
PHYSICAL REVIEW E 106, 045305 (2022)
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The multiphase lattice Boltzmann flux solver (MLBFS) has been proposed to tackle complex geometries with
nonuniform meshes. It also has been proven to have good numerical stability for multiphase flows with large
density ratios. However, the reason for the good numerical stability of MLBFS at large density ratios has not been
well established. The present paper reveals the relation between MLBFS and the macroscopic weakly compress-
ible multiphase model by recovering the macroscopic equations of MLBFS (MEs-MLBFS) with actual numerical
dissipation terms. By directly solving MEs-MLBFS, the reconstructed MLBFS (RMLBFS) that involves only
macroscopic variables in the computational processes is proposed. The analysis of RMLBFS indicates that by
combining the predictor step, the corrector step of MLBFS introduces some numerical dissipation terms which
contribute to the good numerical stability of MLBFS. By retaining these numerical dissipation terms, RMLBFS
can maintain the numerical stability of MLBFS even at large density ratios.
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I. INTRODUCTION

Based on the Boltzmann equation in statistical mechanics,
the lattice Boltzmann method has been proven to be a simple
and effective method in computational fluid dynamics. By
discretizing the continuous distribution function, the lattice
Boltzmann method [1] was first introduced in 1988 to simulate
fluid flows. Since then, many lattice Boltzmann models for
simulating multiphase flows have been formulated.

The first category is the color-gradient model proposed
by Gunstensen et al. [2]. It introduces an additional two-
phase collision step to reflect interfacial interactions caused
by the surface tension and achieve phase separation. The
second category is the pseudopotential multiphase lattice
Boltzmann model proposed by Shan and Chen [3,4] to simu-
late single-component and multicomponent multiphase flows.
It can achieve phase separation and thermodynamic consis-
tency by introducing interparticle interaction forces. Recently,
the model [5] with the self-tuning equation of state for
multiphase flows was proposed as well. The third category
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is the free energy model proposed by Swift et al. [6]. This
model incorporates the nonideal equation of state into the
pressure tensor of the Navier-Stokes equation to reflect the
interfacial interaction. The fourth category is the interface
tracking model proposed by He et al. [7]. It introduces an-
other distribution function to capture the interface evolution
by solving the phase-field equation.

The four kinds of multiphase lattice Boltzmann models
track phase interfaces with different approaches. However,
these original models are unstable for multiphase flows with
large density ratios (like water-air flow with a density ratio
of about 1000) [8]. Therefore, some improved models were
proposed to deal with the problem, and some typical improved
models are introduced as follows.

In the category of color-gradient models, based on a mod-
ified recoloring operator, Leclaire et al. [9] proposed an
isotropic color gradient model that can handle very high-
density ratios for a stationary bubble immersed in another
fluid by using an isotropic gradient discretization. By adding
a source term to exactly recover the Navier-Stokes equa-
tions, Ba et al. [10] proposed a multiple-relaxation-time
color-gradient lattice Boltzmann model for simulating two-
phase flows with large density ratios. In the category of
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pseudopotential models, Li et al. [11] proposed an improved
forcing scheme for the multiple-relaxation-time pseudopo-
tential lattice Boltzmann model to achieve thermodynamic
consistency, and a large density ratio can be achieved with
the model as a result. In the category of free energy models,
Zheng et al. [12] proposed a Galilean-invariant free energy
model that can be used to model multiphase flows with large
density ratios beyond 1000. In the category of interface track-
ing models, Lee and Lin [13] proposed a stable discretization
scheme based on the idea of directional derivatives. Fakhari
et al. [14] proposed an improved model that does not need to
use biased or mixed difference stencils.

However, all these models mentioned above are based on
the unit lattice framework and therefore share some intrin-
sic drawbacks. The first and the most significant one is the
limitation of a uniform mesh, which makes the treatment
of complex geometry complicated [15,16]. The second one
is that the time step is coupled with the mesh size, which
makes the implementations of the adaptive and multiblock
computations complicated [17,18]. The third one is the extra
memory size to store distribution functions. For example, a
D3Q19 model needs to store extra 19 distribution functions
for each computational node.

To overcome the three drawbacks and achieve good numer-
ical stability at high-density ratios, Wang et al. [19] proposed
a multiphase lattice Boltzmann flux solver (MLBFS) for in-
compressible multiphase flows with large density ratios. It is
a finite volume solver that reconstructs a simplified lattice
Boltzmann model at the mesh interface to calculate pres-
sure and momentum fluxes. The phase interface is captured
by directly solving the macroscopic Cahn-Hilliard equation.
Consequently, the three intrinsic drawbacks of the multiphase
lattice Boltzmann models can be overcome. Simultaneously,
MLBFS shows good numerical stability for multiphase flows
with high-density ratios. Based on the same idea, Shi et al.
[20] extended the original MLBFS for binary fluid flows to
three-component fluid flows.

In the original MLBFS, the computation of the compensa-
tion tensor introduces additional complexity and usually needs
a relatively thicker interface thickness to maintain numerical
stability, which makes the solver complex and inefficient.
By modifying the computation of the interface fluxes, the
improved MLBFS [21] was proposed. It not only avoids the
calculation of the compensation tensor but also can maintain
numerical stability with very thin interface thickness.

In the two MLBFS models proposed by Wang et al.
[19,21], the phase interface is tracked by directly solv-
ing the Cahn-Hilliard equation. To achieve good numerical
stability and accuracy, the fifth-order Weighted Essentially
Non-Oscillatory scheme (WENO) scheme [22] is applied to
discretize the convection term in the Cahn-Hilliard equation.
However, the WENO scheme has a rigorous requirement for
the mesh, which spoils the ability of MLBFS models to tackle
complex geometries by using nonuniform meshes. To achieve
flexibility for complex geometry, Li et al. [23] proposed an
interfacial lattice Boltzmann flux solver (ILBFS) to solve
the Cahn-Hilliard equation, which allows all governing equa-
tions to be solved within the lattice Boltzmann flux solver
framework. Based on ILBFS, Yang et al. [24,25] proposed
the simplified MLBFS with lower computational cost [24]

and an improved MLBFS with better numerical stability and
accuracy [25].

Although these MLBFS models have been successfully
applied to simulate multiphase flows with large density ratios,
the reason for the good numerical stability at large density
ratios has not been well explained. On the one hand, the
procedures to calculate interface fluxes in these models in-
volve only macroscopic variables, which indicates that these
models are macroscopic models intrinsically. On the other
hand, the recovered governing equations of MLBFS models
indicate that they simulate incompressible multiphase flows
with the weakly compressible model. However, it has been
proven that for both macroscopic weakly compressible mod-
els for single-phase flows and multiphase flows, additional
treatments [26,27] are needed, in general, to improve the
numerical stability. Therefore, the present paper aims to show
the relation between MLBFS and the macroscopic weakly
compressible multiphase model and then reveal the reason for
the good numerical stability of MLBFS.

In the present paper, macroscopic equations of MLBFS
(MEs-MLBFS) are derived first by approximating its actual
computational process. Unlike the recovered macroscopic
equations, which aim to recover the standard governing equa-
tions, given by Wang et al. [19], the present MEs-MLBFS
retain the discretized macroscopic equations of the predictor
step to analyze the actual numerical dissipation terms. By
solving MEs-MLBFS with a finite volume scheme, the recon-
structed MLBFS (RMLBFS) is proposed. The reason for the
good numerical stability of MLBFS at large density ratios is
analyzed by investigating the numerical dissipation terms in
MEs-MLBFS.

The remainder of this paper is organized as follows. Sec-
tion II introduces MLBFS. Section III derives MEs-MLBFS
and proposes RMLBFS. Section IV analyzes the reason for
the good numerical stability of MLBFS. In Sec. V, six
benchmark tests are simulated to validate RMLBFS. Finally,
conclusions are given in VI.

II. MULTIPHASE LATTICE BOLTZMANN FLUX SOLVERS

A. Governing equations of incompressible multiphase flow

The macroscopic governing equations for simulations of
incompressible multiphase flows recovered by the lattice
Boltzmann model [13] are

∂t p + ρc2
s ∂αuα = 0, (1)

∂t (ρuα ) + ∂β (ρuαuβ ) = −∂α p + ∂β (μ∂αuβ + μ∂βuα ) + Fα,

(2)

where ρ is the fluid density, uα is the velocity, p is the pressure,
Fα is the forcing term, and subscripts α and β are the coor-
dinate components. The Cahn-Hilliard equation is applied to
capture the phase interface, which can be given as

∂tC + ∂α (uαC) = MC∇2μC, (3)

where C is the volume fraction of the heavier fluids, MC is the
constant mobility, and μC is the chemical potential determined
by the total free energy of fluid-fluid or fluid-wall interfaces.
The local density ρ and kinematic viscosity υ are determined
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FIG. 1. The reconstructed lattice Boltzmann model at the
interface.

by the heavier (subscript H) and lighter (subscript L) fluids:

ρ = ρHC + (1 − C)ρL, 1/υ = C/υH + (1 − C)/υL. (4)

The total free energy is given as

FE (C,∇C) =
∫

V

[
E0(C) + κ

2
|∇C|2

]
dV +

∫
S
ϕ(CS ) dS,

(5)

where E0(C) is the bulk free energy defined as E0(C) =
λC2(C − 1)2, λ and κ are fixed parameters, and ϕ(CS ) is the
wall free energy per unit area. For the equilibrium state, the
total free energy is minimized, and therefore the chemical
potential μC of the inside fluid can be determined by

μC = −∂E0

∂C
− κ∇2C = 2λC(C − 1)(2C − 1) − κ∇2C.

(6)

Once the thickness of the interface ξ and the interfacial ten-
sion force σ are given, parameters λ and κ can be determined
by

σ =
√

2κλ/6, κ = λξ 2/8. (7)

The expression of the surface tension force can be written as

FSα = −C∂αμC . (8)

For a solid-fluid boundary, first, to ensure the mass conserva-
tion law, the boundary condition for μC at the wall is given
as

nα∂αμC |wall = 0, (9)

where nα is the unit outer normal vector. Second, to minimize
the total free energy contributed by the specified wall free
energy, the boundary condition for C can be given as

nα∂αC|wall = ε
(
Cwall − C2

wall

)√
2λ/κ , (10)

where ε is related to the equilibrium contact angle θ eq at the
three-phase contact line through

cos θ eq = −ε. (11)

B. MLBFS

In the original MLBFS [21], the phase-field equation is not
solved in the framework of the lattice Boltzmann flux solver.
Later ILBFS [23] for the phase-field equation was proposed.
In the present paper, to unify the computational scheme, the
MLBFS used for analysis is a combination of MLBFS [21] for
pressure and Navier-Stokes equations and ILBFS [23] for the
phase-field equation. The discretized governing equations of
MLBFS are

∂ p

∂t
+ 1

�V

∑
k

Rα�Sknkα = uα∂α

(
ρc2

s

)
, (12)

∂
(
ρuαc2

s

)
∂t

+ 1

�V

∑
k

�αβ�Sknkα = Fαc2
s , (13)

∂C

∂t
+ 1

�V

∑
k

Qα�Sknkα = 0, (14)

where Rα , �αβ , and Qα are interface fluxes, cs is the sound
speed, �V is the control volume, subscript k denotes the
kth interface of the control volume, �Sk is the area of the
kth interface, and nkα is the outer normal vector of the kth
interface. The detailed procedures to calculate interface fluxes
through reconstructing a local lattice Boltzmann model are
introduced as follows.

(a) Reconstruction of the local lattice Boltzmann model:
As shown in Fig. 1, a unit lattice of the D2Q9 model is
constructed at the interface center. The discrete velocities of
the D2Q9 model are

D2Q9 : ei

=
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
c.

(15)

As to 3D cases, the D3Q19 model is adopted and the discrete
velocities are

D3Q19 : ei =
⎡
⎣0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 1 1 1 −1 −1

⎤
⎦c.

(16)

(b) Calculation of the distribution functions at (xS − eiδt, t ): The interpolation scheme to calculate p, uα and C at xS − eiδt is

φ =

⎧⎪⎨
⎪⎩

φL + ∇φL · (xS − eiδt − xL ) xS − eiδt at the left cell
φR + ∇φR · (xS − eiδt − xR) xS − eiδt at the right cell
0.5[φL + ∇φL · (xS − eiδt − xL )]
+0.5[φR + ∇φR · (xS − eiδt − xR)] xS − eiδt at the interface,

(17)
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where φ denotes an arbitrary variable, and the subscripts S,
L, and R denote the variables at the interface, left cell, and
right cell, respectively. The partial derivatives at cell centers
are calculated by the discretized Gauss theorem

�V ∂αφ =
∑

k

φS�Sknkα. (18)

The macroscopic variables at the interface in Eq. (18) are
obtained by a linearized interpolation

φS = φL|xR − xS|
|xR − xS| + |xL − xS|

+ φR

(
1 − |xR − xS|

|xR − xS| + |xL − xS|
)

. (19)

Once the macroscopic variables at xS − eiδt are obtained,
the equilibrium pressure distribution functions f eq

i (xS −
eiδt, t ), the auxiliary equilibrium pressure distribution func-
tions f eq_m

i (xS − eiδt, t ), and the equilibrium volume fraction
distribution functions geq

i (xS − eiδt, t ) are respectively calcu-
lated by

f eq
i = wi[p + ρ�(uα )]

= wi

{
p + ρc2

s

[
eiαuα

c2
s

+ (eiαuα )2

2c4
s

− uαuα

2c2
s

]}
, (20)

f eq_m
i (x − eiδt ) = wi{p(x − eiδt ) + ρ(x)�[uα (x − eiδt )]},

(21)

geq
i =

{
wi

(
AμC + C eiαuα

c2
s

)
, i �= 0

C − AμC + w0AμC, i = 0
, (22)

where � is a function of uα defined in Eq. (20), A is an
adjustable parameter, cs is the sound speed, and cs

2 = c2/3
for the present D2Q9 and D3Q19 models. In the present paper,
A = MC/(0.5c2

s δt ) is adopted for all cases.
(c) Calculation of the equilibrium distribution functions at

(xS, t + δt ): The streaming process of the lattice Boltzmann
model is implemented to get the distribution functions

fi(xS, t + δt ) = f eq
i (xS − eiδt, t ), (23)

gi(xS, t + δt ) = geq
i (xS − eiδt, t ). (24)

The predicted variables at (xS, t + δt ) are determined by

p∗ =
∑

i

fi(xS, t + δt ) =
∑

i

f eq
i (xS − eiδt, t ), (25)

ρ∗u∗
αc2

s =
∑

i

fi(xS, t + δt )eiα =
∑

i

f eq
i (xS − eiδt, t )eiα,

(26)

C∗ =
∑

i

gi(xS, t + δt ) =
∑

i

geq
i (xS − eiδt, t ), (27)

μ∗
C (xS, t + δt ) =

∑
i

wiμC (xS − eiδt, t ). (28)

f eq
i (xS, t + δt ) and geq

i (xS, t + δt ) thus can be determined by
the predicted variables through Eqs. (20) and (22), respec-
tively.

(d) Calculation of the interface fluxes:

Rα =
∑

i

f eq
i (xS, t + δt )eiα, (29)

�αβ =
∑

i

{
f eq
i (xS, t + δt ) − (τ f − 0.5)

[
f eq
i (xS, t + δt )

− f eq_m
i (xS − eiδt, t )

]}
eiαeiβ, (30)

Qα =
∑

i

{
geq

i (xS, t + δt ) − (τg − 0.5)
[
geq

i (xS, t + δt )

−geq
i (xS − eiδt, t )

]}
eiα, (31)

where τ f is the relaxation time related to the kinematic vis-
cosity

υ = μ

ρ
= (τ f − 0.5)c2

s δt, (32)

τg is the relaxation time related to the constant mobility

MC = (τg − 0.5)Ac2
s δt . (33)

III. CONSTRUCTION OF RMLBFS

In this section, MEs-MLBFS are derived in part A, while
RMLBFS is constructed in part B.

A. MEs-MLBFS

By using the second-order Taylor series expansion,
f eq
i (xS − eiδt, t ) and geq

i (xS − eiδt, t ) can be expanded as

f eq
i (xS − eiδt, t ) = f eq

i − eiαδt∂α f eq
i + 0.5δt2eiαeiβ∂α∂β f eq

i

+ O(δt3), (34)

geq
i (xS − eiδt, t ) = geq

i − eiαδt∂αgeq
i + 0.5δt2eiαeiβ∂α∂βgeq

i

+ O(δt3). (35)

The equilibrium distribution functions f eq
i and geq

i satisfy∑
i

f eq
i = p,

∑
i

f eq
i eiα = ρuαc2

s ,

∑
i

f eq
i eiαeiβ = pc2

s δαβ + ρc2
s uαuβ,

∑
i

f eq
i eiαeiβeiγ = ρc4

s (uαδβγ + uβδαγ + uγ δαβ ), (36)

∑
i

geq
i = C,

∑
i

geq
i eiα = uαC,

∑
i

geq
i eiαeiβ = AμCc2

s δαβ.

(37)

Substituting Eqs. (34) and (36) into Eqs. (25) and (26), the
predicted p and ρuα at the interface are

p∗ = pn − ∂α

(
ρuαc2

s

)n
δt + 1

2
c2

s δt2∂α∂β (ρuαuβ + pδαβ )n

+ O(δt3), (38)

(
ρuαc2

s

)∗ = (
ρuαc2

s

)n − c2
s δt∂β (ρuαuβ + pδαβ )n

+ 0.5c4
s δt2∂β[∂β (ρuα ) + ∂α (ρuβ )

+ ∂γ (ρuγ )δαβ]n + O(δt3), (39)
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where the superscripts n and ∗ denote the variables at time
step n and the predicted variables, respectively. The predicted
and updated variables are variables on interface centers at time
t + δt and cell centers at time t + �t , respectively. Substitut-
ing Eqs. (35) and (37) into Eq. (27), the predicted C at the
interface is
C∗ = Cn − δt∂α (uαC)n + 0.5Ac2

s δt2∂α∂β (μCδαβ )n + O(δt3).

(40)

Similarly, the predicted μC at the interface is
μ∗

C = μn
C + 0.5Ac2

s δt2∂α∂β (μCδαβ )n + O(δt3). (41)
By using the second-order Taylor series expansion,

f eq_m
i (xS − eiδt, t ) = f eq_m

i − eiαδt[wi∂α p + wiρ∂α�i(uα )]

+ 0.5eiαeiβδt2[wi∂α∂β p

+ wiρ∂α∂β�i(uα )] + O(δt3). (42)
The auxiliary equilibrium distribution functions f eq_m

i satisfy∑
i

f eq_m
i = p,

∑
i

f eq_m
i eiα = ρuαc2

s ,

∑
i

f eq_m
i eiαeiβ = pc2

s δαβ + ρc2
s uαuβ,

∑
i

f eq_m
i eiαeiβeiγ = ρc4

s (uαδβγ + uβδαγ + uγ δαβ ). (43)

The auxiliary functions �i(uα ) satisfy∑
i

�i(uα ) = 0,
∑

i

wi�i(uα )eiα = ρuαc2
s ,

∑
i

wi�i(uα )eiαeiβ = ρuαuβc2
s ,

∑
i

wi�i(uα )eiαeiβeiγ = ρc4
s (uαδβγ + uβδαγ + uγ δαβ ).

(44)

Substituting Eq. (36) into Eq. (29) leads to the pressure flux

Rα = (
ρuαc2

s

)∗
. (45)

Substituting Eqs. (42), (43), and (44) into Eq. (30) leads to the
momentum flux

�αβ =
∑

i

eiαeiβ
{
(1.5 − τ f ) f eq

i (xS, t + δt ) + (τ f − 0.5)

× [
f eq_m
i − eiγ δt (wi∂γ p + wiρ∂γ �i ) + O(δt2)

]}
= (

ρuαuβc2
s + pδαβc2

s

)∗ − {
ρυc2

s [∂βuα + ∂αuβ

+ ∂γ uγ δαβ]
}n − (τ f − 0.5)

[(
ρuαuβc2

s + pc2
s δαβ

)∗

− (
ρuαuβc2

s + pc2
s δαβ

)n] + O(δt2), (46)

where υ = (τ f − 0.5)c2
s δt . Substituting Eqs. (35) and (37)

into Eq. (31) leads to the volume fraction flux

Qα =
∑

i

eiα
{
geq

i (xS, t + δt ) − (τg − 0.5)
[
geq

i (xS, t + δt )

− geq
i (xS, t ) + eiβδt∂βgeq

i (xS, t ) + O(δt2)
]}

= (uαC)∗ − MC (∂αμC )n − (τg − 0.5)[(uαC)∗ − (uαC)n]

+ O(δt2), (47)

FIG. 2. The reconstructed unit lattice at the interface.

where MC = (τg − 0.5)Ac2
s δt . Substituting Eqs. (45), (46),

and (47) into Eqs. (12), (13), and (14), respectively, we can
obtain the macroscopic equations of the corrector step

∂t p = −∂α

(
ρuαc2

s

)∗ + uα∂α

(
ρc2

s

)
, (48)

∂t
(
ρuαc2

s

) = − c2
s ∂β (ρuαuβ + pδαβ ) + ρυc2

s ∂β[∂βuα + ∂βuα

+ ∂γ uγ δαβ] + (τ f − 1.5)c2
s [∂β (ρuαuβ + pδαβ )∗

− ∂β (ρuαuβ + pδαβ )], (49)

∂tC = − ∂α (uαC) + MC∂α∂β (μCδαβ )

+ (τg − 1.5)[∂α (uαC)∗ − ∂α (uαC)]. (50)

In the present paper, Eqs. (38), (39), (40), (48), (49), and (50)
are labeled by MEs-MLBFS.

B. RMLBFS

By directly solving MEs-MLBFS with the finite volume
scheme, RMLBFS can be constructed. It should be noted
that MLBFS uses the staggered mesh where the predictor
and corrector steps are implemented on the reconstructed unit
lattice at the interface and cell centers, respectively. It has
been proven that it is essential to restrain pressure oscillation
for incompressible single-phase flows [28] (can be considered
as special cases in multiphase flows). Therefore, the stag-
gered mesh is also adopted for RMLBFS. Referring to the
discretization scheme of MLBFS, RMLBFS is also solved
through the predictor and corrector steps. The illustration is
based on a 2D case. The computational procedures of inter-
face fluxes can be summarized as follows.

(a) A unit lattice illustrated in Fig. 2 is reconstructed as
well. Note that the local coordinate is adopted for the recon-
structed unit lattice to ensure the lattice symmetricity about
the interface. Then the variables at the nine lattice nodes are
interpolated by Eqs. (17), (18), and (19).

(b) Predictor step: Equations (38)–(41) without O(δt2) are
discretized on the unit lattice by the least-squares finite dif-
ference method to obtain the predicted variables p∗, u∗

α , C∗,
and μ∗

C at the interface. The detailed discretization scheme
of the least-squares finite difference method can be found in
Ref. [29].
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(c) Corrector step: The interface fluxes at cell centers can
be obtained by

Rα = (
ρuαc2

s

)∗
, (51)

�αβ = c2
s

(
ρuαuβ + ρc2

s δαβ

)n − ρυc2
s [∂βuα + ∂βuα

+ ∂γ uγ δαβ]n − (τ f − 1.5)c2
s [(ρuαuβ + pδαβ )∗

− (ρuαuβ + pδαβ )n], (52)

Qα = (uαC)n − MC (∂αμC )n − (τg − 1.5)[(uαC)∗ − (uαC)n].

(53)

Then the variables can be updated by solving Eqs. (48) to
(50). Note that since the discretization scheme is of second-
order accuracy, RMLBFS is a second-order approximation of
MLBFS.

IV. THE REASON FOR THE GOOD NUMERICAL
STABILITY OF MLBFS

Since MLBFS simulates incompressible multiphase flows
by using the weakly compressible model, MLBFS should in-
troduce some additional treatments to achieve good numerical
stability. Therefore, this section analyzes the reason for the
good numerical stability of MLBFS.

It can be seen from MEs-MLBFS that for δt = 0, MEs-
MLBFS degenerate to

∂t p + ρc2
s ∂αuα = 0, (54)

∂t
(
ρuαc2

s

) = − ∂β

(
ρuαuβc2

s + pc2
s δαβ

)
+ μc2

s ∂β[∂αuβ + ∂βuα + uγ δαβ], (55)

∂tC = −∂α (uαC) + ∂α[MC∂β (μCδαβ )], (56)

which are the standard macroscopic governing equations, i.e.,
Eqs. (1), (2), and (3). In general, directly solving the weakly
compressible model exhibits numerical instability.

When δt �= 0, the predictor step of MEs-MLBFS
introduces additional terms 0.5c2

s δt∂α∂β (ρuαuβ + pδαβ )n

to the pressure equation and fixed viscous terms
0.5c4

s δt2∂β[∂β (ρuα ) + ∂α (ρuβ ) + ∂γ (ρuγ )δαβ]n to the
momentum equation. The corrector step also includes some
additional terms. The recovered macroscopic pressure and
momentum equations of the corrector step in MEs-MLBFS
are

∂t p = −ρc2
s ∂α (uα ) + c2

s δt∂α∂β (ρuαuβ + pδαβ ) + O(δt2),

(57)

∂t
(
ρuαc2

s

) = − c2
s ∂β (ρuαuβ + pδαβ ) + ρυc2

s ∂β[∂βuα + ∂βuα

+ ∂γ uγ δαβ] + (τ f − 1.5)c2
s [∂β (ρuαuβ )∗

− ∂β (ρuαuβ )] + (1.5 − τ f )c4
s δt∂α∂β (ρuβ )

+ O(δt2). (58)

It can be seen that for both the predictor and corrector steps,
there are pressure diffusion terms related to ∂α∂β (pδαβ ) in the
pressure equations and bulk viscosity terms related to ∂α∂βuβ

in the momentum equations. Note that the additional terms
and the fixed viscous terms in the predictor step mentioned
above, which correspond to the third-order partial derivatives
in the corrector step, are included in O(δt2) terms here.

It has been proven that the pressure diffusion term is effi-
cient to damp the pressure oscillations inherent to the weakly
compressible model [30], and it is efficient to stabilize com-
putations of both single-phase [30] and multiphase flows [31].
The viscous terms also contribute to damping the pressure
oscillations. Numerical experiments [32] confirm that sound
waves experience the correct dissipation due to the intended
bulk and shear viscosities.

To investigate the effect of these dissipation terms in stabi-
lizing computation, first, the stable droplet is simulated. In the
computational domain [−L/2, L/2 ] × [−L/2, L/2 ], there is
a liquid droplet of radius R0 in the center while the remaining
domain is filled with gas. To avoid the influence of the dis-
cretization scheme, the first-order explicit time discretization
scheme is adopted for all models in the present section.

First, the numerical stability of three models, i.e., MLBFS,
RMLBFS, and the nondissipative model which is RMLBFS
at δt = 0, are investigated. The parameters of the liquid and
gas are labeled by subscripts H and L, respectively. The fixed
parameters include σ = 0.001, ξ = 4, ρH = 1, μH = 0.01,
R0 = 0.2L, MC = 0.1, δt = 0.5, �t = 0.5 while the density
ratio Rρ = ρH/ρL and viscosity ratio Rμ = μH/μL are both
in a large range from 1 to 1000. A uniform mesh of size
200 × 200 is adopted for all test cases. Initially, the phase field
is set as

C(x, y) = 0.5 − 0.5tanh[2(
√

x2 + y2 − R0)/ξ ]. (59)

Figure 3 shows that MLBFS and RMLBFS can get con-
vergent results in a large range of Rρ and Rμ. In contrast, the
nondissipative model is divergent in all test cases. It can also
be seen that the stable parameter range of RMLBFS matches
well with that of MLBFS. The comparison indicates that the
numerical dissipation terms involved in MLBFS are essential
to stabilizing computation. Without these dissipation terms,
the results are found to be unstable. On the contrary, with
these numerical dissipation terms, good numerical stability at
high density and dynamic viscosity ratios can be achieved by
MLBFS and RMLBFS.

Furthermore, to confirm whether the numerical dissipation
terms in the predictor step or the corrector step are the main
reason for the good numerical stability, the numerical stability
of the reduced RMLBFS, which removes the numerical dissi-
pation terms in the predictor step of RMLBFS, is investigated.
The macroscopic equations of the predictor step in the reduced
RMLBFS are given as

p∗ = pn − ρc2
s (∂αuα )nδt, (60)

(
ρuαc2

s

)∗ = (
ρuαc2

s

)n − c2
s δt∂β (ρuαuβ + pδαβ )n, (61)

C∗ = Cn − δt∂α (uαC)n + 0.5Ac2
s δt2∂α∂β (μCδαβ )n. (62)

Compared with the macroscopic equations of the predictor
step in RMLBFS, the second-order partial derivatives that
contain the pressure diffusion and viscous terms are removed
in Eqs. (60) to (62). The macroscopic equations of the cor-
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FIG. 3. Stability of MLBFS (a), RMLBFS (b), and the nondissipative model (c) for simulating a stable droplet in the gas. The blue circle
indicates stable and the red cross indicates unstable solutions.

rector step in the reduced RMLBFS are the same as those
of RMLBFS, i.e., Eqs. (51) to (53). The computational pro-
cedures and dicretization scheme of the reduced RMLBFS
follow those of RMLBFS. The corresponding macroscopic
pressure and momentum equations of the reduced RMLBFS
can be rewritten as

∂t p = −ρc2
s ∂α (uα ) + c2

s δt∂α∂β (ρuαuβ + pδαβ ), (63)

∂t
(
ρuαc2

s

) = − c2
s ∂β (ρuαuβ + pδαβ ) + ρυc2

s ∂β[∂βuα + ∂βuα

+ ∂γ uγ δαβ] + (τ f − 1.5)c2
s [∂β (ρuαuβ )∗

− ∂β (ρuαuβ )] + ∂α

[
ρ(1.5 − τ f )c4

s δt∂βuβ

]
.

(64)

The differences between the recovered macroscopic pressure
and momentum equations of the corrector step in RMLBFS
and the reduced RMLBFS are O(δt2) terms.

Figure 4 shows the convergence situations of the reduced
RMLBFS at different Rρ and Rμ. It can be seen that the

FIG. 4. Stability of the reduced RMLBFS. The blue circle indi-
cates stable and the red cross indicates unstable solutions.

stable parameter range of the model is the same as those of
MLBFS and RMLBFS. The result indicates that the numerical
dissipation terms in the corrector step rather than the predictor
step are the key point of stabilizing computation.

Furthermore, to test the numerical stability of MLBFS,
RMLBFS, the nondissipative model (RMLBFS at δt = 0),
and the reduced RMLBFS over a wide range of Reynolds
numbers, 2D droplet splashing on a thin film is simulated by
the four models. The physical model is depicted in Fig. 5.
Initially, the liquid droplet of radius R is tangential to the
liquid film surface and moves downward with a velocity U .
The density and dynamic viscosity of the liquid droplet and
the surrounding gas are denoted as (ρH , μH ) and (ρL, μL ),
respectively. This problem is characterized by the Reynolds
number Re and the Weber number We. Their definitions are
given as

Re = 2ρHUR

μH
, We = 2ρHU 2R

σ
. (65)

Since the case is symmetric, only a half domain needs to be
simulated. A uniform mesh of size 1000 × 500 is adopted
for all simulations. The fixed parameters are U = 0.004, δt =
0.5, �t = 0.3, R = 100, ρH = 1, ρH/ρL = 1000, μH/μL =
100, and We = 150, while MC is in the range from 2 to 1000,
and Re is in the range from 20 to 5000. If the model can

FIG. 5. Schematic diagram of the droplet splashing on a thin film.
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FIG. 6. Stability of the nondissipative model (a), MLBFS (b), RMLBFS (c), and the reduced RMLBFS (d) for simulating 2D droplet
splashing on a thin liquid film. The blue circle indicates stable and the red cross indicates unstable solutions.

give a convergent result at T = t
√

g/d = 2, it is thought to
be convergent.

FIG. 7. Schematic diagram of the co-current flow.

The convergence situations of the four models are shown
in Fig. 6. It can be seen that without those dissipation terms,
the nondisspipatice model, i.e., RMLBFS with δt = 0, can-
not obtain convergent results. On the contrary, MLBFS and
RMLBFS with the pressure diffusion and bulk viscosity terms
show obvious improvement in numerical stability. Besides,
the reduced RMLBFS that does not have dissipation terms in
the predictor step has similar numerical stability as RMLBFS.
Once again, the result validates that it is the pressure diffusion
and bulk viscosity terms in the corrector step that contribute
to the good numerical stability of MLBFS.

V. NUMERICAL RESULTS AND DISCUSSIONS

To test RMLBFS further, six test cases are simulated by
RMLBFS in this section. For better accuracy and numerical
stability, the third-order Runge-Kuta scheme is adopted for the
time discretization of RMLBFS for all cases in this section.
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FIG. 8. Velocity profiles of the two-phase co-current flows at different density ratios. (a) Rρ = 10, (b) Rρ = 20, (c) Rρ = 100, and (d) Rρ =
1000.

A. Immiscible two-phase cocurrent flow in a 2D channel

To test the correctness of RMLBFS for multiphase flows
with large density ratios, the immiscible two-phase cocur-
rent flow in a 2D channel driven by an external force Fx is

simulated. The schematic diagram of this case is displayed
in Fig. 7. The area |y − H/2 | � H/2 − a is filled with the
lighter fluid of density ρL and dynamic viscosity μL, while the
area H/2 − a < |y − H/2 | � H/2 is filled with the heavier

FIG. 9. Schematic diagram and the O-type computational mesh of the two-phase Taylor-Couette flows.
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FIG. 10. Comparison of the azimuthal velocity profiles at differ-
ent dynamic viscosity ratios for the two-phase Taylor-Couette flows
in an annular area.

fluid of density ρH and dynamic viscosity μH . A constant
force is imposed on the lighter fluid, and then the system
would come to a steady state. The analytical steady solutions
of the case are

ua =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−Fxa
μH

+ FxH
2μH

)
y 0 � y � a,

− Fx
2μL

y2+FxH
2μL

y+(Fxa2

2μL
−Fxa2

μH
+FxHa

2μH
−FxHa

2μL

)
a<y�H − a,

−(−Fxa
μH

+ FxH
2μH

)
(H − y) H − a < y � H.

(66)

Four different density ratios, Rρ = ρH/ρL = 10, 20, 100,
and 1000, are considered. Other parameters are set as υH =
υL = 0.01, a = 0.25H , ρH = 1, and Fx = 10−9. A fine uni-
form grid of size 3 × 200 is applied for the four cases. Figure 8
shows the velocity profiles at different density ratios. It is
seen that the results given by RMLBFS agree very well with
the corresponding analytical solutions, which verifies the cor-
rectness of RMLBFS for steady multiphase flows with large
density ratios.

B. Two-phase Taylor-Couette flow in an annular area

To show the advantage of RMLBFS in tacking curved
boundary, the two-phase Taylor-Couette flow in an annular
area is considered. The physical model and O-typical body-
fitted mesh used for simulation are depicted in Fig. 9. The
annulus is filled with two fluids, fluid 1 in the area R0 � r �
R1 and fluid 2 in the area R1 < r � R2. The inner bound-
ary of radius R0 has a fixed angular velocity ω, while the
outer boundary of radius R2 is stationary. The steady velocity
field is determined by the dynamic viscosity ratio denoted by
Rμ = μ1/μ2 where μ1 and μ2 are the dynamic viscosities of
fluid 1 and fluid 2, respectively. The corresponding analytical
solutions for this problem at a low Reynolds number are

uθ =
{

A1r + B1/r r � R1

A2r + B2/r r � R1,
(67)

where

A1 =
ω

[
Rμ

(
R2

0

R2
2
− R2

0

R2
1

)
+ R2

0

R2
1

]

Rμ

(
R2

0

R2
2
− R2

0

R2
1

)
+

(
R2

0

R2
1
− 1

) ,

B1 = −ωR2
0

Rμ

(
R2

0

R2
2
− R2

0

R2
1

)
+

(
R2

0

R2
1
− 1

) ,

FIG. 11. Evolution of the fluid interface for droplet splashing on a thin liquid film at Re = 100.
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FIG. 12. Evolution of the fluid interface for droplet splashing on a thin liquid film at Re = 400.

A2 =
Rμ

R2
0

R2
2
ω

Rμ

(
R2

0

R2
2
− R2

0

R2
1

)
+

(
R2

0

R2
1
− 1

) ,

B2 = −RμωR2
0

Rμ

(
R2

0

R2
2
− R2

0

R2
1

)
+

(
R2

0

R2
1
− 1

) .

In the present simulation, a nonuniform mesh of size 160 ×
80 is adopted, and the parameters are set as R0 = 1, R1 = 1.5,
R2 = 2, ω = 0.05. Three different viscosity ratios, Rμ = 1,
0.5, and 0.1, are tested. The inside and outside cylinder sur-
faces are set as the no-slip boundary condition. Figure 10
shows the comparison between the results given by RMLBFS

and the analytical solutions. It can be seen that the present
results at different dynamic viscosity ratios always agree well
with the corresponding analytical solutions, which proves the
flexibility of RMLBFS for the application on nonuniform
meshes.

C. 2D droplet splashing on a thin film

To validate RMLBFS for multiphase flows with large den-
sity ratios and high Reynolds numbers, 2D droplet splashing
on a thin film with large density ratios and high Reynolds
numbers is simulated in this section. The previous study of
this problem [33] shows that the impact radius is an exponen-

FIG. 13. Evolution of the fluid interface for droplet splashing on a thin liquid film at Re = 1000.
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FIG. 14. Evolution of the fluid interface for droplet splashing on a thin liquid film at Re = 2000.

tial function of time. This law has also been validated by the
research of Li et al. [11], Wang et al. [19], and Li et al. [23].

The schematic diagram of this problem is depicted in
Fig. 5, and the detailed description can be seen in Sec. IV.
A uniform mesh of size 1000 × 500 is adopted for all sim-
ulations. Other parameters are set as U = 0.004, R = 100,
ρH = 1, ρH/ρL = 1000, μH/μL = 100, We = 150, while
four different Reynolds numbers 100, 400, 1000, and 2000
are considered to validate RMLBFS for large density ratios
and high Reynolds numbers.

The transient phase fields for Re = 100, 400, 1000, and
2000 are shown in Figs. 11–14, respectively. It can be seen
that as the droplet hits the liquid film, the droplet deforms and
tends to spread. The tendency is hindered by the surrounding
liquid film, and thus the droplet periphery spreads outward

FIG. 15. The transient impact radii at different Reynolds num-
bers for droplet splashing on a thin film.

and is pushed upward by the surrounding film simultaneously.
When the Reynolds number is relatively low (Re = 100), an
outward-moving surface wave can be observed from Fig. 11,
and the splashing is not obvious. As the Reynolds number
increases, obvious liquid splashing can be observed.

To quantify the present results, the transient dimensionless
impact radius is investigated. The impact radius is defined as
the distance from the intersection of the unperturbed droplet
and the unperturbed surface of the liquid layer to the origin
[33]. The transient dimensionless impact radius approxi-
mately satisfies the power law r/(2R) ≈ A

√
Ut/(2R) , where

A is a constant of about 1.0 according to the theoretical predic-
tions [33]. The regularity has also been verified by Wang et al.
[19] and Li et al. [23]. The transient dimensionless impact
radii at different Reynolds numbers as a function of Ut/(2R)
are given in Fig. 15. It can be seen that the present numerical
results roughly satisfy the prediction of the power law, which
confirms the correctness of RMLBFS for large density ratios
and Reynolds numbers.

D. 2D Rayleigh-Taylor instability

In this section, the 2D Rayleigh-Taylor instability problem
is simulated to further validate RMLBFS for multiphase flows
with complex interface evolution. The Rayleigh-Taylor insta-
bility of two fluids under gravity involves complex interface
evolution and has been widely investigated [7,19,23]. In this
problem, the heavier fluid of density ρH floats on a lighter
fluid of density ρL. If the interface is perturbed, such as small
changes of pressure gradient and interface curvature, the inter-
face would collapse owing to the influence of gravity, which
is called Rayleigh-Taylor instability.

The computational domain is set as −d/2 � x � d/2, 0 �
y � 4d . The left and right boundaries are periodic, while the
upper and lower boundaries are set as the nonslip condition.
The problem is characterized by two dimensionless numbers,
i.e., the Reynolds number Re and the Atwood number At.
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FIG. 16. Evolution of the fluid interface for the 2D Rayleigh-Taylor instability problem at Re = 256.

They are respectively defined as

Re =
√

dg · d

υ
, At = ρH − ρL

ρH + ρL
, (68)

where d is the characteristic length. Note that the two fluids
have identical kinematic viscosity υ. Initially, the perturbed

interface is given as

y(x) = 2d + 0.1d cos(2πx/d ). (69)

In the present simulation, a uniform mesh of size 200 × 800
is adopted, At = 0.5 is fixed, and two different Reynolds
numbers, 256 and 2048, are considered. Other simulation
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FIG. 17. Positions and velocities of the spike tip and bubble front for the 2D Rayleigh-Taylor instability problem at Re = 256, together
with those given by Wang et al. [19] and He et al. [7].

parameters are set as ρL = 1 and
√

dg = 0.01. Note that the
time and interface velocity are nondimensionalized, and they
are defined as T = t

√
g/d and v/

√
dg , respectively.

The results at Re=256 are discussed firstly. Figure 16
shows the transient interfaces at different times. It can be seen
that at the early stage, the central heavy fluid falls to form
a spike and the lighter fluid at the two sides rises to form
bubbles. At T = 2, two symmetric roll-ups occur at the spike.
As the evolution continues, the two roll-ups stretch upward,
and a pair of secondary vortices appear at the tails of the
roll-ups. All these observations are in good accordance with
those reported in Refs. [7,19,23]. To quantify and validate the
present results, the positions and velocities of the spike tip
and bubble front obtained by RMLBFS are compared to those
of Wang et al. [19] using MLBFS and He et al. [7] using
a phase-field-based lattice Boltzmann method. As shown in
Fig. 17, good agreement can be observed between the present
results and the reference data [7,19].

As to the results at Re = 2048, it can be seen from Fig. 18
that similar phenomena, like roll-ups and secondary vortices
at Re = 256, can also be observed. However, the interface
shows more complex evolution and interface breakup exists.
The evolution of the interface also matches well those given
by He et al. [7]. Also, the positions and velocities of the spike
tip and bubble front given by RMLBFS are compared with
the results given by He et al. [7] in Fig. 19. Good agreement
can be observed as well. These comparisons validate the abil-
ity of RMLBFS to stimulate transient multiphase flows with
complex interface evolution.

E. 3D Rayleigh-Taylor instability

To show the generality of RMLBFS for both 2D and 3D sit-
uations, the 3D unsteady Rayleigh-Taylor instability problem
is simulated. The problem is characterized by two nondimen-
sional parameters, the Reynolds number Re and the Atwood
number At defined as Eq. (68) as well.

In the present study, the computational domain is set as
−d/2 � x � d/2, −d/2 � y � d/2, 0 � x � 4d . The four

vertical boundaries are periodic, and the upper and lower walls
are set as the no-slip boundary condition. A uniform mesh of
size 128 × 128 × 512 is adopted for simulation. The compu-
tational parameters are set as

√
dg = 0.02, ρL = 1, At = 0.5,

and Re = 1024. Initially, the interface is perturbed by

h(x, y)

d
= 2d + 0.05d

[
cos

(
2πx

d

)
+ cos

(
2πy

d

)]
. (70)

Figure 20 shows the interface shape at different dimension-
less times including T = t

√
g/d = 1, 2, 3, and 4. It can be

seen that the interface stretches first and then roll-ups appear
generally. The lighter fluid rises to form bubbles at the four
corners, while the heavier fluid falls to generate a spike in the
central area. Also, there are four saddle points at the middle of
the four sides. These characteristics and the interface shapes
at different times agree well with the results of He et al. [34]
using the lattice Boltzmann method based on a phase-field
model and Wang et al. [21] using MLBFS.

To validate the results of RMLBFS in quantity, the posi-
tions and velocities of the bubble front, spike tip, and saddle
point obtained by RMLBFS are compared with the reference
data [21,34,35] in Fig. 21. It can be seen that the transient
interface positions match well the reference results of He
et al. [34] using the lattice Boltzmann method based on a
phase-field model, Wang et al. [21] using MLBFS, Lee and
Kim [35] using a projection method. The transient velocities
are in good accordance with the reference results of Wang
et al. [21] using MLBFS. These results verify the ability of
RMLBFS for simulating 3D transient multiphase flows with
complex interface evolution.

F. 3D head-on collisions of binary microdroplets

To test RMLBFS for 3D multiphase flows with large den-
sity ratios, head-on collisions of binary microdroplets are
simulated. The two droplets in the gas have the same diameter
D and opposite velocity of U/2. The computational domain
is −3D � x � 3D, −1.5D � y � 1.5D, −1.5D � z � 1.5D.
On all outside boundaries, Neumann boundary conditions of
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FIG. 18. Evolution of the fluid interface for the 2D Rayleigh-Taylor instability problem at Re = 2048.

zero gradients for all variables are applied. Due to symme-
try, only one-eighth of the whole flow domain needs to be
considered, and a uniform mesh of size 300 × 150 × 150 is
adopted. The problem is characterized by two nondimensional
parameters, the Reynolds number Re and the Weber number
We defined as Eq. (65).

Two cases, which correspond to the experimental situations
of tetradecane droplet collision in nitrogen environment at
1 atm pressure conducted by Qian and Law [36], are simu-
lated. The liquid-gas density ratio is 666, and the dynamic
viscosity ratio is 119 [37]. The initial positions of the two
droplets are (−D, 0) and (D, 0). Other parameters are set as
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FIG. 19. Positions and velocities of the spike tip and bubble front for the 2D Rayleigh-Taylor instability problem at Re = 2048, together
with those given by He et al. [7].

U = 0.004, D = 100. According to the experimental parame-
ters, the Weber number and Reynolds number of the two cases
are We = 32.8, Re = 210.8 and We = 61.4, Re = 296.5, re-
spectively.

Figure 22 shows the transient phase fields on the plane y =
0 at different instants. At a low Weber number 32.8, the two
droplets merge into a large one first. Then the large droplet
stretchs and forms a long liquid cylinder with two rounded
ends. Owing to a relatively large surface tension, the long
liquid cylinder is pulled inwards and remains as one droplet.

This type of collision is classified as the “Coalescence” regime
[36]. As to a large Weber number 61.4, the process in which
the two droplets merge into a large one and form a long liquid
cylinder with two rounded ends can be observed as well. Due
to a relatively small surface tension that cannot pull the two
rounded ends back, the long liquid cylinder breaks up into
three droplets. This type of collision is classified as the “Near
head-on separation” regime [36]. All these characteristics are
consistent with the corresponding experimental results [36].
Also, the transient phase fields given by RMLBFS match well

FIG. 20. Interface morphology for the 3D Rayleigh-Taylor instability at At = 0.5, Re = 1024.
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FIG. 21. Positions and velocities of the bubble front, spike tip, and saddle point for 3D Rayleigh-Taylor instability at At = 0.5, Re = 1024,
together with the reference results of He et al. [34], Wang et al. [21], and Lee and Kim [35].

FIG. 22. The transient phase fields on the plane y = 0 for 3D
head-on collisions of binary micro-droplets.

with those simulated by the axisymmetric multiphase lattice
Boltzmann method [37].

VI. CONCLUSION

MLBFS is a finite volume solver derived from the lat-
tice Boltzmann model to simulate multiphase flows. It
overcomes the limitation of uniform mesh in the lattice
Boltzmann method and has been proven to have good numer-
ical stability for multiphase flows with large density ratios.
The computational procedures and recovered macroscopic
equations indicate that MLBFS is a macroscopic weakly
compressible model. In general, weakly compressible mod-
els need additional treatments to stabilize computation. As a
weakly compressible model, the reasons for the good numer-
ical stability of MLBFS have not been well established. The
present work aims to reveal the relation between MLBFS and
the macroscopic weakly compressible multiphase model and
explain the reason for the good numerical stability of MLBFS
from the macroscopic perspective.

In the present paper, MEs-MLBFS with actual dissipation
terms are derived first by approximating its actual compu-
tational process. By solving MEs-MLBFS with the finite
volume scheme, RMLBFS is constructed. Through detailed
numerical investigations, it is found that by combining the
predictor step, the corrector step of MLBFS introduces some
numerical dissipation terms including pressure diffusion term
and bulk viscosity term. These numerical dissipation terms are
proven to be essential to stabilize computation. By retaining
these numerical dissipation terms, RMLBFS can also achieve
good numerical stability at high density ratios and Reynolds
numbers. The results indicate that these numerical dissipa-
tion terms are the reason for the good numerical stability of
MLBFS.

Furthermore, RMLBFS is validated by several benchmark
problems. Numerical results show that the same as MLBFS,
RMLBFS performs well for both transient and steady multi-
phase flows even at high density ratios and Reynolds numbers.
It further proves the conclusion mentioned above.
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