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Machine learning conservation laws from differential equations

Ziming Liu,1 Varun Madhavan ,2 and Max Tegmark 1

1Department of Physics, Institute for AI and Fundamental Interactions, and Center for Brains, Minds and Machines,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

(Received 29 March 2022; revised 12 June 2022; accepted 23 September 2022; published 21 October 2022)

We present a machine learning algorithm that discovers conservation laws from differential equations, both
numerically (parametrized as neural networks) and symbolically, ensuring their functional independence (a
nonlinear generalization of linear independence). Our independence module can be viewed as a nonlinear gener-
alization of singular value decomposition. Our method can readily handle inductive biases for conservation laws.
We validate it with examples including the three-body problem, the KdV equation, and nonlinear Schrödinger
equation.
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I. INTRODUCTION

The importance of conservation laws (CLs) in physics
can hardly be overstated [1]. Physicists usually derive
conservation laws with time-consuming pencil and paper
methods, using different hand-crafted strategies for each spe-
cific problem. This motivates searching for a general-purpose
problem-agnostic approach. A few recent papers have ex-
ploited machine learning to auto-discover conservation laws
[2–5]. Despite promising preliminary results, these techniques
are not guaranteed to discover all conservation laws. In this
paper, we start with differential equations defining a dynam-
ical system and aim to discover all its conservations laws,
either in numerical form (parameterized as neural networks)
or in symbolic form. The new method is named AI Poincaré
2.0 since it builds on Ref. [2]. When no confusion occurs,
we call the original method 1.0, and the new method 2.0. We
summarize three major improvements of 2.0 over 1.0 below,
as well as in Fig. 1(c). First, 1.0 tacitly requires the assumption
that the trajectory is ergodic, while 2.0 does not need the
assumption since it directly deals with differential equations.
2.0 can apply to systems with dissipation or directionality
on which 1.0 falls short. A case of directionality is the Ko-
rteweg’De Vries (KdV) wave equation, where solitons travel
from left to right, violating ergodicity. Second, 2.0 introduces
a new manifold learning method that is more efficient and
accurate than 1.0. 2.0 also extends the notion of variable de-
pendence to functional dependence, which is fundamental and
useful for physics and machine learning applications. Third,
2.0 provides numerical evaluation of each conserved quantity,
while 1.0 provides no information at all other than the con-
served quantity exists. These numerical values can hopefully
give physicists insights about properties or symbolic forms of
the conservation laws. In Sec. II, we introduce our notation
and the AI Poincaré 2.0 algorithm. In the Sec. III, we apply
AI Poincaré 2.0 to various systems (illustrated in Fig. 2) to
test its ability to auto-discover conservation laws, followed
by discussions in Sec. IV and conclusions in Sec. V. We

note other works exploring the direction of “machine learning
meets conservation laws” [6–8], which have different goals
than ours.

II. METHOD

A. Problem and notation

We consider a first-order ordinary differential equa-
tion (ODE) dz

dt = f (z) where z ∈ Rs is the state vector and
f : Rs → Rs is a vector field. Hamiltonian systems correspond
to the special case where s is even and f = ( ∂H0

∂p ,− ∂H0
∂x ) for

a Hamiltonian function H0. A conserved quantity is a scalar
function H (z) whose value remains constant along a trajec-
tory z(t ) determined by dz

dt = f (z) with any initial condition
z(t = 0) = z0. A necessary and sufficient condition for a
scalar function H (z) being a conservation law is ∇H · f = 0,
because d

dt H (z(t )) = ∇H · dz
dt = ∇H · f . We use hats to de-

note unit vectors, e.g., f̂ ≡ f/|f |. Our goal is to discover
the maximal number nc independent conserved quantities
{H1(z), H2(z), · · · , Hnc (z)} numerically and symbolically, op-
tionally with user-specified properties. Dynamical systems of
the form dz

dt = f (z) are very general because (1) higher-order
ODEs, e.g., Newtonian mechanics, can always be transformed
to first-order ODEs by including derivatives as new variables
in z, and (2) partial differential equations (PDEs) can be
approximated by ODEs by discretizing space.

B. AI Poincaré 2.0

AI Poincaré 2.0 consists of three steps: (1) learn con-
servation laws parameterized by neural networks, (2) count
the number of independent conservation laws, and (3) find
symbolic formulas for conservation laws. The pipeline is il-
lustrated in Fig. 1.

1. Parameterizing conservation laws by neural networks

We parametrize a conserved quantity as a neural network
H (z; θ) where θ are model parameters. Our loss function is
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FIG. 1. (a) The AI Poincaré 2.0 pipeline: The NN front leverages
neural networks for conservation laws, while the symbolic front
searches for formulas with fast rejection. (b) Training is minimizing
each network’s conservation loss combined with a function depen-
dence penalty. (c) Comparing 1.0 and 2.0. NEB refers to Neural
Empirical Bayes, the manifold learning algorithm we adopted in 1.0.

defined as

�(θ ) ≡ 1

P

P∑
i=1

∣∣̂f (z(i) ) · ∇̂H (z(i); θ)
∣∣2

, (1)

where z(i) denotes the ith sample in phase space. ∇H (z)
can be easily computed with automatic differentiation [9].
Note that f̂ and ∇̂H are normalized unit vectors, to
make the loss function dimensionless and invariant under

uninteresting rescaling of H . We update θ by trying to min-
imize the loss function until it drops below a small threshold
ε. To obtain multiple conserved quantities, one can repeat
the above method with different random seeds and hope to
discover algebraically independent ones. In practice, however,
we find that learned conservation laws are often highly cor-
related for different initializations [10]. To encourage linear
independence between two neural networks, say, H1 and H2,
we add a regularization term

R(θ1, θ2) ≡ 1

P

P∑
i=1

|∇̂H1(z(i); θ1) · ∇̂H2(z(i); θ2)|2 (2)

to the loss function. Since we know that there cannot be
more conservation laws than degrees of freedom s, we train
n = s models together by minimizing the loss function �1 +
λ�2 defined by

� = 1

n

n∑
i=1

�(θi )︸ ︷︷ ︸
�1

+λ × 2

n(n − 1)

n∑
i=1

n∑
j=i+1

R(θi, θ j )

︸ ︷︷ ︸
�2

, (3)

where λ is a penalty coefficient. We refer to �1 and �2 as
conservation loss and independence loss, respectively.

2. Counting the number of independent conserved quantities

After training, we aim to determine (in)dependence among
these neural networks. Specifically, we are interested in
functional independence, a direct generalization of linear in-
dependence that we define and compute as described below.

Definition II..1. Functional independence. A set of
nonzero functions H1(z), H2(z), . . . , Hn(z) is independent if

f (H1(z), H2(z), . . . , Hn(z)) = 0 �⇒ f = 0 (4)

FIG. 2. Tested ordinary and partial differential equation examples, each of which has s degrees of freedom and nc conservation laws. AI
Poincaré 2.0 is seen to find the correct nc by computing rank (read off as the low flat region of the neff curve as defined in Ref. [2]) or differential
rank.
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or, equivalently, if no function Hi(z) can be constructed from
(possibly nonlinear and multivalued) combinations of the
other functions.

Definition II..2. Function set rank. The function set H =
{H1(z), H2(z), . . . Hn(z)} has rank k � n if it contains k but
not k + 1 functions that are independent.

Computing the function set rank We determine the rank
k with a nonlinear manifold learning method. We define the
matrix A such that Ai j is the value of the jth neural network
evaluated at the ith sample point:

A =

⎛
⎜⎜⎜⎜⎝

H1(z(1) ) H2(z(1) ) · · · Hn(z(1) )

H1(z(2) ) H2(z(2) ) · · · Hn(z(2) )

· · · · · · · · · · · ·
H1(z(P) ) H2(z(P) ) · · · Hn(z(P) )

⎞
⎟⎟⎟⎟⎠, (5)

where P � n is the number of data points z(i). If we in-
terpret each row of A as a point in Rn, then the matrix
corresponds to a point cloud in Rn located on a a manifold,
whose dimensionality k is equal to the function set rank. If
there are k independent linear conserved quantities (where
Hi(z) are linear functions), then the point cloud will lie on a
k-dimensional hyperplane that can readily be discovered using
singular value decomposition (SVD): k is then the number
of nonzero singular values, i.e., the rank of the matrix A.
For our more general nonlinear case, we wish to discover
the manifold that the point cloud lies on even if it is curved.
For this, we exploit the manifold learning algorithm proposed
in Poincaré 1.0 [2] to measure the manifold dimensionality
[11], which performs local Monte Carlo sampling followed
by a linear dimensionality estimation method, from which we
define neff . For the rank row in Fig. 2 (excluding the two last
PDE examples), nc can be readily read off as the value of neff

corresponding to the low flat valley.
Taking the derivative of f [H1(z), H2(z) . . . , Hn(z)] = 0

from Eq. (4) with respect to zi gives⎛
⎜⎜⎝

H1,1 H2,1 · · · Hn,1

H1,2 H2,2 · · · Hn,2
...

...
...

H1,s H2,s · · · Hn,s

⎞
⎟⎟⎠

︸ ︷︷ ︸
B

⎛
⎜⎜⎝

f,1
f,2
...

f,n

⎞
⎟⎟⎠

︸ ︷︷ ︸
∇f

= 0.
(6)

This means that if {H1, . . . , Hn} and f are differentiable func-
tions and B has full rank, then ∇ f (z) and therefore f (z) itself
must vanish identically, so the functions Hi must be indepen-
dent. We exploit this to define differentiable independence and
differentiable rank as follows:

Definition II..3. Differential functional independence. A
set of n nonzero differentiable functions H is differentially
independent if their gradients are linearly independent, i.e., if
rank B(z) = n almost everywhere (for all z except for a set of
measure zero).

Definition II..4. differential function set rank. The differ-
ential rank of the function set H = {H1(z), H2(z), . . . Hn(z)}
is defined as kD = maxz rank B(z).

In practice, it suffices to compute the maximum over a
finite number of points P � n: it is exponentially unlikely that
such sampling will underestimate the true manifold dimen-
sionality, just as it is exponentially unlikely that P random

points in three-dimensional space will happen to lie on a
plane.

Numerically, one can apply singular value decomposition
to B to obtain singular values {σ1, σ2, . . . , σn}, and define the
rank as the number of nonzero singular values. In practice,
we treat components as vanishing if the explained fraction
of the total variance, σ 2

i /
∑

j σ
2
j , is below ε = 10−2. In the

differential rank row of Fig. 2 (plus two PDE examples in
the rank row), we draw a horizontal line at ε, and define nc

as the number of components above that line. The differential
rank and the rank mostly give consistent results, as shown
in Fig. 2. However, the differential rank is more efficient to
compute and appears to be more stable in high dimensions
(see examples in Sec. IV E).

3. Discovering symbolic formulas

When no domain knowledge is available for a physical
system, we perform a brute-force search over symbolic formu-
las ordered by increasing complexity as in Refs. [12,13]. We
leverage the criterion f̂ · ∇̂H = 0 to determine if a candidate
function H (z) is a conserved quantity or not. We implement
a brute force algorithm in C++ for speed and employ a fast
rejection strategy for further speedup: we prepare np = 10
test points in advance, and reject H immediately if |̂f (z) ·
∇̂H (z)| > εs = 10−4 for any test point z. If a formula survives
at the np test points, then we test thoroughly by checking
the condition numerically on the whole dataset, or test the
condition symbolically. We determine whether the new con-
served quantity is independent of already discovered ones by
checking if the differential function set rank increases by 1
when adding the new conserved quantity (see Supplemental
Material [14]).

4. Including inductive biases to learn conservation laws

Above we did not distinguish between integrals of motion
(IOM) and conservation laws. Loosely speaking, conservation
laws are those IOMs with inductive biases. As clarified in
Ref. [15] and Sec. IV A, conservation laws are usually derived
from homogeneity and isotropy of space and time, and have
the feature of being additive, i.e., expressible as a sum of
simple terms involving only a small subset of the degrees
of freedom. Conserved quantities of PDEs usually take the
form of integrals over space. We incorporate any such desired
inductive biases into our method by restricting the neu-
ral networks parametrizing Hi(z) to have the corresponding
properties.

III. RESULTS

A. Summary of numerical experiments

We test AI Poincaré 2.0 on several systems: the Kepler
problem, the damped harmonic oscillator, the isotropic/
anisotropic harmonic oscillators, the gravitational three-
body problem, the KdV wave equation and the nonlinear
Schrödinger equation. The neural network has two hidden
layers, each containing 256 neurons with SiLU activation,
and is trained with the Adam optimizer [16] for 100 epochs.
When training multiple networks simultaneously, we choose
the regularization coefficient λ = 0.02. Our method succeeds
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TABLE I. Sixteen out of 21 conservation laws were discovered not only numerically but also symbolically using our fast-rejection brute
force search limited to nine distinct symbols.

System Integrals of Motion or Conservation Laws Reverse Polish Notation Discovered

Kepler Problem H1 = 1
2 (p2

x + p2
y ) − 1√

x2+y2
pxQpyQ+rIo- Yes

H2 = xpy − ypx xpy*ypx*- Yes
H3 = (xpy − ypx )py + r̂x xpy*ypx*-py*xr/+ No

1D Damped Oscillator H1 = arctan( p
x ) + ln

√
x2 + p2/γ px/TxQpQ+RLγ /+ No

Isotropic Oscillator H1 = 1
2 (x2 + p2

x ) xQ*pxQ+ Yes

H2 = 1
2 (y2 + p2

y ) yQpyQ+ Yes

H3 = xy + px py xy*px py*+ Yes

Anisotropic Oscillator H1 = 1
2 (x2 + p2

x ) xQ*pxQ+ Yes

H2 = 1
2 (4y2 + p2

y ) yQOOpyQ+ Yes

H3 = x
√

H1H2 − l2 − l px (l = xpy − 2ypx ) H1H2*lQ-Rx*lpx*- No

Three Body Problem H1 = ∑3
i=1

1
2 (p2

i,x + p2
i,y ) − ( 1

r12
+ 1

r13
+ 1

r23
)

∑
i pi,xQpi,yQ+ri(i+1)IO- Yes

H2 = ∑3
i=1 xi pi,y − yi pi,x

∑
i xi pi,y*yi pi,x*- Yes

H3 = ∑3
i=1 pi,x

∑
i pi,x Yes

H4 = ∑3
i=1 pi,y

∑
i pi,y Yes

KdV H1 = ∫
φ dx φ Yes

H2 = ∫
φ2 dx φQ Yes

H3 = ∫
(2φ3 − φ2

x ) dx φQφ*OφxQ- Yes

H4 = ∫
(5φ4 − 10φφ2

x + φ2
xx ) dx φQQ5*φxQφ*10*-φxxQ+ No

Nonlinear Schrödinger H1 = ∫ |ψ |2 dx ψQ Yes

H2 = ∫
(|ψx|2 + |ψ |4) dx ψxQψQQ+ Yes

H3 = ∫
(|ψxx|2 + 2|ψx|2|ψ |2 − 2|ψ |6) dx ψxxQψQψxQO*+ψQQψQ*O- No

in discovering all conservation laws numerically (Fig. 2) and
most symbolically (Table I). Below we go through these ex-
amples one by one.

B. 2D Kepler problem

The 2D Kepler problem is described by two coordinates
(x, y) and two velocity components (vx, vy),

z =

⎛
⎜⎜⎜⎜⎝

x

vx

y

vy

⎞
⎟⎟⎟⎟⎠, f (z) =

⎛
⎜⎜⎜⎜⎜⎝

vx

−GMx/(x2 + y2)3/2

vy

−GMy/(x2 + y2)3/2

⎞
⎟⎟⎟⎟⎟⎠, (7)

where G is the gravitational constant, M and m are the mass
of the sun and the planet, respectively. The system has three
conserved quantities: (1) energy H1 = −GMm/

√
x2 + y2 +

m
2 (v2

x + v2
y ); (2) angular momentum H2 = m(xvy − yvx ); (3)

direction of the Runge-lenz vector H3 = arctan( vxH2+GMr̂y

−vyH2+GMr̂x
),

where r̂ ≡ (r̂x, r̂y) = ( x√
x2+y2

,
y√

x2+y2
). Without loss of gen-

erality, GM = 1. As shown in Fig. 2, first column, our method
correctly identifies all of three conservation laws.

The reverse Polish notation for
√

x2 + y2 is xQyQ+R
(6 symbols) which is quite expensive. To facilitate sym-
bolic learning, one may wish to add in the radius variable
r =

√
x2 + y2 to exploit the symmetry of the problem. To do

so, we augment the original system with the extra variable r

into an augmented system:

z′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x

vx

y

vy

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, f ′(z′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vx

−GMx/(x2 + y2)3/2

vy

−GMy/(x2 + y2)3/2

(xvx + yvy)/r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Our method manages to rediscover the symbolic formulas for
energy and angular momentum, but the one for the Runge-
Lenz vector is too long to be discovered, as shown in Table I.

C. 1D damped harmonic oscillator

The 1D damped harmonic oscillator is described by the
equation

d

dt

(
x
p

)
=

(
p

−x − γ p

)
, (9)

where γ is the damping coefficient. In the sense of Frobe-
nius integrability (defined in Sec. IV A), the system has 1
conserved quantity. We first attempt to construct the quantity
analytically. The family of solutions for Eq. (9) is(

x(t )
p(t )

)
=

(
e−γ t cos(t + ϕ)
e−γ t sin(t + ϕ)

)
, ϕ ∈ [0, 2π ). (10)
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FIG. 3. 1D damped harmonic oscillator: conservation loss �1 as
a function of γ .

Define the complex variable z(t ) ≡ x(t ) + ip(t ) = e(−γ+i)t+iϕ

and its complex conjugate z̄ = e(−γ−i)t−iϕ . Then

H ≡ z(−γ−i)/z̄(−γ+i) =
( z

z̄

)−γ

(zz̄)−i = e−2iγ ϕ (11)

is a conserved quantity. When γ = 0, H ∼ (zz̄) = |z|2 =
x2 + p2 which is the energy; when γ → ∞, H ∼ (z/z̄) ∼
arg(z) = arctan(p/x) which is the polar angle. For visual-
ization purposes, we define H ′ ≡ i

2γ
lnH = θ + lnr

γ
, where

θ = arctan p
x and r =

√
x2 + p2. We visualize cosH ′ in Fig. 4

top for different γ . The function looks regular for γ = 0 and
γ � 10, but looks ill-behaved for, e.g., γ = 0.01 and 0.1.

1. Neural networks cannot learn ill-behaved
conserved quantities well

Neural networks have an implicit bias toward smooth
functions, so they are unable to learn ill-behaved conserved
quantities. To verify the argument, we run AI Poincaré 2.0
(only an n = 1 model, hence no regularization) on the 1D
damped harmonic oscillator with different damping coeffi-
cient γ , and plot �1 as a function of γ in Fig. 3. We found that:
(1) the conservation loss �1 is almost vanishing at small γ =
0.01 and large γ = 100; (2) �1 peaks around γ = 1, which
agrees with the visualization in Fig. 4 top row. We visualize
functions learned by neural networks in Fig. 4, middle row,
each column displaying results of a specific γ . To interpret
what conserved quantity the neural network has learned, we
compare the learned function H (x, p) with two baseline func-
tions H1(x, p) = r ≡

√
x2 + p2 and H2(x, p) = x in Fig. 4

bottom row. If H and Hi(i = 1, 2) are the same function up
to an overall nonlinear transformation, i.e., H = f (Hi ), then
2D scatter points [H (x, p), Hi(x, p)] for all (x, p) pairs should
only occupy a 1D submanifold in 2D. When the scatter points
do not have a submanifold structure, it implies that H and
Hi are not the same function. When γ = 0.01, the conserved
quantity is equivalent to r up to a nonlinear reparameteriza-
tion; When γ = 100, the conserved quantity is equivalent to x
up to a nonlinear reparameterization.

FIG. 4. 1D damped harmonic oscillator: Each column corresponds to a damping coefficient γ . Top: conserved quantity of the 1D damped
harmonic oscillator with different γ . Neural networks cannot perfectly learn the singular behavior near the origin, and also struggle when the
stripes get too narrow. Middle: visualizations of neural network predictions of the conserved quantity. Bottom: comparison of neural network
predictions with x and r = √

x2 + p2. For γ = 0 and γ = 100, the neural network learns r and x as conservation laws, respectively.
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While advanced techniques [17] can bias neural networks
toward highly oscillatory and/or ill-behaved functions, the
smoothness of neural networks is a feature than bug for physi-
cists who care about only well-behaved conserved quantities.
We will expand on this idea in Sec. V A.

D. 2D isotropic and anisotropic harmonic oscillator

The harmonic oscillator (2D) is described by two coordi-
nates (x, y) and two momenta (px, py ),

z =

⎛
⎜⎝

x
px

y
py

⎞
⎟⎠, f (z) =

⎛
⎜⎜⎜⎝

px/m
−ω2

x x
py/m
−ω2

y y

⎞
⎟⎟⎟⎠, (12)

where m is the mass, and ωx and ωy are angular frequencies.
When ωx �= ωy, the system is anisotropic and has two obvi-
ous conserved quantities: (1) x-energy H1 = 1

2ω2
x x2 + 1

2m p2
x

and (2) y-energy H2 = 1
2ω2

y y2 + 1
2m p2

y. The third conserved
quantity is less studied by physicists but still exists if ωx/ωy

is a rational number [18]. When ωx = ωy, the system is
isotropic and has three conserved quantities. Besides H1 and
H2, angular momentum H3 = xpy − ypx is also conserved.
For the isotropic case, we choose m = ωx = ωy = 1; for the
anisotropic case, we choose m = ωx = 1, ωy = 2. Samples
are drawn from the uniform distribution z ∼ U [−2, 2]4. We
include more physics discussion below for completeness.

1. Isotropic case

In the isotropic case ωx = ωy = m = 1, there are four con-
servation laws [19]:

2H1 = x2 + p2
x, 2H2 = y2 + p2

y,

L = ypx − xpy, K = xy + px py, (13)

but they are dependent because L2 + K2 = 4H1H2. H1, H2,
and L are more common in physics, while K is less com-
mon. However, there is no need to prefer L over K . In fact,
our symbolic module discovers the three conserved quantities
2H1, 2H2, K and then ignores L because of its dependence on
the other three quantities, shown in Table I. The ordering of
L and K is in fact arbitrary. In terms of reverse polish nota-
tion, both K = xy ∗ px py ∗ + and L = ypx ∗ xpy ∗ − belong
to the template 0020022 where 0 represents a variable and 2
represents a binary operator. Because we try “+” before “−,”
K comes before L. If we instead try “−” before “+,” then L
comes before K . As a sanity check, our method discovered the
correct number (3) of conservation laws, as shown in Fig. 2,
second column.

2. Anisotropic case

Something amusing happened for the anisotropic oscilla-
tor example. The first author, despite passing his classical
mechanics exam with full score, expected two IOMs rather
than three because the angular momentum is not conserved
for the anisotropic oscillator. However, AI Poincaré insisted
there were three IOMs, as shown in Fig. 2, third column.
The authors eventually realized that AI Poincaré was right:

a third IOM is indeed present, although poorly known among
physicists [18].

Let us consider the specific case m = ωx = 1, ωy = 2. The
equations of motion are

d

dt

⎛
⎜⎝

x
vx

y
vy

⎞
⎟⎠ =

⎛
⎜⎝

vx

−x
vy

−4y

⎞
⎟⎠. (14)

Solving the equation yields the trajectory⎛
⎜⎜⎜⎜⎝

x

vx

y

vy

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Axsin(t + ϕx )

Axcos(t + ϕx )

Aysin(2t + ϕy)

2Aycos(2t + ϕy)

⎞
⎟⎟⎟⎠, (15)

with arbitrary constants Ax, Ay, ϕx, and ϕy.
We define angular momentum

L(1) ≡ xpy − ypx = 2AxAy[sin(t + ϕ1 − ϕ2)]. (16)

Note L(1) is not conserved, nor is K (1) ≡√
(2AxAy)2 − L(1)2 = 2AxAycos(t + ϕ1 − ϕ2). However, it is

interesting to note that the trajectory of z′ ≡ (x, vx, L(1), K (1) )
can be generated from an isotropic harmonic oscillator,
because all components have the same angular frequency.
Hence the “angular momentum” is conserved:

L(2) ≡ xK (1) − yL(1) = x(xpy − ypx )

− y
√

(x2 + p2
x )(y2 + p2

y ) − (xpy − ypx )2. (17)

Although the numerical front realizes the existence of this
conserved quantity, it remains difficult for the symbolic front
to discover it due to its length, as shown in Table I.

For general (ωx, ωy), there exists a third conserved quantity
in the sense of Frobenius integrability, as we construct below
(also in Ref. [19]). The family of solutions is⎛

⎜⎝
x
px

y
py

⎞
⎟⎠ =

⎛
⎜⎝

Axcos(ωxt + ϕx )
−ωxAxsin(ωxt + ϕx )

Aycos(ωyt + ϕy)
−ωyAysin(ωyt + ϕy)

⎞
⎟⎠. (18)

We define z1 ≡ 1
Ax

(x + i px

ωx
) = ei(ωxt +ϕx ) and z2 ≡ 1

Ay
(y + i py

ωy
) =

ei(ωyt+ϕy ). Hence,

H3 ≡ z
ωy

1 /zωx
2 = ei(ωyϕx−ωxϕy ) (19)

is a conserved quantity. In the isotropic case when
ωx = ωy = ω, H3 simplifies to

H3 = [ω2xy + px py + iω(xpy − ypx )]/H2, (20)

whose imaginary part is the well-known angular momentum.
Since the norm of H3 is 1, the real and imaginary part are
not independent. We plot −ilnH3 in Fig. 5 top with different
(ωx, ωy). We set Ax = Ay = 1. In the cases when ωy/ωx is an
integer or simple fractional number, H3 is regular; however,
when ωy/ωx is a complicated fractional number or even an
irrational number, H3 is ill-behaved, demonstrating fractal
behavior.
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FIG. 5. The third conserved quantity of the 2D harmonic oscillator with different frequency pairs (ωx, ωy ). Top: ground truth; bot-
tom: learned results by neural networks. A neural network can only learn this conserved quantity if the frequency ratio q ≡ ωx/ωy is a
ratio of small integers; if q is irrational, then the conserved quantity is an everywhere discontinuous function that is completely useless
to physicists.

We also run AI Poincaré 2.0 (n = 4 models are trained)
on the 2D harmonic oscillator example with different fre-
quency ratios ωy/ωx. In Fig. 5 bottom, we visualize the
worst conserved quantity, i.e., the one with the highest
conservation loss, of four neural networks. To map the four-
dimensional function to a 2D plot, we constrain x = cosϕ1,

px = sinϕ1, y = cosϕ2, py = sinϕ2. When (ωx, ωy) = (1, 1)
or (1,2), the neural network prediction of the third con-
served quantity aligns well with our expectation (visualized
in Fig. 5). For more complicated ωy/ωx ratios, the prediction
looks similar to the (ωx, ωy) = (1, 1) case, but they have high
conservation loss, as shown in Table II.

E. Three-body problem

The three-body problem has 12 degrees of freedom:
6 positions (xi, yi )(i = 1, 2, 3) and 6 velocities (vx,i, vy,i )
(i = 1, 2, 3).

Although there are 12 − 1 = 11 IOMs, only 4 are iden-
tified as conservation laws by physicists: (1) x-momentum:
H1 = ∑3

i=1 mivi,x; (2) y-momentum: H2 = ∑3
i=1 mivi,y;

(3) angular momentum: H3 = ∑3
i=1 mi(xivi,y − yivi,x ); (4)

energy H = ∑3
i=1

1
2 mi(v2

i,x + v2
i,y) + ( Gm1m2

((x1−x2 )2+(y1−y2 )2 )1/2 +
Gm1m3

((x1−x3 )2+(y1−y3 )2 )1/2 + Gm2m3
((x2−x3 )2+(y2−y3 )2 )1/2 ). In numerical

experiments, we set G = m1 = m2 = m3 = 1. Similar to

the Kepler problem, we can simplify symbolic search by
adding three distance variables:

r12 =
√

(x1 − x2)2 + (y1 − y2)2,

r13 =
√

(x1 − x3)2 + (y1 − y3)2,

r23 =
√

(x2 − x3)2 + (y2 − y3)2.

(21)

According to Landau [15], conservation laws are those
IOMs which respect spacetime symmetries and being addi-
tive. To incorporate these inductive biases, we assume that a
conserved quantity decomposes into one-body terms and two-
body terms. We assume nothing about the one-body terms,
but assume translational and rotational invariance for the two-
body terms. As a result, a candidate conservation law must
have the form

H =
3∑

i=1

g(xi, yi, vi,x, vi,y ) +
3∑

i=1

3∑
j=i+1

h(ri j ), (22)

where ri j ≡ √
(x j − xi )2 + (y j − yi )2. By parametrizing g and

h as two separate neural networks, the learned conservation
laws automatically satisfy the above-mentioned desired phys-
ical properties. Our algorithm now discovers precisely four
independent conservation laws, as shown in Fig. 2, fourth
column.

TABLE II. 2D harmonic oscillator: Worst and average conservation loss for different ratios ωy/ωx .

(ωx, ωy ) (1,1) (1,2) (2,3) (17,23) (67,97)

Worst conservation loss 1.1×10−4 5.1×10−4 7.9×10−4 1.2×10−3 1.4×10−3

Average conservation loss 7.7×10−5 4.6×10−4 4.7×10−4 1.0×10−3 1.1×10−3
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FIG. 6. The 2D three body problem without inductive biases.
The differential rank (left) correctly predicts 11 IOMs, while the rank
(right) incorrectly predicts 12 IOMs. This implies that the differential
rank is preferred over the rank in high dimensions, i.e., when nc is
large.

It is useful to push the limit of our method to see it
still works in more challenging scenarios. We investigate two
cases below: (1) no inductive biases or (2) unequal masses.

1. Challenging case 1: No inductive biases

When no inductive bias is added to the neural network,
the neural network degrades to parametrize integrals of mo-
tion. Since a first-order differential equation with s degrees
of freedom have s − 1 integrals of motion, the 2D three-body
problem has 12 − 1 = 11 integrals of motion. The results are
quite interesting: the differential rank method predicts cor-
rectly 11 IOMs (Fig. 6, left), while the rank method predicts
incorrectly 12 IOMs (Fig. 6, right). This is possibly because
Neural Empirical Bayes (the manifold learning module used
to compute rank, as well as in AI Poincaré 1.0) degrades when
dealing with high-dimensional manifolds. This highlights yet
another benefit of differential rank, which is novelly proposed
in 2.0. Differential rank is not only more numerically efficient
than rank, but also more stable in high dimensions.

2. Challenging case 2: Unequal masses

We tried a case in which m1:m2:m3 = 400:20:1. Both the
rank and the differential rank predict five conservation laws,
shown in Fig. 7 (left and right). Interestingly, this is different
from 4 conservation laws in the case of equal masses. We
conjecture that this is because in the limit m1 � m2 � m3:
(1) the momentum of m1 is almost conserved (2 conservation
laws); (2) m2 orbits around m1 as in the Kepler problem (three
conservation laws); (3) any term involving m3 can be ignored.
So there are 2 + 3 = 5 conservation laws in total. The discrep-

FIG. 7. The 2D three body problem with unequal masses
m1:m2:m3 = 400:20:1. Both the differential rank (left) and the rank
(right) correctly predict nc = 5 conservation laws. The result is dif-
ferent from nc = 4 for the equal masses case in Fig. 2, implying that
our method can also capture approximate conservation laws besides
exact conservation laws.

ancy between cases of equal or unequal masses is arguably a
feature rather than a bug, implying that our method not only
applies to exact conservation laws, but also to approximate
ones.

F. KdV wave equation

Another set of interesting systems are partial differential
equations (PDE) in the form ut = f (u, ux, uxx, . . .). Since a
field has infinite number of degrees of freedom (hence in-
finitely many IOMs), it is crucial to constrain the form of
conservation laws to exclude trivial ones. In quantum me-
chanics, for example, any projector onto an eigenstate is an
IOM, but these are less profound than probability conserva-
tion (known as unitarity) and energy conservation, etc. Thus,
we focus on conservation laws with an integral form obeying
translational invariance:

H =
∫

h(u, |ux|, |uxx|, . . .) dx. (23)

In practice, we replace the integral by a sum over the points
on a uniform grid. Moreover, we take the absolute value
of derivatives as inputs, e.g., |ux| and |uxx|, to avoid triv-
ial “conserved quantities” of the total derivative form h =
d
dx F (u, ux, uxx, . . .), e.g., ux, uux, or uxx, which are conserved
simply due to zero boundary conditions.

The Korteweg’De Vries (KdV) equation is a mathematical
model for shallow water surfaces. It is a nonlinear partial
differential equation for a function φ with two real variables,
x (space) and t (time):

φt + φxxx − 6φφx = 0. (24)

Zero boundary conditions are imposed at the ends of the inter-
val [a, b]. The KdV equation is known to have infinitely many
conserved quantities [20], which can be written explicitly as∫ b

a
P2n−1(φ, φx, φxx, . . .)dx, (25)

which follows from locality and translational symmetry. The
polynomials Pn are defined recursively by

¶1 = φ,

Pn = −dPn−1

dx
+

n−2∑
i=1

PiPn−1−i. (26)

The first few conservation laws are∫
φdx (mass),∫
φ2dx (momentum),∫
(2φ3 − φ2

x )dx (energy).

(27)

Despite infinitely many conservation laws, useful ones in
physics are usually constrained to contain only φ and low-
order derivatives (φx, φxx, . . .).
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1. Converting to the canonical form ż = f (z)

Since our framework can only deal with systems with
finite degrees of freedom, we need to discretize space. We
discretize the interval x ∈ [−10, 10] uniformly into Np = 40
points, denoted x1, . . . , xNp and only store derivatives up to
fifth order on each grid point, using them to parametrize our
φ(x). This transforms our PDE into an ordinary differential
equation with 3Np degrees of freedom (φ(i) = φ(xi ), φ(i)

x =
φx(xi ), . . .): Eq. (24) implies that

∂t

⎛
⎜⎜⎜⎜⎜⎜⎝

φ

φx

φxx

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−φxxx + 6φφx

−φxxxx + 6(φ2
x + φφxx )

−φxxxxx + 6(3φxφxx + φφxxx )

...

⎞
⎟⎟⎟⎟⎟⎟⎠

, (28)

so our discretized PDE problem becomes

z ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(1)

φ(1)
x

φ(1)
xx

...

φ(Np)

φ
(Np)
x

φ
(Np)
xx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

f (z) ≡ ∂t z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−φ(1)
xxx + 6φ(1)φ(1)

x

−φ(1)
xxxx + 6

(
φ(1)2

x + φ(1)φ(1)
xx

)
−φ(1)

xxxxx + 6
(
3φ(1)

x φ(1)
xx + φ(1)φ(1)

xxx

)
...

−φ
(Np)
xxx + 6φ(Np)φ

(Np)
x

−φ
(Np)
xxxx + 6

(
φ

(Np)2
x + φ(Np)φ

(Np)
xx

)
−φ

(Np)
xxxxx + 6

(
3φ

(Np)
x φ

(Np)
xx + φ(Np)φ

(Np)
xxx

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29)

2. Sample generation

We represent φ as a Gaussian mixture, so all derivatives
can be computed analytically. In particular,

φ(x) =
Ng∑

i=1

Ai

{
1√

2πσi

exp[−(x − μi )
2]/2σ 2

i

}
,

−10 � x � 10, (30)

where coefficients are set or drawn randomly accordingly to
Ai ∼ U [−5, 5], μi ∼ U [−3, 3], σi = 1.5. These distributions
are chosen such that (1) φ(x) is (almost) zero at two boundary
points x = −10, 10; and (2) every single term in f (z) have
similar magnitudes. We choose Ng = 5 and generate P = 104

profiles of φ.

3. Constraining conservation laws

The conservation laws of partial differential equations usu-
ally have the integral form, i.e., H = ∫

h(x′)dx where
x′ = (φ, φx, φxx, . . .). When space is discretized, we con-
strain the conservation law to the form H = ∑Np

i=1 h(x′).
On the numerical front, we parametrize h(x′) (as op-
posed to H) by a neural network; On the symbolic front,
we search the symbolic formula of h(x′) (as opposed
to H). The summation operation is hard coded for both
fronts.

4. Avoiding trivial conservation laws

Due to zero boundary conditions, if h(x′) is an x derivative
of another function g(x′), then it is obvious that

∫ b
a h(x′)dx =

g(x′)|b − g(x′)|a = 0, which is a trivial conserved quantity.
For example, h(x′) = φx, φφx, φxx, φ

2
x + φφxx are all trivial.

We observe that each of them has at least one term that
is an odd function of a derivative. Consequently, a simple
solution is to use absolute values (|φx|, |φxx|, . . .) instead
of (φx, φxx, . . .) so that these trivial conservation laws are
avoided in the first place.

On the numerical front, our algorithm successfully dis-
covers 2, 3, and 4 conserved quantities which are dependent
on φ, (φ, φx ), and (φ, φx, φxx ), respectively, as shown in
Fig. 2, second to last column. On the symbolic front, we
constrain the input variables to be (φ, φx, φxx ), and three
out of four conservation laws (mass, momentum, and en-
ergy) can be discovered, as shown in Table I. Our method
fails for the fourth conservation law because it is too
long.

G. Nonlinear Schrödinger equation

The 1D nonlinear Schrödinger equation (NLS) is a nonlin-
ear generalization of the Schrödinger equation. Its principal
applications are to the propagation of light in nonlinear
optical fibres and planar waveguides and to Bose-Einstein
condensates. The classical field equation (in dimensionless
form) is

iψt = − 1
2ψxx + κ|ψ |2ψ. (31)

Zero boundary conditions are imposed at infinity [21]. Like
the KdV equation, the NLS has infinitely many conserved
quantities of the integral form

H (x) =
∫ ∞

−∞
h(ψ,ψx, ψxx, . . .)dx. (32)

Useful conservation laws in physics usually contain only low-
order derivatives, e.g.,

unitarity:
∫

|ψ |2dx,

energy:
∫

1

2

(|ψx|2 + κ|ψ |4)dx. (33)
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1. Converting to the canonical form ż = f (z)

Similar to the KdV equation, we treat (ψ,ψx, ψxx, . . .) as different variables. We denote ψr ≡ Re(ψ ), ψi ≡ Im(ψ ), Re(ψx ) =
ψx,r, Im(ψx ) = ψx,i, etc.:

∂t

⎛
⎜⎜⎝

ψ

ψx

ψxx
...

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
2 iψxx − iκ|ψ |2ψ

1
2 iψxxx − iκ (|ψ |2ψx + (ψrψx,r + ψiψx,i )ψ )

1
2 iψxxxx − iκ (|ψ |2ψxx + 2(ψrψx,r + ψiψx,i )ψx + (ψ2

x,r + ψrψxx,r + ψ2
x,i + ψiψxx,i )ψ )

...

⎞
⎟⎟⎟⎠. (34)

Since ψ is a complex number, we should treat real and imaginary parts separately:

∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψr

ψi

ψx,r

ψx,i

ψxx,r

ψxx,i
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2ψxx,i + κ|ψ |2ψi

1
2ψxx,r − κ|ψ |2ψr

− 1
2ψxxx,i + κ (|ψ |2ψxi + (ψrψx,r + ψiψx,i )ψi )

1
2ψxxx,r − κ (|ψ |2ψx,r + (ψrψx,r + ψiψx,i )ψr )

− 1
2ψxxxx,i + κ (|ψ |2ψxx,i + 2(ψrψx,r + ψiψx,i )ψx,i + (ψ2

x,r + ψr,iψxx,r + ψ2
x,i + ψiψxx,i )ψi )

1
2ψxxxx,r − κ (|ψ |2ψxx,r + 2(ψrψx,r + ψiψx,i )ψx,r + (ψ2

x,r + ψrψxx,r + ψ2
x,i + ψiψxx,i )ψr )

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

Just as in the KdV example, to avoid trivial solutions, we con-
sider only the equations for magnitude (|ψ |, |ψx|, |ψxx|, . . .):

∂t

⎛
⎜⎜⎝

|ψ |
|ψx|
|ψxx|

...

⎞
⎟⎟⎠

︸ ︷︷ ︸
z

=

⎛
⎜⎜⎝

(ψr∂tψr + ψi∂tψi )/|ψ |
(ψx,r∂tψx,r + ψx,i∂tψx,i )/|ψx|

(ψxx,r∂tψxx,r + ψxx,i∂tψxx,i )/|ψxx|
...

⎞
⎟⎟⎠

︸ ︷︷ ︸
f

. (36)

2. Sample generation

Sample generation is similar to the KdV equations, with
the only difference that real and imaginary parts are both
treated as (independent) Gaussian mixtures.

We feed the neural network with (1) |ψ | only; (2) |ψ |
and |ψx|; (3) |ψ |, |ψx|, and |ψxx|, and our method predicts
1, 2, and 3 conservation laws, respectively (shown in Fig. 2,
last column), which basically agree with the ground truth,
although our method is unable to discover the momentum
which involves ψx because the input |ψx| lacks the phase
information. We would like to investigate how to include the
phase information with the help of complex neural networks
in future works.

IV. DISCUSSION

A. Definitions of integrability and relations
to AI Poincaré 1.0/2.0

Conservation laws are closely related to the notion of in-
tegrability [22], which in turn has various definitions from
different perspectives [23,24]. Here we list five definitions
of integrability and corresponding definitions of conserved
quantities.

1. General integrability (global geometry and topology)

In the context of differential dynamical systems, the no-
tion of integrability refers to the existence of an invariant

regular foliation of phase space [23]. Consequently, a con-
served quantity should be a well-behaved function globally,
not demonstrating any fractal or other pathological behavior.

2. Frobenius integrability (local geometry and topology)

A dynamical system is said to be Frobenius integrable if,
locally, the phase space has a foliation of invariant manifolds
[23]. One major corollary of the Frobenius theorem is that
a first-order dynamical system with s degrees of freedom
always has s − 1 (local) integrals of motion. Consequently,
a conserved quantity in the sense of Frobenius integrability
does not require the foliation to be regular in the global sense.
The visual differences between local and global conserved
quantities are shown in Figs. 4, and 5.

3. Liouville integrability (algebra)

In the special setting of Hamiltonian systems, we have
Liouville integrability, which focuses on algebraic properties
of a Hamiltonian system [18]. Liouville integrability states
that there exists a maximal set of Poisson commuting invari-
ants, corresponding to conserved quantities. A system in the
2n-dimensional phase space is Liouville integrable if it has n
independent conserved quantities which commute with each
other, i.e., {Hi, Hj} = 0. According to the Liouville-Arnold
theorem [18], such systems can be solved exactly by quadra-
ture, which is a special case of solvable integrability (the fifth
criterion below).

4. Landau integrability (concept simplicity)

Landau stated in his textbook [15] that physicists prefer
symmetric and additive IOMs and promote them as funda-
mental “conservation laws.”

5. Solvable integrability (symbolic simplicity)

Solvable integrability requires the determination of solu-
tions in an explicit functional form [24]. This property is
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TABLE III. Five integrability definitions and whether AI
Poincaré 1.0/2.0 can deal with them.

General Frobenius Liouville Landau solvable

Poincaré 1.0 Yes No No No Yes
Poincaré 2.0 Yes Yes Yesa Yes Yes

aThis case is not included in the paper, but is doable when we com-
bine the techniques of searching for hidden symmetries in Ref. [25].

intrinsic, but can be very useful to simplify and theoretically
understand problems.

6. Experimental integrability (robustness)

In physics, we consider a conserved quantity useful if a
measurement of it at some time t can constrain the state at
some later time t ′ > t . In experimental physics, a measure-
ment of a physical quantity always contains some finite error.
Hence a useful conserved quantity must not be infinitely sen-
sitive to measurement error. In contrast, Fig. 5 (top row) shows
that, although a conserved quantity exists for all possible fre-
quency pairs (ωx, ωy), their robustness to noise differ widely.
Once the noise scale significantly exceeds the width of stripe
pattern, an accurate measurement of the conserved quantity is
impossible, and a measurement of the “conserved quantity”
provides essentially zero useful information for predicting the
future state. When the frequency ratio is an irrational number,
the “conserved quantity” becomes discontinuous and patho-
logical throughout phase space and completely useless for
making physics predictions. This experimental integrability
criterion is thus compatible with general integrability, not
Frobenius integrability.

In summary, the various notions of integrability are used
to study dynamical systems, but have different motivations
and scopes. General integrability and Frobenius integrability
characterize global and local geometry; Liouville integrability
takes an algebraic perspective and applies only to Hamilto-
nian systems; Landau and solvable integrability instead focus
on simplicity based on concepts and symbolic equations,
respectively. To the best of our knowledge, there is no agree-
ment on whether one particular definition outperforms others
in all senses. We believe they are complementary to each
other, rather than being contradictory or redundant. In AI
Poincaré 1.0 [2] and 2.0 (the current paper), we mostly did not
mentioned explicitly which sense of integrability/conserved
quantities we referred to. Fortunately, AI Poincaré 2.0 can
flexibly adapt to all definitions, as summarized in Table III.

AI Poincaré 1.0 defines a trajectory manifold, which is
orthogonal to the invariant manifold. The trajectory manifold
is globally defined, and its dimensionality is a topological
invariant. As a consequence, in AI Poincaré 1.0, conserved
quantities satisfy general integrability. The symbolic part of
AI Poincaré 1.0 looks for formulas with simple symbolic
forms, in the spirit of solvable integrability.

AI Poincaré 2.0 addresses the problem of finding a max-
imal set of independent conserved quantities, in analogy to
the goal of the Frobenius theorem [26] which searches for
a maximal set of solutions of a regular system of first-order
linear homogeneous partial differential equations. The loss

formulation in Eq. (3) can be viewed as a variational formu-
lation of the system of PDEs to be satisfied for conserved
quantities. Consequently, AI Poincaré 2.0 (neural network
front) is aligned with Frobenius integrability if there is only
one training sample z. In the presence of many training sam-
ples over the phase space, our algorithm becomes aligned with
the notion of the general integrability, because the conserved
quantity is parameterized as a neural network which has an
implicit bias toward smooth and regular functions globally.
Although we did not explicitly deal with Liouville integrabil-
ity in this paper, the algebraic nature of Liouville integrability
makes it simply a “hidden symmetry problem” that is defined
and solved by Ref. [25], and the techniques in the current pa-
per can further improve the process by determining functional
dependence among invariants learned by neural networks. The
symmetry and additivity in Landau integrability is known in
the machine learning literature as physical inductive biases,
which can be elegantly handled by adding constraints to the
architectures or loss functions [27,28]. Finally, the symbolic
front of AI Poincaré 2.0 addresses the problem of finding
conserved quantities with simple symbolic formulas.

B. Phase transitions and how to choose λ

Equation (3) has a hyperparameter, the regularization coef-
ficient λ. If λ is too small, then multiple networks may learn
dependent conserved quantities. If λ is too large, then the
regularization loss dominates the conservation loss, making
the conservation laws inaccurate. As we argue below, the
proper choice of λ has a lower bound which is determined
by the approximation error tolerance ε, and an upper bound
O(1).

We first use two analytic toy examples to provide insight.
In both cases, the number of neural networks n is equal to
the dimension s of the problem, just to demonstrate all pos-
sible phase transitions. In practice, it is sufficient to choose
n = s − 1. The geometric intuition for minimizing the loss
function Eq. (3) is that �1 encourages ∇Hi to be orthogonal
to f while the regularization loss �2 encourages ∇Hi and
∇Hj ( j �= i) to be orthogonal.

1. Toy example 1

The first toy example is inspired by the 1D damped har-
monic oscillator with its 2D phase space. There is only one
conserved quantity in the sense of Frobenius integrability, and
the approximation error of a neural network is ε. We train
two networks to learn the conserved quantities. At the global
minima, two possible geometric configurations (gradients of
neural conserved quantities) are shown in Fig. 8. It is easy to
check that any other configuration has higher loss than at least
one of the two configurations. Which configuration has lower
loss depends on λ: when λ < 1−ε

2 , two networks represent
the same function (i.e., the only conserved quantity); when
λ > 1−ε

2 , two networks represent two independent functions,
one of which is not a conserved quantity even in the sense of
Frobenius integrability. Since only the first phase is desirable,
we need to set λ < 1−ε

2 . This condition can be easily satisfied
if ε � 1.
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FIG. 8. 2D Toy example: With different λ, the global minima
may have different geometric configurations. Assume the single
conserved quantity can be approximated by a neural network with
error ε.

2. Toy example 2

The second toy example is inspired by the 2D anisotropic
harmonic oscillator. To better visualize the example, we con-
sider a 3D (rather than 4D) phase space, shown in Fig. 9,
but the intrinsic nature of the problem does not change.
There are two conserved quantities in the sense of Frobenius
integrability. One is easy for neural networks to fit, hence
the approximation error can be minimized to zero; another
is hard, so a neural network can at best approximate the
function up to an error ε. Similarly to the analysis above,
three possible configurations are global minima. We train
three neural networks to learn the conserved quantities. When
λ < ε

2 , three models represent only one conserved quantity
(the easy one); when ε

2 < λ < 1, three models represent two
independent conserved quantities (both the easy and the hard
one); when λ > 1, a third false conserved quantity is learned.
Both the first phase and the second phase are acceptable,
depending on different notions of integrability, since a hard
conserved quantity may be locally well-behaved but globally
ill-behaved. If we search for globally conserved quantities,
then the first phase is desired. However, if we allow locally
conserved quantities, then the second phase is desired. All the
experiments in the main text are conducted with λ = 0.02,

FIG. 9. 3D Toy example: With different λ, the global minima
may have different geometric configurations. Assume the first and
second conserved quantity can be approximated by a neural network
with zero error (easy) and ε > 0 error (hard), respectively.

FIG. 10. 1D damped harmonic oscillator: �1/�2 as functions of λ

demonstrate phase transition behavior.

which is equivalent to saying we only care about conserved
quantities whose approximation errors are less than 0.02c.
c = 2 in the current toy example, but we expect c ∼ O(1) in
general.

The analysis of two toy examples above suggests a simple
picture of phase transitions for more complicated systems: for
n conserved quantities with different difficulty (approxima-
tion error ε1 < ε2 < · · · < εn), we expect there to be n + 1
phases. At each phase transition, only one conserved quantity
is learned or un-learned, and the order of phase transitions

FIG. 11. 2D isotropic/anisotropic harmonic oscillator: �1/�2 as
functions of λ demonstrate phase transition behavior.
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depends on the order of ε. From the picture of phase transi-
tions, one learns not only the number of conserved quantities,
but also knows their difficulty hierarchy. In practice, the phase
transition diagram may not be as clean as in these toy exam-
ples due to neural network training inefficiency. We show that
the phase transition diagram agrees reasonably well with our
theory above for the 1D damped harmonic oscillator and 2D
harmonic oscillator. We would like to investigate this further
in future work.

3. 1D damped harmonic oscillator

Toy example 1 can apply to the 1D damped harmonic
oscillator without any modification. Figure 10 shows that we
find a phase transition of �1/�2 at λ ≈ 1

2 for both γ = 0 and
γ = 1. When γ = 1, the nonzero �1 in the first phase implies
the irregularity of the conserved quantity.

4. 2D harmonic oscillator

Toy example 2 is a good abstraction of the 2D harmonic
oscillator, but should not be considered to be exact in the
quantitative sense. The two energies are easy conserved quan-
tities, while the third conserved quantity regarding phases are
harder to learn due to its irregularity when ωy/ωx is not a
fractional number. Figure 11 shows that: when (ωx, ωy) =
(1, 1), only one clear phase transition happens around λ = 1.

When (ωx, ωy) = (1,
√

2), two phase transitions are present,
one around λ = 1, another around 10−3 < λ < 10−2.

V. CONCLUSIONS

We have presented a method that, given a set of differential
equations, can determine not only the number of indepen-
dent conserved quantities but also neural (or even symbolic)
representations of them. Conservation laws and integrability
have many competing definitions listed in Sec. IV A, and AI
Poincaré 2.0 is able to adapt to all of them much better than
1.0. In the case of unknown differential equations, however,
we have to resort to 1.0. We hope that these tools will ac-
celerate future progress on exciting open physics problems,
for example, integrability of quantum many-body systems and
many-body localization.
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