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Absorption of charged particles in perfectly matched layers by optimal
damping of the deposited current
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Perfectly matched layers (PMLs) are widely used in particle-in-cell simulations, in order to absorb electro-
magnetic waves that propagate out of the simulation domain. However, when charged particles cross the interface
between the simulation domain and the PMLs, a number of numerical artifacts can arise. In order to mitigate
these artifacts, we introduce a PML algorithm whereby the current deposited by the macroparticles in the PML
is damped by an analytically derived optimal coefficient. The benefits of this algorithm are illustrated in practical
simulations. In particular, it is shown that this algorithm is well suited for particles exiting the box in near-normal
incidence, in the sense that the fields behave as if the exiting particle is propagating in an infinite vacuum.
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I. INTRODUCTION

Electromagnetic particle-in-cell (PIC) simulations [1,2] are
widely used to study the physics of beams and plasmas in
various contexts, including astrophysical systems, particle ac-
celerators, and microwave devices. In those different cases,
the simulation domain represents only a finite portion of
space. Therefore, electromagnetic waves and charged parti-
cles can potentially exit that domain during the course of
the simulation. If no specific treatment is applied at the do-
main boundary, this can lead to unphysical effects such as
electromagnetic waves reflecting back into the interior of the
domain and charged particles leaving spurious fields at the
boundary. Oftentimes, these effects can invalidate the results
of the simulation. Hence it is necessary to apply algorithms
that remove (or absorb) outgoing electromagnetic waves and
charged particles in a way that reproduces the expected phys-
ical behavior..

For electromagnetic waves, one such algorithm is the
perfectly matched layers (PMLs) algorithm [3]. Perfectly
matched layers are auxiliary computational cells where the
field update equations are modified so as to damp outgo-
ing electromagnetic waves without undesired reflection. This
technique has indeed been shown to efficiently absorb waves
over a broad range of incidence angles and frequencies and is
therefore very commonly used. However, in the original for-
mulation of the PMLs, the presence of charged particles was
not considered. In practice, a number of numerical issues can
occur when charged particles reach the PML region, which
can then undesirably affect the simulation at large [4,5]. While
there is a large body of work on PMLs in general, the issue
of charged particles reaching the PML has attracted relatively
little attention.
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Historically, solutions to this issue have been proposed
and studied in the context of microwave devices, whereby
an electron beam passes through the simulation domain and
interacts with electromagnetic modes in a cavity or a waveg-
uide [4–7]. For instance, in [4], the authors observed that
spurious electrostatic fields can build up at the boundary of
the simulation domain if charged particles are simply removed
from the simulation as soon as they enter the PML region.
(Note that, by default, this is how charged particles are treated
in many PIC codes with PMLs.) In order to mitigate this issue,
the authors proposed to apply numerical diffusion to these
fields by using a Marder-type divergence-cleaning algorithm
[8], which causes these fields to decay over time. This does
prevent the build up of spurious fields, but is only effective
over timescales longer than the characteristic diffusion time,
which is limited by stability constraints [4]. Alternatively,
instead of removing the particles, some algorithms [5,6] al-
low them to propagate into the PML region and to use the
corresponding current density as a source term in the PML
equations. In the case of [5], this is also combined with a prop-
agative divergence-cleaning algorithm [9–12]. It is observed
that this strongly mitigates the spurious electrostatic fields at
the boundary.

In the above-mentioned studies, the authors assess the effi-
ciency of their respective algorithms by observing the overall
behavior of the simulation, for their particular physics prob-
lem, and by verifying that this overall behavior is physically
realistic. However, they do not study the detailed behavior of
the fields associated with individual particles as they exit the
simulation.

By contrast, in the present paper, we first focus on the fields
of individual particles before moving on to more complex,
physically relevant simulations. We show that, when an in-
dividual particle exits the simulation domain, it can produce
a spurious electrostatic field (as observed in [4,5]), but also a
spurious electromagnetic radiation (Sec. II). We propose a set
of modified PML equations which, for an outgoing particle
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in normal incidence, suppress both of these effects and thus
allow individual particles to cleanly exit the simulation do-
main (Secs. III and IV), as if they were propagating in infinite
vacuum. We then apply this algorithm in physically relevant
simulations (Sec. V).

II. SPURIOUS EFFECTS ASSOCIATED WITH
PARTICLES ENTERING THE PML

In order to illustrate the numerical issues that arise when
particles enter the PML, we run PIC simulations of a single
macroparticle impinging on a PML, with a relativistic Lorentz
factor γ = 10. The other simulation parameters and the over-
all simulation setup are summarized in Appendix A 1.

The left column of Fig. 1 shows the evolution of the
electric field in the case of the standard PML algorithm.
The fields seen in the top panel are the self-fields associated
with the macroparticle. (As mentioned in Appendix A 1, the
macroparticle separated from an opposite-charge motionless
macroparticle at t = 0. Therefore, the associated self-fields at
t > 0 have a curved wavefront.) The two bottom panels in the
left column of Fig. 1 show that two types of spurious fields
arise after the macroparticle enters the PML: a static field,
which remains confined close to z = 0 (domain boundary) and
an outward-propagating pulse, which expands in the z < 0 (in-
terior) region. The existence of these fields can be understood
qualitatively. In the standard PML algorithm, the macroparti-
cle is indeed removed as soon as it enters the PML region and
thus the current density j is zero in the entire simulation box
from then on. In the electromagnetic PIC field update, this is
in fact equivalent to having the macroparticle suddenly stop
at the vacuum-PML interface. (If the macroparticle’s velocity
v is zero, then the associated j is zero as well.) The above-
mentioned static field can thus be seen as the space-charge
field of this equivalent motionless macroparticle, while the
outward-propagating pulse can be seen as the electromagnetic
radiation generated by the macroparticle suddenly decelerat-
ing to reach a rest state.

Intuitively, one might think that these spurious effects
would disappear if, instead of being removed, the macropar-
ticle is allowed to propagate and deposit current in the PML.
However, the middle column of Fig. 1 shows that this is not the
case. Allowing the particle to deposit current in the PML does
remove the spurious static field, but an outward-propagating
spurious pulse still exists. We note that this remaining pulse
might be analogous to the transition radiation associated with
a charged particle crossing the interface between two media
with different electromagnetic properties.

In the next section we propose a modified PML algorithm
that does remove both the static field and the outward-
propagating spurious pulse under certain conditions, as shown
in the right column of Fig. 1.

III. MODIFIED SET OF PML EQUATIONS FOR
ABSORPTION OF CHARGED PARTICLES

A. Continuous equations

In order to describe the proposed algorithm, let us consider
that the interface between the simulation and the PML is
at z = 0, with the PML lying in the z > 0 half space, as

FIG. 1. Colormaps of the Ex field, near the edge of the simulation
box. The PML region corresponds to z > 0. (In this region, we
show the sum of the split components Ex = Exy + Exz.) The different
rows correspond to different simulation times, while the different
columns correspond to different algorithms. The left column is for
the standard PML algorithm [α(z) = 0 in Eq. (1)], the middle column
is for the PML with current deposition [α(z) = 1 in Eq. (1), and the
right column is for the PML with damped particle deposition [α(z)
given by Eq. (4), with v = c]. The denotations �x and �z correspond
to the cell sizes and �t corresponds to the time step of the simulation.
The field is normalized by E0 ≡ q/4πε0�x2, where q is the charge
of the macroparticle.
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represented on Fig. 1. (Hence, z represents the depth inside
the PML for z > 0.)

We let the particles propagate and deposit their current
density j in the PML region (z > 0) (similarly to [5,6]) and
use the split-field Maxwell equations

∂t Exy = c2∂yBz, (1a)

∂t Exz = −c2∂zBy − σ (z)

ε0
Exz − α(z)

ε0
jx, (1b)

∂t Eyz = c2∂zBx − σ (z)

ε0
Eyz − α(z)

ε0
jy, (1c)

∂t Eyx = −c2∂xBz, (1d)

∂t Ez = c2(∂xBy − ∂yBx ) − α(z)

ε0
jz, (1e)

∂t Bxy = −∂yEz, (2a)

∂t Bxz = ∂zEy − σ (z)

ε0
Bxz, (2b)

∂t Byz = −∂zEx − σ (z)

ε0
Byz, (2c)

∂t Byx = ∂xEz, (2d)

∂t Bz = −(∂xEy − ∂yEx ), (2e)

Ex ≡ Exy + Exz, (3a)

Ey ≡ Eyz + Eyx, (3b)

Bx ≡ Bxy + Bxz, (3c)

By ≡ Byz + Byx, (3d)

where σ (z) is the PML conductivity (which, in general, varies
as a function of the depth z [13]) and α(z) is a damping coeffi-
cient on the current density. For α(z) = 0, these equations are
identical to the original PML formulation by Berenger [3], in
which there is no source term associated with charged parti-
cles. On the other hand, α(z) = 1 results in a scheme which
is similar to [5,6]. (As mentioned previously, Ref. [5] also
adds a propagative divergence-cleaning correction to these
equations.)

By contrast, here we choose the prescription

α(z) = exp

(
−

∫ z

0

σ (z′)
ε0

dz′

v

)
, (4)

where v is the assumed velocity of the exiting particles. (This
assumed velocity is discussed in more detail in Sec. III C.)
Notice that the value of the damping coefficient α(z) decreases
monotonically from 1 at the PML interface (z = 0) towards 0
deep inside the PML.

In Sec. VI, we show that, for a particle in normal incidence
with a velocity v, these modified PML equations [with α(z)
given by Eq. (4)] constitute an ideal open boundary. More
specifically, when using these equations in the PML domain,
the fields associated with the particle in the physical domain
are exactly the same as if the PML were replaced by an infinite
vacuum region. In particular, there is no spurious electrostatic
field and electromagnetic radiation as the particle transitions
from the physical domain to the PML region.

We note that this proposed PML algorithm has an intuitive
interpretation. One indeed expects the fields associated with
the particle to be progressively damped in the PML. However,
this cannot consistently occur if the source of these fields
(the current j) is not damped as well. In this sense, it seems
reasonable that the damping of j needs to be “matched” to
the natural damping rate of the field in the PML. However,
the exact matching condition itself [given by Eq. (4)] is less
intuitive and requires a proper derivation, as given in Sec. VI.

Finally, note that the extension of Eqs. (1)–(3) to two-
dimensional (or one-dimensional) Cartesian geometries can
be readily obtained by setting the derivative term to 0 for the
corresponding invariant directions of space.

B. Discretization

The above equations and considerations are valid in the
continuous limit. However, in a PIC algorithm, Eqs. (1)–(3)
would of course be discretized in time and space. For that
purpose, notice that the terms introduced of the form α(z) jx,
α(z) jy, and α(z) jz do not affect the usual finite-difference
time-domain discretization of the other terms in Eqs. (1)–(3),
on a staggered Yee grid [14]. In addition, these terms are
naturally properly centered on a Yee grid, so no additional
interpolation or averaging is needed. Finally, in the discretized
system, α(z) will be evaluated at the nodes and cell centers of
the staggered grid. If σ (z) is chosen to be a simple analytical
function (as is often the case; see, e.g., Sec. VI), then α(z) can
readily be expressed in a closed analytical form from Eq. (4)
before being evaluated at these points.

As a result of the discretization, the ideal absorbing proper-
ties of the continuous system (1)–(4) may be slightly affected.
(Note that the original PMLs themselves were also derived in
the continuous limit [3] and that their absorption properties
become imperfect once discretized.) While the bottom right
panel of Fig. 1 does show some faint remaining spurious fields
that may indeed be due to the discretization, it nonetheless
represents a major improvement compared to the other meth-
ods (middle and left panels).

C. Discussion and limitations

As mentioned in Sec. III A and Appendix B, the proposed
PML scheme is well adapted for macroparticles entering the
PML in normal incidence and with a velocity that matches
the assumed velocity v in Eq. (4). On the other hand, if
a macroparticle is incident with an oblique angle or with
a velocity different from the assumed one, the absorption
efficiency of the proposed PML will be lower. This will be
examined and quantified in Sec. IV.

We note that, while the limitation on the angle cannot be
easily overcome, the limitation on the velocity can be lifted
by a slightly more complex scheme. Rather than damping the
current density uniformly by α(z) for all particles, we can
set α(z) = 1 in Eq. (1) and instead damp the weight of each
macroparticle according to

w′
i = α̃i(t )wi, α̃i(t ) = exp

(
−

∫ t

ti

σ (zi(t ′))
ε0

dt ′
)

,
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where wi is the original weight of macroparticle i, ti is the
time at which the macroparticle enters the PML, and zi(t )
is the position of that macroparticle as a function of time.
Due to the linearity of the Maxwell equations, the absorption
property of this alternative scheme for the self-fields of each
individual macroparticle is identical to that of the original
scheme, where v in Eq. (4) would match the velocity of
the individual macroparticles. For the sake of simplicity, this
alternative scheme is not discussed further in the rest of this
paper.

Importantly, while the proposed scheme constitutes an
ideal open boundary for a particle being absorbed in the PML,
this property does not necessarily carry over for a particle be-
ing emitted from the PML. More precisely, when using Eq. (4)
with v > 0, the PML will efficiently absorb the fields associ-
ated with a particle propagating with +v into the PML, but
not necessarily the fields associated with a particle initialized
inside the PML and propagating with −v into the simulation
domain. Fundamentally, this is because, unlike the Maxwell
equations, the PML equations are not time reversible.

IV. SINGLE-PARTICLE TESTS

In this section we quantify the impact of the incidence
angle and velocity of the incident particle on the absorption
properties of the PML. To this end, we run additional simu-
lations of a macroparticle crossing the PML, similarly to the
case represented in Fig. 1, while varying the angle and veloc-
ity of that macroparticle. (The other simulation parameters are
the same as in Sec. VI) In each case, we compare the results
with a reference simulation in which the simulation box is
extended in the z > 0 region, so that in this case the particle
does not exit the box during the course of the simulation. (In
practice, we double the size of the simulation box in the z di-
rection, compared to the base case described in Sec. VI) In this
reference simulation, the particle self-fields are therefore free
of the numerical artifacts associated with a particle crossing
the PML interface.

We then define the relative error as

E =
∫

dx[(E − Eref )2 + c2(B − Bref )2]∫
dx

[
E2

ref + c2B2
ref

] , (5)

where we integrate over the physical cells of the original
simulation. We evaluate this quantity at the end of the simula-
tion, i.e., t = 125�t , while the macroparticle crosses the PML
interface at t = 65�t . Note that, because of the presence of a
motionless opposite-charge particle in the simulation box (see
Sec. VI) the denominator in Eq. (5) is nonzero.

A. Impact of the incidence angle

We first vary the incidence angle of the particle from 0◦
(normal incidence) to 75◦ while keeping the velocity of the
particle fixed (corresponding to a Lorentz factor γ = 10). The
corresponding relative error for different PML schemes is
shown in Fig. 2. The different PML schemes all implement
Eqs. (1)–(3) but use different choices for α(z), as indicated in
the legend of Fig. 2.

FIG. 2. Relative error on E and B due to numerical artifacts at the
PML interface [as defined in Eq. (5)] as a function of the incidence
angle of the macroparticle, for different PML schemes.

As can be seen in Fig. 2, the error is high for the standard
PML scheme [α(z) = 0] and, to a lesser extent, for the PML
scheme with undamped particle deposition [α(z) = 1]. This
is because of the presence of spurious fields at the PML
interface, as described in Sec. II. In the case of the damped
particle deposition [α(z) given by Eq. (4) with v = c], the
error is close to zero for normal incidence, thereby confirming
the predictions of Sec. III. As expected, the error grows when
the incidence angle increases. However, it is worth noting that,
even at high incidence angle, this error remains lower than that
of the other PML schemes.

FIG. 3. Relative error on E and B due to numerical artifacts at
the PML interface [as defined in Eq. (5)] as a function of the celerity
of the macroparticle, for different PML schemes.
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FIG. 4. Colormaps of Ex − cBy in the simulation box. The dashed lines represent the end of the actual simulation box and the beginning
of the PML cells. (In the PML cells, we show the sum of the split components for Ex and By.) The black lines represent the cavity boundary,
while the gray contour lines represent the proton beam density. The different rows correspond to different simulation times, while the different
columns correspond to different algorithms. The left column is for the standard PML algorithm [α(z) = 0 in Eq. (1)], the middle column is for
the PML with current deposition [α(z) = 1 in Eq. (1)], and the right column is for the PML with damped particle deposition [α(z) given by
Eq. (4), with v = c].

B. Impact of the incident velocity

We then vary the incident velocity of the macroparticle,
from nonrelativistic (v � c) to ultrarelativistic, in normal in-
cidence. (For low v, the macroparticle is initialized closer to
the PML so that the particle still crosses the PML interface
at the same time t = 65�t .) We compare the different PML
schemes in Fig. 3. In the case of the damped PML, we use
Eq. (4) with a fixed v (v = c in this case).

Again, Fig. 3 shows that the error is relatively high for
the standard PML scheme [α(z) = 0] and the PML with un-
damped particle deposition [α(z) = 1]. As expected, for low

velocity (v < c), the PML scheme with damped particle de-
position also has a significant error, due to the fact that we use
v = c in Eq. (4). (Recall, however, from Sec. III C that this
limitation could be overcome, even for multiple macroparti-
cles with different velocities, by a modified scheme where
the macroparticle weight is progressively damped.) Yet for
relativistic velocities (γ v/c > 1), the error in Fig. 3 becomes
very low. This also indicates that, in the simulated scenario
where most exiting particles are known to be relativistic, set-
ting v = c independently of the actual energy of the particles
is a reasonable choice.
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V. APPLICATION IN ACCELERATOR SIMULATIONS

In this section our PML scheme is tested with two physi-
cally relevant scenarios.

A. Beam passing through a metallic cavity

We consider a proton beam passing through a simplified
rectangular accelerator cavity. Since the proton beam is rel-
atively long, it is continuously injected on one side of the
simulation box and then absorbed on the other side. Both sides
of the simulation box are terminated by PMLs. The simulation
parameters are summarized in Sec. VI. Note that, in principle,
the same configuration could also be used to simulate a train
of proton bunches going through the cavity, instead of a single
bunch.

Figure 4 shows colormaps of the quantity Ex − cBy at
different times and with different PML schemes. Note that
Ex − cBy corresponds, to a good approximation, to the trans-
verse force experienced by ultrarelativistic particles traveling
in the +z direction. Note also that the space charge field of the
(relativistic) proton beam largely cancels out when evaluating
Ex − cBy.

Of particular interest is the behavior of the fields at both
ends of the simulation box (z = ±50 mm). As expected, the
standard PML scheme leads to a strong spurious field (left col-
umn in Fig. 4). At the left-hand side of the simulation box (z =
−50 mm), this issue is significantly reduced by depositing
the particle current in the PML (middle and right columns),
but is not completely removed. This is particularly visible at
t = 0.39 ns. In the case of the proposed PML scheme (right
column in Fig. 4), this remaining spurious field is indeed
expected from the discussion of Sec. III C: Although the pro-
posed PML scheme is well adapted for exiting particles, it is
not as efficient for particles entering the simulation box from
the PMLs.

By contrast, the advantage of the proposed PML scheme is
clearly visible at the right-hand side of the simulation box (z =
+50 mm), in particular at t = 0.77 ns. In this case, simply
depositing the particle current in the PML without damping
still leads to significant spurious fields at the right-side bound-
ary (middle column). By contrast, the proposed PML scheme
largely removes these spurious fields (right column).

In order to confirm the advantage of the proposed scheme,
we now quantify the impact of the spurious fields on the beam
itself. Note that, since the centroid position of the beam in x
is offset with respect to the axis of the cavity (see Fig. 4 and
Appendix A 2), the Ex − cBy field in the cavity results in a net
deflection of the beam along x. We quantify this deflection by
computing the mean of the dimensionless momentum along x,
i.e., 〈ux〉 ≡ 〈px〉/mc. The physical deflection due to the cavity
is obtained by running a reference simulation, whereby the
box is made twice larger in the z direction, and by recording
the change in 〈ux〉 between z = −54 mm and z = +54 mm.
The corresponding value is shown as a black dashed line in
Fig. 5.

However, in addition to this physical deflection, the spu-
rious fields seen near the PMLs in Fig. 4 also imprint an
unphysical deflection on the beam. This unphysical deflec-
tion is evaluated by calculating the deflection �〈ux〉 between

FIG. 5. Beam deflection (quantified by the change in the mean
dimensionless momentum of the beam 〈ux〉 = 〈px〉/mc) for the cases
represented in Fig. 4. The unphysical deflection imprinted on the
beam near the left and right PMLs (colored bars) is compared with
the total physical deflection from the entire cavity (dashed line). See
the text for details on the calculation of these different quantities.

z = −54 mm and z = −35 mm (for the left PML) and z =
+35 mm and z = +54 mm (for the right PML) and by
subtracting the corresponding deflection �〈ux〉ref from the
reference simulation in those same sections of the simulation.
The corresponding values, for the different PML algorithms
tested in Fig. 4, are also shown in Fig. 5.

As can be seen, for the standard PML, the unphysical
deflection at the left and right PMLs (green bars) exceeds
the total physical deflection from the whole cavity (black
dashed line). As expected, the PML with undamped current
deposition significantly improves this, but the unphysical de-
flection (blue bars) is still a non-negligible fraction of the total
physical deflection. Finally, the PML with damped deposition
(purple bar) is seen to result in a negligible unphysical de-
flection at the right PML, while it still results in a significant
unphysical deflection at the left PML (purple bars). This is
consistent with the observations of Fig. 4 and with the fact
that the proposed PML algorithm is well adapted for exiting
particles, but not for entering particles. We note that, in prin-
ciple, one could use the undamped PML algorithm on the left
PML and the damped PML algorithm on the right PML in
order to minimize the total spurious effect on the beam.

B. Laser-wake-field acceleration

We now consider simulations of a laser-driven plasma ac-
celerator [15] in the blowout regime [16]. In the simulations
that we perform, an intense ultrashort laser pulse propagates
through an underdense plasma and drives a nonlinear plasma
wakefield. A moving window is used to follow the pulse as it
propagates. Snapshots of the simulations are shown in Fig. 6
for two different values of the laser amplitude: a0 = 2 (top)
and a0 = 3 (bottom). The other simulation parameters are
summarized in Sec. VI.
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FIG. 6. Shown on the left are colormaps of the transverse magnetic field By in the simulation box. The arrows represent the velocity vectors
of a sample of the plasma electrons that were expelled by the laser driver. The gray contour lines indicate the position of the laser driver itself.
The black dashed lines correspond to the transverse boundaries of the actual simulation box and the beginning of the PML cells. (In the PML
cells, we show the sum of the split components of By.) The purple dotted lines represent the transverse limits of the plasma that is injected
in front of the laser beam in the simulation. (As is often the case in this type of simulation, some amount of vacuum was left between the
PML and the plasma.) The red dashed line corresponds to the position of the lineout shown on the right. The different colormaps correspond
to different PML algorithms as well as to a reference case (rightmost column) where the simulation box was two times wider in x and y.
(The colormap does not show the full simulation box in this case.) Shown on the right are lineouts of the focusing field Ex − cBy, close to
the axis, for the different PML algorithms. The upper and lower halves of this figure correspond to laser amplitude values of a0 = 2 and 3,
respectively.
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In this configuration, it is common for the head of the laser
pulse to progressively diffract and thus to reach the transverse
boundaries of the simulation box, in grazing incidence. There-
fore, PMLs are often used as transverse boundary conditions
so as to prevent the diffracting laser field from spuriously
reflecting back into the simulation box.

At the same time, in the blowout regime, a fraction of
the plasma electrons also reach the transverse boundary, after
being violently expelled by the ponderomotive force of the
laser driver. A sample of these plasma electrons is represented,
for instance, in Fig. 6, along with their velocity vector. As
can be seen, these plasma electrons are concentrated in a
well-defined stream, which impacts the transverse boundary
at z � 160 (upper half) or z � 170 μm (lower half). As these
electrons enter the PML region, they generate a spurious elec-
tromagnetic radiation which reflects back towards the axis,
as seen again in Fig. 6. For the standard PML scheme (top
left colormap) and the PML scheme with particle deposition
without damping (top right colormap), this spurious field is
quite strong and it distorts the structure of the fields inside
the plasma bubble. This distortion is particularly visible in the
lineouts of Ex − cBy, on the right side of Fig. 6. This quantity
corresponds to the focusing field that a relativistic electron
beam would experience if it were copropagating inside the
plasma bubble. Therefore, any distortion of this focusing field
can have implications for the preservation of ultralow beam
emittance and for the potential development of a hosing insta-
bility, in a laser-wake-field accelerator.

By contrast, when damping the deposited current in the
PML (bottom left colormap), this spurious distortion is either
practically suppressed (upper half in Fig. 6, corresponding
to a0 = 2) or at least significantly mitigated (lower half in
Fig. 6, corresponding to a0 = 3). This can be seen in particular
by comparing this case with the reference case (bottom right
colormap), in which the simulation box is two times wider in
x and y (compared with the parameters of Sec. VI) and thus
avoids the artifacts associated with jets of electrons crossing
the PML interface. The fact that the proposed PML scheme
is less efficient for a0 = 3 (bottom half in Fig. Fig. 6) is most
likely due to the fact that the electrons are impinging on the
PML at a more oblique angle in this case, as can be seen
from the velocity vectors in Fig. 6. (Recall from Sec. IV A
that the proposed PML scheme is most efficient for normally
incident particles.) This motivates further development of this
PML scheme in the future so as to make it more robust to the
incidence angle of the particles.

VI. CONCLUSION

In summary, in this paper we proposed a PML scheme
whereby macroparticles deposit their current into the PML
cells and this current is damped by an optimal coefficient
[Eq. (4)] which minimizes numerical artifacts. It was shown,
mathematically and through single-particle simulations, that
this PML scheme behaves practically as an ideal vacuum open
boundary condition for macroparticles entering the PML in
normal incidence and with a known velocity. In particular,
the proposed scheme suppresses both the spurious static field
and spurious radiation that is usually associated with particles
exiting the simulation box.

This scheme could have applications in various physi-
cal scenarios, including plasma simulations with outflowing
relativistic jets of particles as well as simulations of trains
of particle bunches traveling through complex structures.
Moreover, in the future, the scheme could be applied in the
context of mesh refinement, for algorithms that involve refined
patches surrounded by PMLs [17].

The data that support the findings of this study are openly
available in Zenodo from [18].
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APPENDIX A: SIMULATION PARAMETERS

This section lists the parameters that were used in the
different simulations mentioned in the main text. All simu-
lations were run with the open-source PIC code WarpX [19],
available from [20].

1. Single-particle simulations

In the single-particle tests, a charged particle is initialized
close to the middle of the simulation box, with a velocity
directed towards the PML. The E and B fields are initialized to
zero. In order to ensure ∇ · E = ρ/ε0, a motionless particle of
opposite charge is placed at the initial position of the moving
particle. This motionless opposite-charge particle therefore
produces an associated space charge field in the simulation
box, but its amplitude is low at the position of the PML.

The simulations use the finite-difference Cole-Karkkainen
Maxwell solver [21] with cubic cells (�x = �y = �z), at
the Courant-Friedrichs-Lewy limit (c�t = �z). The current
deposition operation uses the charge-conserving Esirkepov
scheme [22], with cubic particle shape factors (also known as
piecewise cubic spline interpolation). An additional binomial
filter [1] is applied to the deposited current before updating
the fields.

The simulation domain consists of a three-dimensional box
of 128 × 128 × 128 cells, surrounded by PMLs extending
eight cells beyond the boundary. The PML conductivity σ (z)
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is given by

σ (z) = 4ε0c

�z

(
z

6�z

)2

. (A1)

2. Simulations of a rectangular cavity

The simulation of Sec. V A uses the Yee solver [14]
with cubic cells (�x = �y = �z = 1 mm) at the Courant-
Friedrichs-Lewy limit (c�t = �z/

√
3). The cavity is mod-

eled by setting the E and B fields to zero in the cells
covered by the cavity. The current deposition operation uses
the charge-conserving Esirkepov scheme [22], with linear par-
ticle shape factors and an additional binomial filter [1]. The
simulation box consists of 64 × 64 × 108 cells, with PMLs
extending over another ten cells on both sides, in the z direc-
tion. The conductivity in the PMLs is given by

σ (z) = 4ε0c

�z

(
z

10�z

)2

. (A2)

The proton beam consists of 40 nC and is monoenergetic with
a Lorentz factor γ = 479. It has a Gaussian spatial distribution
with a 18.8 mm longitudinal rms size, a 0.2 mm transverse rms
size, and a +5 mm offset in the x direction.

3. Laser-wake-field acceleration simulations

The simulation of Sec. V B uses the Cole-Karkkainen
Maxwell solver [21] with (�x = �y = 0.125 μm and �z =
0.025 μm) at the Courant-Friedrichs-Lewy limit (c�t = �z).
The current deposition operation uses the charge-conserving
Esirkepov scheme [22], with cubic particle shape factors (also
known as piecewise cubic spline interpolation) and an ad-
ditional binomial filter [1]. The simulation box consists of
380 × 380 × 2200 cells, with PMLs extending over another
ten cells at the x and y boundaries. The conductivity in the
PMLs is given by Eq. (A1).

The laser driver has a Gaussian intensity profile with a 6-
μm waist and a 15-fs duration and is polarized along the y
axis. The background plasma has a density of 2 × 1017 cm−3

and is represented with one macroparticle per cell.

APPENDIX B: DERIVATION OF THE DAMPING RATE α(z)
THAT REMOVES SPURIOUS EFFECTS FOR

A PARTICLE IN NORMAL INCIDENCE

1. Statement of the problem

In this Appendix we consider a charged particle propa-
gating along z (normal incidence) at constant speed v, and
crossing the vacuum-PML interface (z = 0) at t = 0. In par-
ticular, the current density j that contributes to the regular
Maxwell equations (z < 0) and PML equations (z > 0) is

⎛
⎝ jx

jy
jz

⎞
⎠ = q δ(x, y, z − vt )

⎛
⎝0

0
v

⎞
⎠. (B1)

In these conditions, if there are no spurious effects at the
vacuum-PML interface, we expect the fields in the physical

domain (z < 0) to be those of a relativistic particle in infinite
vacuum [23],

⎛
⎝Ex

Ey

Ez

⎞
⎠ = γ q

4πε0

1

r′3

⎛
⎝ x

y
z − vt

⎞
⎠ ∀z < 0, (B2a)

⎛
⎝Bx

By

Bz

⎞
⎠ = γ vq

4πε0c2

1

r′3

⎛
⎝−y

x
0

⎞
⎠ ∀z < 0, (B2b)

with r′ = [x2 + y2 + γ 2(z − vt )2]1/2. In general, however, the
fields in the physical domain do not correspond to Eq. (B2),
because of spurious reflections at the vacuum-PML interface,
as seen in Fig. 1.

A necessary and sufficient condition for the absence of
reflections at the vacuum-PML interface is that the expression
of E and B inside the PML is continuous with the incident
field (B2) at z = 0. (Note that a similar reasoning concerning
continuity is used when calculating the reflection of plane
waves at the interface between two dielectrics, in classical
electromagnetics [23]. In particular, the case where the trans-
mitted wave is continuous with the incident wave corresponds
to Brewster’s angle and in this case the amplitude of the
reflected wave is zero.)

This condition of continuity would be satisfied, for in-
stance, for the expression of E and B inside the PML,

⎛
⎝Ex

Ey

Ez

⎞
⎠ = α(z)

γ q

4πε0

1

r′3

⎛
⎝ x

y
z − vt

⎞
⎠ ∀z > 0, (B3a)

⎛
⎝Bx

By

Bz

⎞
⎠ = α(z)

γ vq

4πε0c2

1

r′3

⎛
⎝−y

x
0

⎞
⎠ ∀z > 0, (B3b)

under the condition

α(z = 0) = 1. (B4)

The expression (B3) is motivated by physical intuition: If the
current density is damped by a factor α(z) in the PML equa-
tions (1), then we expect the associated fields to be damped
proportionally. There is however no guarantee at this point
that the expression of the fields (B3) is indeed a mathemat-
ical solution of the PML equations (1)–(3). [By contrast, the
expression of the fields in the physical domain (B2) are known
to be a solution of the regular Maxwell equations.]

In Appendixes B 2 and B 3 we search for the conditions on
α(z) under which Eq. (B3) is indeed a solution of the PML
equations (1)–(3) and show that this happens only when α(z)
has the expression given by Eq. (4). Note incidentally that this
Appendix does not show that Eq. (4) is the only solution that
suppresses spurious effects at the PML interface, since there
could be expressions of α(z) that suppress spurious effects
when applied in Eq. (1)–(3), without E and B necessarily
having the form given by Eq. (B3), in the PML.
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2. Formulation in Fourier space

Here we search for the conditions under which the ansatz
fields (B3) satisfy the PML equations (1)–(3). We note that
this is equivalent to searching for the conditions under which
the Fourier transform of Eq. (B3) satisfies the Fourier trans-
form of Eqs. (1)–(3). The formulation in Fourier space is
preferred here, since it simplifies calculations and avoids the
need to deal with derivatives and singularities at the exact
position of the particle.

Here we use the following definition for the Fourier trans-
form in x, y, and t :

F̂ (kx,ky, z, ω) =
∫

dt dx dy e−ikxx−ikyy+iωt F (x, y, z, t ),

(B5)

F (x,y, z, t ) = 1

(2π )3

∫
dω dkxdkyeikxx+ikyy−iωt F̂ (kx, ky, z, ω).

(B6)

With this definition, the Fourier transform of the PML equa-
tions (1)–(3) [with j given by the single-particle expression
(B1)] is

−iωÊxy = c2ikyB̂z, (B7a)

−iωÊxz = −c2∂zB̂y − σ (z)

ε0
Êxz, (B7b)

−iωÊyz = c2∂zB̂x − σ (z)

ε0
Êyz, (B7c)

−iωÊyx = −c2ikxB̂z, (B7d)

−iωÊz = c2(ikxB̂y − ikyB̂x ) − α(z)q

ε0
eiωz/v, (B7e)

−iωB̂xy = −ikyÊz, (B8a)

−iωB̂xz = ∂zÊy − σ (z)

ε0
B̂xz, (B8b)

−iωB̂yz = −∂zÊx − σ (z)

ε0
B̂yz, (B8c)

−iωB̂yx = ikxÊz, (B8d)

−iωB̂z = −(ikxÊy − ikyÊx ), (B8e)

Êx = Êxy + Êxz, (B9a)

Êy = Êyz + Êyx, (B9b)

B̂x = B̂xy + B̂xz, (B9c)

B̂y = B̂yz + B̂yx. (B9d)

The Fourier transform of the ansatz fields in the PML (B3) is
(see Sec. VI for a demonstration)

⎛
⎜⎝
Êx

Êy

Êz

⎞
⎟⎠ = −iα(z)

q

ε0v

eiωz/v

[k2
x + k2

y + ω2/(γ v)2]

⎛
⎝ kx

ky

ω/γ 2v

⎞
⎠,

(B10a)⎛
⎜⎝
B̂x

B̂y

B̂z

⎞
⎟⎠ = −iα(z)

q

ε0c2

eiωz/v

[k2
x + k2

y + ω2/(γ v)2]

⎛
⎝−ky

kx

0

⎞
⎠.

(B10b)

3. Condition on α(z)

From the above expressions, it can be seen that the ansatz
fields in Fourier space (B10) automatically satisfy the longi-
tudinal component of the PML equations (B7e) and (B8e). In
addition, inserting Eq. (B10) into the other equations of (B7)
and (B8) provides the expression of the split components of E
and B,⎛

⎜⎜⎜⎝
Êxy

Êxz

Êyz

Êyx

⎞
⎟⎟⎟⎠ = −iα(z)

q

ε0v

eiωz/v

[k2
x + k2

y + ω2/(γ v)2]

⎛
⎜⎜⎝

0
χ (z)kx

χ (z)ky

0

⎞
⎟⎟⎠,

(B11)
⎛
⎜⎜⎝
B̂xy

B̂xz

B̂yz

B̂yx

⎞
⎟⎟⎠ = −iα(z)

q

ε0v2

eiωz/v

[k2
x + k2

y + ω2/(γ v)2]

⎛
⎜⎜⎝

ky/γ
2

−χ (z)ky

χ (z)kx

−kx/γ
2

⎞
⎟⎟⎠,

(B12)

where

χ (z) ≡ iω + v
α

dα
dz

iω − σ
ε0

. (B13)

In order to show that the ansatz fields (B10) satisfy the PML
equations, it now suffices to show that (B10)–(B12) satisfy the
remaining set of PML equations (B9). It is easy to show that
Eq. (B9) is indeed satisfied if and only if χ (z) = 1, i.e., if and
only if

dα(z)

dz
= −σ (z)

ε0v
α(z). (B14)

The solution to this differential equation, with the continuity
condition α(0) = 1 [see Eq. (B4)], is indeed the expression
given in Eq. (4).

APPENDIX C: FOURIER TRANSFORM OF THE FIELDS
ASSOCIATED WITH A RELATIVISTIC PARTICLE

It is well known that, in three dimensions, the Fourier
transform of a 1/r field has the form (see, e.g., [24])∫

R3
dX

1

|X |e−iK·X = 4π

K2 . (C1)

Multiplying on both sides by −iK, using integration by parts

−
∫
R3

dX
(

∂

∂X
1

|X |
)

e−iK·X = −i
4πK

K2 , (C2)
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and then carrying out the derivative and using the vector

notation X = (
X1
X2
X3

) and K = (
K1
K2
K3

), we obtain

∫∫∫
dX1 dX2 dX3

e−i(K1X1+K2X2+K3X3 )

(X 2
1 + X 2

2 + X 2
3 )3/2

⎛
⎝X1

X2

X3

⎞
⎠

= −i
4π

K2
1 + K2

2 + K2
3

⎛
⎝K1

K2

K3

⎞
⎠. (C3)

We now use the change of variable (at fixed z)

X1 = x, X2 = y, X3 = γ (z − vt ), (C4)

K1 = kx, K2 = ky, K3 = ω/γ v (C5)

to obtain

γ v

∫∫∫
dx dy dt

e−i[kxx+kyy+ω(z/v−t )]

[x2 + y2 + γ 2(z − vt )2]3/2

⎛
⎝ x

y
γ (z − vt )

⎞
⎠

= −i
4π

k2
x + k2

y + ω2/(γ v)2

⎛
⎝ kx

ky

ω/γ v

⎞
⎠. (C6)

Finally, by multiplying the third vector component of this
equation by 1/γ and multiplying all components by various
physical factors we obtain

∫∫∫
dx dy dt

γ q

4πε0

eiωt−ikxx−ikyy

[x2 + y2 + γ 2(z − vt )2]3/2

⎛
⎝ x

y
z − vt

⎞
⎠

= −i
q

ε0v

eiωz/v

k2
x + k2

y + ω2/(γ v)2

⎛
⎝ kx

ky

ω/γ 2v

⎞
⎠. (C7)
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