
the CG models is high spurious currents in the vicinity of
the interface [18,20,61,78]. The velocity-based formulation of
the equilibrium distribution considered here results in lower
spurious currents than the existing CG models, especially at
high-density ratios. The numerical tests show that the model
produces accurate results for a wide range of viscosity and
density ratios (up to 103) at a range of Reynolds numbers
(0.01 to 3 × 103), thus expanding the applicability of the CG
models.
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APPENDIX: DYNAMICS OF THE COLOR-BLIND FLUID

In this section we show that the equilibrium distribution
given by Eq. (4) satisfies the continuity and Navier-Stokes
equations. We assume that the time derivative of the force
F′, and therefore the microscopic lattice force term Fi are
much smaller than the spatial derivatives. Next, we note the
following relations, obtained by applying the total differential
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operator Di = ∂t + ci · ∇ to Eqs. (4) and (10):∑
i

DiN
eq
i = ∇ · u, (A1)

∑
i

DiN
eq
i ci = ∂t u + ∇ · �(0), (A2)

∑
i

D2
i Neq

i = 2∂t (∇ · u) + ∇ · ∇ · �(0), (A3)

∑
i

D2
i Neq

i ci = ∂2
t u + 2∂t∇ · �(0) + ∇ · ∇ · �(1), (A4)

∑
i

DiFi = ∇ · F′

ρ
, (A5)

∑
i

DiFici = ∂t
F′

ρ
, (A6)

where (using Einstein summation convention)

�(0) =
∑

i

Neq
i ciαciβ = pδαβ + uαuβ, (A7)

�(1) =
∑

i

Neq
i ciαciβciγ (A8)

= (δαβuγ + δβγ uα + δγαuβ )c2
s . (A9)

To arrive at the continuity equation, we take the zeroth
moment of Eq. (37) with respect to the lattice velocities and
sum it over all the lattice directions, and use Eqs. (A1), (A3),
and (A5), to yield

∇ · u = δt
(
τ − 1

2

)
[∇ · Eu + ∂t∇ · u], (A10)

where

Eu = ∂t u + ∇ · �(0) − F′

ρ
, (A11)

represents the Eulerian terms in the Navier-Stokes equa-
tions within the correction forces. For further simplification,
consideration of the momentum balance is needed. To this
end, the first moment of Eq. (37) with respect to the lattice
velocities and using Eq. (17) gives

Eu = δt

(
τ − 1

2

)
∂t Eu + δt

(
τ − 1

2

)
∂t∇ · �(0)

+ δt∇ ·
(
τ − 1

2

)
∇ · �(1), (A12)

where we have used Eqs. (A2), (A4), and (A6). Now, using
Eqs. (A12) and (A10) in Eq. (A10) yields

∇ · u = 0 + O(δt2). (A13)

Thus, the color-blind fluid satisfies the incompressibility
condition within O(δt2). For recovering the Navier-Stokes
equations we note additional approximations for the incom-
pressible fluids. For incompressible flows, the pressure and
velocity fluctuations of the second order in Mach number
[58,59], i.e.,

∂t p = O(Ma2),

∂t uu = O(Ma2). (A14)

Finally, using Eqs. (A13), (11), and (A14) in Eq. (A12)
gives the Navier-Stokes equation

ρ(∂t u + ∇ · uu) = − ∇ph + ∇ · μ(∇u + u∇) + Fs + Fb

+ O(δ2 + Ma2δt ). (A15)
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