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Parallel computing for mobilities in periodic geometries
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We examine methods for calculating the effective mobilities of molecules driven through periodic geometries
in the context of particle-based simulation. The standard formulation of the mobility, based on the long-time
limit of the mean drift velocity, is compared to a formulation based on the mean first-passage time of molecules
crossing a single period of the system geometry. The equivalence of the two definitions is derived under
weaker assumptions than similar conclusions obtained previously, requiring only that the state of the system at
subsequent period crossings satisfy the Markov property. Approximate theoretical analyses of the computational
costs of estimating these two mobility formulations via particle simulations suggest that the definition based on
first-passage times may be substantially better suited to exploiting parallel computation hardware. This claim
is investigated numerically on an example system modeling the passage of nanoparticles through the slit-well
device. In this case, the traditional mobility formulation is found to perform best when the Péclet number is
small, whereas the mean first-passage time formulation is found to converge much more quickly when the
Péclet number is moderate or large. The results suggest that, given relatively modest access to modern GPU
hardware, this alternative mobility formulation may be an order of magnitude faster than the standard technique
for computing effective mobilities of biomolecules through periodic geometries.
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I. INTRODUCTION

Microfluidic and nanofluidic devices (MNFDs) are an
emerging class of biotechnologies with various promising
applications in the biological and medical sciences [1–4].
Of these devices, an important subclass of periodic MNFDs
exploits the motion of molecules driven through a periodic
arrangement of geometric features (e.g., by an electric field)
to induce separation by size or other chemical properties.
For instance, some of the first MNFDs used for biomolecular
separation consisted of periodic arrays of micron-scale posts
[5], and work on this type of MNFDs remains an area of
active research and development [6–13]. Variants of the post-
array design with asymmetric obstacle shapes form the basis
of so-called Brownian ratchet devices [14–17]. The slit-well
motif is another important MNFD design, consisting of a
planar confinement with alternating deeper well regions and
shallower slit regions. First pioneered by Han and Craighead
[18] and elaborated upon in a series of subsequent studies
[19–21], the slit-well device has stimulated ongoing research
interest [22–30]. A related MNFD design, the capillary-well
motif, has been developed more recently [31,32]. The dynam-
ics of biomolecules have also been studied experimentally,
theoretically, and numerically in a variety of other periodic
geometries, such as one-, two-, or three-dimensional arrays
of spherical cavities [33–37], channels with periodic bands
of attractive and repulsive zones on their walls [38–41], a
network of interconnected channels named the railroad switch
motif [42], planar confinement with an array of nanopits [43],
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a series of nanopores connected by microchannels [44], and a
periodic sheet of graphene alternating with boron nitride [45].
In fact, even MNFDs whose geometries are uniform in the net
direction of motion, such as those used for microcapillary hy-
drodynamic chromatography [46–49], are (trivially) periodic
in this direction.

When periodic MNFDs are used to separate molecules
according to size or some other chemical property of inter-
est, this is accomplished by coupling that property to the
molecule’s net speed through the device. Specifically, the
transport rate of analytes is usually characterized by the effec-
tive mobility, which is the mean velocity on long timescales
normalized by the magnitude of the applied force-generating
field. In fact, many molecular mixtures of interest (e.g., DNA,
nanoparticles, etc.) exhibit little to no variation in mobility
when driven through free solution as the net force and net
friction scale in direct proportion to one another. To en-
able molecular separation, MNFDs break this symmetry by
exploiting the interplay of drift and diffusion in nontrivial
geometries.

In practice, the design of such devices can be challeng-
ing. One aims to control the coupling between mobility and
molecular characteristics by optimizing design parameters
(such as applied voltage or pressure, solvent composition, and
device geometry) to produce the desired profile of effective
mobilities. Simulations are often a valuable aid in elucidating
the influence of the many design parameters on molecular
transport properties such as mobility.

The most common definition of mobility is

μdirect = lim
t→∞

〈x(t )〉/t

�
, (1)
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where 〈x(t )〉 is the ensemble mean at time t of the center-
of-mass position in the net direction of motion. Here � is a
scalar characterizing the magnitude of the field that is gen-
erating the force driving molecular motion. The choice of �

is context-dependent: for electrically driven motion, � ∼ �V
must characterize the gradient of the applied electric potential
V (see, e.g., Cheng et al. [23]); for pressure-driven motion,
� ∼ �p should indicate the gradient of the applied pressure
p (see, e.g., Ollila et al. [27]); and so on. Equation (1) will
be referred to here as the direct mobility because it is defined
directly in terms of the physical observable it is used to study:
the long-term drift velocity of molecules through the system.

In contrast, the focus of this work is the quantity defined as

μindirect = L

�〈τ1〉 , (2)

where L is the period of the system geometry and 〈τ1〉 denotes
the ensemble mean of the first-passage time across one such
period. Equation (2) will be referred to as the indirect mobility
because it is formulated in terms of observables that can be
measured without directly examining the long-term motion
across many periods. This manuscript includes a careful com-
parison of the direct and indirect mobility formulations.

In fact, the two mobility definitions are equivalent under
certain circumstances. Indeed, several classical theoretical
frameworks imply that limt→∞〈x(t )〉/t = L/〈τ1〉. However,
as reviewed in Appendix A, these results are derived under
fairly strong assumptions. Fick-Jacobs theory (Appendix A 1)
assumes that motion can be reduced to an effective one-
dimensional system, and this approach is typically limited
to weakly driven motion and/or slowly varying geometries.
Kramers theory (Appendix A 2) and related reaction rate the-
ories assume that most degrees of freedom of the system
relax very quickly on the timescale over which the molecule
traverses the distance L along the device.

More generally, one can argue for the equivalence of
the two mobility definitions based on ergodicity. A single
molecule that has crossed a large number k of periods at time
t will have sampled the crossing time for a single period k
times. The long-time mean of this one particle’s k crossing
times will be, by ergodicity, equal to the ensemble mean of the
time to cross a single period, so that t ≈ k〈τ1〉. Conversely, its
position will be roughly x ≈ kL, since it has crossed k periods.
Thus, its mean velocity will be

x

t
≈ kL

k〈τ1〉 = L

〈τ1〉 , (3)

from which the equivalence of Eqs. (1) and (2) follow.
A more detailed derivation of this result is included in

Appendix B and demonstrated numerically on a test prob-
lem in Sec. III A. The equivalence of the two definitions is
proven under the simple hypothesis that the system satisfies
the Markov property on the timescale of crossing from one
period to the next. Specifically, the dynamics of the analyte
between the time it first enters the kth period and the time
it first enters period k + 1 are assumed to depend only on
the state of the analyte at the moment that it first entered
period k. Under this assumption, the limiting form for the
ensemble distribution of x positions can be deduced in closed
form. Correlations between the crossing times in consecutive

periods are appropriately taken into account, and these are
seen to directly affect the effective diffusion coefficient of the
analytes on long timescales.

The equivalence of direct and indirect mobility depends
on one crucial technical requirement: the mean first-passage
time 〈τ1〉 in Eq. (2) must be defined with respect to a par-
ticular stationary distribution. It is argued in Appendix B 2
that this distribution should exist and be unique under typical
conditions. Moreover, a simple Markov chain Monte Carlo
algorithm for estimating this distribution numerically is de-
scribed in Appendix C and tested in Sec. III B.

The limiting behavior of the transport dynamics deduced
in Appendix B enables an approximate convergence rate
analysis of the two mobility formulations included in Ap-
pendix C. It appears that the indirect mobility is better suited
for exploiting the massive parallelization afforded by modern
hardware. Given reasonable access to such hardware, the anal-
ysis suggests that standard computational studies of mobilities
through periodic geometries (such as those conducted in
Refs. [8,13,22,23,27,37,38,40,41,43,45,49]) may be made to
converge up to an order of magnitude more quickly with very
little modification to the underlying simulation algorithms.
The computational advantage of the indirect mobility in the
test case from Sec. II B is verified numerically in Sec. III B.

II. PROBLEM DEFINITION

A. The general case: Transport through a periodic geometry

The physical systems under consideration are those in
which a single molecule is driven through a periodic MNFD.
The molecular motion is stochastic, such that the physical
observables of interest are ensemble averages. Some external
force field (e.g., by an applied voltage) biases the stochastic
motion of the molecule. The mean direction of the molecule’s
center-of-mass motion over long timescales will be called
the x̂ direction. The geometry of the periodic MNFD and
the external force field are both taken to be periodic in the
direction of x̂, with a period of length L. Every interval of
length L in the x̂ direction will be called one period of the
device.

The molecule traveling through the system will be repre-
sented by a finite number of degrees of freedom Ndof , which
specify all information about the system’s state. These would
typically be the positions of all the atoms in the molecule.
In the event of a time-periodic force field, the phase of the
molecule with respect to the period of the force field should
also be considered an auxiliary coordinate. In particular, we
assume that the dynamics of these Ndof degrees of freedom
are well-approximated as Markovian, at least on the timescale
over which the molecule crosses a period of the device.
As reviewed, for instance, by Hänggi et al. [50], coarse-
grained representations can exhibit non-Markovian dynamics
(i.e. memory) even when the underlying system is actually
Markovian at the finest scale. Nonetheless, for the models
commonly used to study periodic MNFDs, this Markovian as-
sumption is either exactly true or a good approximation on the
timescales of interest [8,13,22,23,27,37,38,40,41,43,45,49].

Of the degrees of freedom, the position of the center of
mass in the x̂ direction at time t will be denoted by the random
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FIG. 1. Schematic illustrating the model of nanoparticles in the
slit-well device. (a) A probabilistic graphical model of the Markov
chain model from Appendix B. For the problem described in
Sec. II B, the only auxiliary coordinate is θi = yi, the y coordinate
of the nanoparticle at its first passage to each new period. The distri-
butions of yi+1 and ti,i+1 are each determined entirely by yi. (b) In the
direct mobility formulation, particles are initialized uniformly in the
y direction at the midpoint of a slit (red line) and evolve forward
in time until many periods have been crossed. (c) In the indirect
mobility formulation, particles are also initialized at the red line and
evolve forward in time until a single period has been crossed (blue
line). The shape of the baseline electric field E is denoted by the
black field lines. The field is periodic in the horizontal direction with
period L, such that the field shape is the same in every period of the
device. Diffusive motion against the direction of E is possible in both
mobility formulations.

variable x or x(t ) to make the time dependency explicit. The
remaining degrees of freedom will be called auxiliary coordi-
nates and denoted collectively by the random vector θ or θ (t ).
The original value of x will be fixed to some x0 = 0 at time
t = 0, and the thresholds between consecutive periods will be
located at xi = x0 + iL for each i. The time elapsed between
the molecule’s first arrival at xi and its subsequent first arrival
at xi+1 is denoted ti,i+1. The value of the auxiliary coordinates
at the moment of first contact with xi will be denoted θi.

The proof in Appendix B is based on a Markov chain model
of this general physical scenario. If the underlying molecular
dynamics are Markovian, then the system states at first contact
with each xi form a Markov chain. The Markov chain is
written in Eq. (B2) and illustrated in Fig. 1(a) as a probabilistic
graphical model (i.e., arrows show statistical dependencies).
In particular, the value of the auxiliary coordinates θi at first
contact with xi entirely determines the distributions of the
first-passage time ti,i+1 and of the auxiliary coordinates θi+1

at the first passage into the next period.
Based on an application of the Markov chain central limit

theorem to this Markov chain, the limiting form of the position
distribution ρ[x(t )] at long times t can be deduced. From
there, the equivalence of the the direct [Eq. (1)] and indirect

[Eq. (2)] mobility formulations follows readily. However, this
use of the Markov chain central limit requires that the initial
auxiliary coordinates θ0 be initialized according to a specific
initial distribution. In particular, the initial distribution of aux-
iliary coordinates ρ(θ0) must be chosen such that the auxiliary
coordinates θ1 measured at the first-passage threshold x1 are
distributed according to the same distribution: ρ(θ1) = ρ(θ0).
This choice corresponds to the stationary distribution of the
Markov chain in Eq. (B2); Appendix B 2 includes discussion
regarding its existence and uniqueness.

In principle, the choice of the initial position x0 in the
above description is arbitrary and should not impact the mo-
bility. In practice, however, shifting x0 can have subtle but
important consequences for the numerical determination of
the indirect mobility, as shown in Sec. III B. In particular, x0

affects the nature of the stationary distribution and thereby
controls the computational cost of sampling the initial values
of θ for the indirect mobility calculation.

B. Guiding example: Particles in the slit-well device

As a specific illustration of the general circumstance
described in Sec. II A, this section presents a model of free-
draining nanoparticles traversing the slit-well MNFD under
the influence of an applied electric force [18–30]. In particu-
lar, we will study the same model analyzed by Cheng et al.
[23]. Whereas the slit-well has primarily been studied in the
context of polymer analytes (especially DNA), we will focus
on the more straightforward case of nanoparticle mobilities
as it facilitates a more comprehensive numerical exploration.
The equivalence of the direct and indirect mobilities is demon-
strated numerically for this system in Sec. III A, the task
of sampling the correct stationary distribution is explored in
Sec. III B, and the computational advantages of the indirect
mobility are illustrated in Sec. III C.

The geometry of the system is illustrated in Figs. 1(b) and
1(c). The dimensions are indicated in Fig. 1(b); the period
length L = 8 and the aspect ratios of the slit and well regions
are set to match Cheng et al. [23]. The nanoparticles are mod-
eled as hard spherical particles of diameter a having only two
degrees of freedom: the x and y coordinates of their centers of
mass. The z coordinate of the center of mass is omitted under
the symmetry assumption in the z direction, and rotational
degrees of freedom are also assumed to be negligible. The
applied force field will be held constant in time, so the only
auxiliary coordinate, in this case, is θ = y.

Particle motion will be governed by Brownian dynamics,
i.e., the overdamped Langevin equation

d�x
dt

= −μ0λ∇U +
√

2DR(t ), (4)

where �x = (x, y), μ0 is the free-solution mobility of the
nanoparticles, D is the free-solution diffusion coefficient, R
is a stationary delta-correlated stochastic force with mean 0
and variance 1, λ is a scalar controlling the magnitude of
the applied force, and U is the baseline electrostatic potential
energy of the particle. The free-solution diffusion coefficients
will scale as D ∼ 1/a in line with Stokes’ law. Following
Cheng et al. [23], we will focus on the case of free-draining
particles: the effective electrostatic force experienced by the
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particles is taken to scale with a at the same rate as the friction
coefficient (γ = 1/D), such that the free-solution mobilities
remain fixed at μ0 = 1 for all values of a. The walls are
treated as purely reflective conditions applied when the center
of the nanoparticles is a distance a/2 from the nominal dimen-
sions listed in Fig. 1(b). Hydrodynamic effects are neglected,
and electrohydrodynamic phenomena (such as the particle’s
charge and ζ potential) are subsumed into μ0.

The baseline electrostatic potential in Eq. (4) is modeled
simply by Laplace’s equation,

∇2U = 0. (5)

The walls of the slit-well device are treated as perfectly in-
sulating boundary conditions. A unit voltage drop is imposed
across one device period measured from the middle of two
consecutive slots. By linearity, the field −λ∇U corresponds to
an applied voltage drop of λ per period. To match Cheng et al.
[23], we define the quantity E∗ = λ/L as the characteristic
field strength. This characteristic field strength E∗ is also the
correct choice of � for computing mobilities in this system
[i.e., in Eqs. (1) and (2)]. Finally, it will also be helpful to
discuss the system’s behavior in terms of the Péclet number
Pé = E∗a, which is proportional to the drift-diffusion ratio in
the system.

This model system’s direct and indirect mobilities were
computed using particle simulations under various conditions.
Equation (4) was discretized using the common Euler-
Maruyama scheme [51] to

�x(t j+1) = �x(t j ) − μ0λ∇U [�x(t j )]�t +
√

2D�tR j . (6)

Here �x(t j ) is the position of the particle at time t j , each Rj

is an independent standard normal random variable drawn
at each timestep, and �t is the discrete timestep. A value
of �t = 10−3 was used for all simulations. The baseline
electrostatic potential U and the corresponding baseline field
E = −∇U were approximated using a mixed finite element
method formulation according to the methodology described
in Nagel et al. [52].

Particle simulations were always initialized with constant x
positions but randomly distributed initial y values. The initial
x value was generally placed in the middle of a slit [Figs. 1(b)
and 1(c)]. The initial values of y were uniformly distributed
for the direct mobility calculations. For indirect mobility
calculations, the initial values of y were sampled from a
precomputed database of 105 samples obtained by Markov
chain Monte Carlo (MCMC). Specifically, these samples cor-
respond to the final y positions of trajectories initialized with
uniform y positions and simulated until a total of Nrelax =
10 periods were crossed; this ensemble of samples from the
stationary distribution was computed once for each choice
of E∗ and a and reused for all corresponding simulations. A
total of 107 trajectories were used for indirect mobility cal-
culations. Direct mobilities were computed by simulating 104

trajectories until the mean position in the x̂ direction exceeded
5000L, roughly the same methodology used by Cheng et al.
[23]. The above is the default simulation protocol throughout
this paper, but variations of some of these parameters are
investigated in Sec. III.

FIG. 2. (a) Measured indirect mobility values as a function of
field strength E∗ for various particle diameters a. (b), (c) Relative
error of simulated indirect mobility values compared to simulated
direct mobility values when indirect mobilities are calculated using
initial x values in the middle of a slit and (b) initial y values sampled
using MCMC with Nrelax = 10 or (c) initial y values distributed
uniformly. Error bars correspond to one standard error.

III. NUMERICAL DEMONSTRATIONS

A. Equivalence of direct and indirect mobilities

Figures 2(a) and 2(b) provides numerical verification that
the indirect and direct mobilities are equivalent for the model
of free-draining nanoparticles of diameter a through the slit-
well MNFD described in Sec. II B. Figure 2(a) shows the
indirect mobility as a function of the normalized field strength
E∗ for nanoparticles of various sizes a. This data can be
compared directly to Fig. 2 of Cheng et al. [23], where the
same measurements were computed using a direct mobility
formulation. The direct mobility measurements were also re-
produced for the present work, but they are not shown as
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they are visually indistinguishable from the indirect mobilities
in Fig. 2(a). Instead, Fig. 2(b) shows the relative error of
the indirect mobility values relative to the direct mobility
measurements. The indirect and direct mobilities were all
computed using the default simulation protocol described in
Sec. II B. As anticipated, the direct and indirect mobilities are
in excellent agreement for all cases in Figs. 2(a) and 2(b): the
relative errors are all of the order of 0.1% or better, and all
points lie within two standard errors of 0.

B. Sampling the stationary distribution

The results in Figs. 2(a) and 2(b) are based on indirect
mobilities calculated by sampling the stationary distribution
for y using the MCMC protocol described in Sec. II B. For
each choice of E∗ and a, particle trajectories are evolved until
they traverse Nrelax = 10 periods, and their final y values form
initial conditions for subsequent indirect mobility estimations.
That simulation protocol appears sufficient to recover the
approximate equivalence of the direct and indirect mobili-
ties. However, because the simulations used for the MCMC
algorithm are essentially identical to those used to measure
both the direct and indirect mobilities, the MCMC algorithm
nominally multiplies the computational cost of the indirect
mobility calculation by a factor of Nrelax. For excessively large
values of Nrelax, any computational advantage of the indirect
mobility will be lost.

Luckily, it appears to be possible to reduce this overhead
cost dramatically. For example, the protocol in Sec. II B re-
duces this cost by recycling 105 MCMC samples across the
107 trajectories used for the indirect mobility calculation. This
method reduced the MCMC algorithm’s runtime by roughly a
factor of 100, rendering it a negligible fraction of the total run-
time. The magnitude of the error imparted by this technique
will depend on the details of the studied system. Systems for
which the true stationary distribution is more intricate and/or
for which the first-passage time depends strongly on the initial
values of the auxiliary coordinates should incur more error
from recycling MCMC samples.

In the current system, however, the stationary distribution
for almost all of the physical parameter combinations was
found to be very nearly uniform. Figure 3(a) shows histograms
of the sampled stationary distributions for all values of E∗
and a. The lines are colored according to the drift and dif-
fusion times ratio described below. It is clear that most cases
are nearly uniform, and even the few that deviate noticeably
from uniform do not deviate very much in absolute terms.
Figure 3(b) shows the Kolmogorov-Smirnov test statistics of
these distributions with respect to the uniform distribution.
This metric is the maximum distance between the empirical
cumulative distribution of the MCMC samples of y against the
cumulative distribution of a uniform distribution; essentially,
a larger value indicates that the samples likely come from a
more nonuniform distribution. Here, it is clear that although
all of the most nonuniform distributions correspond to large
Péclet numbers, not all cases with large Péclet numbers ex-
hibit significantly nonuniform stationary distributions.

In fact, this behavior is not so surprising. The slits of the
slit-well device are fairly narrow and long. The local dynam-
ics within each slit likely satisfy the condition assumed in

FIG. 3. (a) Normalized histograms (with 20 bins) of the station-
ary distributions obtained with Nrelax = 10 for the standard protocol.
The normalized y position spans the available y coordinates in the
slit, which depends on a through the reflective boundary condi-
tions. (b) Kolmogorov-Smirnov test statistic between the sampled
distributions and the uniform distribution (higher value indicates less
uniform behavior), as a function of Péclet number. Colors in panels
(a) and (b) show log(τdrift,slit/τdiff,slit ) as described in the text.

Fick-Jacobs theory (Appendix A 1): diffusive relaxation of
y coordinates occurs much more quickly than translation in
the x direction. This behavior explains why not all cases with
large Péclet numbers in Fig. 3 exhibit significant Kolmogorov-
Smirnov test statistics relative to the uniform distribution:
the Péclet number Pé = E∗a is a global Péclet number and
does not account for the local drift-diffusion ratio within the
slit, which is more strongly affected by the excluded volume
effects due to the particle diameter a.

A local measure of the drift-diffusion balance can be ob-
tained by comparing the drift time along the slit in the x
direction,

τdrift,slit ∼ L/2

μ0E∗ , (7)

to the diffusion time across the slit in the y direction,

τdiff,slit ∼ (
slit − a)2

2D
∼ a(
slit − a)2

2
. (8)

Here L = 8 is the period length, 
slit = 1 is the nominal width
of the slit, a is the particle diameter, and D ∼ 1/a is the
particle diffusion coefficient (i.e., the numerical value of D
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in simulation was equal to 1/a). The plots in Figs. 3(a) and
3(b) are colored in proportion to the logarithm of the ratio of
these times, log(τdrift,slit/τdiff,slit ). A small ratio corresponds to
the Fick-Jacobs regime. Figures 3(a) and 3(b) clearly shows
that the most nonuniform stationary distributions are those for
which the global Péclet number is high and the drift-diffusion
time ratio in the slit is smallest.

In fact, it is even feasible in this case to forego the MCMC
sampling step altogether. Figure 2(c) shows relative errors
of mobility measurements made with Nrelax = 0, i.e., a uni-
form distribution of initial y values. The error relative to the
calculated direct mobilities is statistically indistinguishable at
all but the largest field strengths. More specifically, as pre-
dicted above, based on the ratio of drift to diffusion times
in the slit, only for substantial values of E∗ and moderate
values of a is the error from using a uniform initialization
statistically significant in Fig. 2(c). Even at these choices of
E∗ and a, the indirect mobility still only has errors on the
order of 0.02%; the true stationary distributions are still nearly
uniform [Fig. 3(a)]. Extending the above reasoning, nearly
uniform stationary distributions may be expected to arise in
other periodic MNFDs featuring geometric bottlenecks.

Nevertheless, it is important to note that the correct station-
ary distribution is an essential condition for the equivalence
of the direct and indirect mobilities (Appendix B). Figure 4
illustrates the consequences if this condition is neglected in-
appropriately. In this case, indirect mobilities were once again
measured using uniform initial conditions for y, but now with
the mean first-passage time computed from an initial x posi-
tion set in the middle of a well to the middle of the next well
(Fig. 5), rather than from the middle of a slit to the middle of
the next slit [Fig. 1(c)].

Figure 4(a) shows the indirect mobilities computed based
on the well-to-well mean first-passage process with uniform
initial conditions, and Figure 4(b) shows the corresponding
relative errors. At low field strengths, this algorithm still pro-
duces acceptably small relative errors. However, the indirect
mobilities are entirely incorrect at higher field strengths, both
quantitatively and qualitatively. This behavior is in stark con-
trast to the results of Fig. 2(c), which showed that uniform
initial conditions were an acceptable approximation for all
cases in the slit-to-slit configuration.

Indeed, the correct stationary distribution in the well-to-
well configuration is substantially nonuniform. Figure 6(a)
shows all the distributions for the well-to-well configuration
measured with Nrelax = 1, and Fig. 6(b) shows the correspond-
ing Kolmogorov-Smirnov test statistics relative to the uniform
distribution. As in Fig. 3, colors are based on the ratio of the
drift timescale to the diffusion timescale; in the well-to-well
configuration, these are

τdrift,well ∼ L/2

μ0E∗ , (9)

τdiff,well ∼∼ a(
well − a)2

2
. (10)

In particular, note that the nominal size of the well is 
well =
5, which is much larger than the nominal size of the slit,

slit = 1. Contrasting with the stationary distributions in the
slit-to-slit configuration (Fig. 3), the well-to-well distributions

FIG. 4. (a) Incorrect indirect mobility values measured using
the well-to-well configuration with uniform initial conditions for y
shown as a function of field strength E∗ for various particle diameters
a. (b), (c) Relative error of simulated indirect mobility values com-
pared to simulated direct mobility values when indirect mobilities are
calculated using initial x values in the middle of a well and (b) initial
y values are distributed uniformly or (c) initial y values are sampled
using MCMC with Nrelax = 1. Error bars correspond to one standard
error.

FIG. 5. Schematic of the well-to-well configuration for indirect
mobility measurements. Particles are initialized on the red line,
which is in the middle of a well. Mean first-passage times are com-
puted to the blue line.
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FIG. 6. (a) Normalized histograms (with 20 bins) of the sta-
tionary distributions obtained with Nrelax = 1 for the well-to-well
configuration. Normalized y position spans the available y coordi-
nates in the well, which depend on a via the reflective boundary
conditions. (b) Kolmogorov-Smirnov test statistic between the sam-
pled distributions and the uniform distribution (higher value indicates
less uniform behavior), as a function of Péclet number. Colors in
panels (a) and (b) show log(τdrift,well/τdiff,well ) as described in the text.

are clearly far less uniform. With increasing Péclet number,
the stationary distribution favours y positions near the top of
the well. This behavior is consistent with the known physics
of the system: when the applied field is strong, the larger
particles are less likely to diffuse into the bottom of the well
and have larger mobilities as a result [23].

As in the slit-to-slit configuration, nonuniformity is great-
est when the Péclet number is large, and the diffusion
timescale in y is large relative to the transit timescale in x.
However, whereas the geometric bottleneck in the slit limits
the importance of nonuniformity for large a, in the well-to-
well configuration, the accessible range in y is large even at the
most significant a values. This result highlights a subtle but
important aspect of utilizing the indirect mobility formulation
in practice: the behavior depends on the choice of location
for the period-to-period threshold. This choice affects the
complexity of the true stationary distribution and thus affects
the possibility of approximating it analytically (e.g., using a
uniform distribution) or the computational cost of sampling
it numerically. Moreover, the computational disadvantage of

a misaligned period boundary condition is expected to be
greatly amplified in systems with larger well-to-slit aspect
ratios.

Nonetheless, even the intentionally suboptimal choice of
this threshold in the well-to-well configuration can be handled
very efficiently in this case. The analysis in Appendix B
suggests that the MCMC algorithm should converge expo-
nentially with increasing Nrelax, suggesting that perhaps large
values are not necessary. Figure 4(c) shows the relative error
of the well-to-well indirect mobility calculation when the
initial conditions are sampled using the MCMC algorithm
with Nrelax = 1. The relative error has become essentially
negligible even with relaxation through only a single period.
Although errors are statistically discernible at high E∗, these
relative errors are on the order of 0.1% or less.

The extremely fast convergence of the MCMC sampling
protocol can again be attributed to the geometric bottleneck in
the slits. In the well-to-well configuration, the distribution of
y values after crossing one period is entirely specified by the
intermediate y values in the slit. Because of the bottleneck,
the system becomes thoroughly mixed at this location. It thus
appears inevitable that the MCMC algorithm will converge
very rapidly with Nrelax whenever such a bottleneck is present.

Future work might explore other options for sampling
from the stationary for indirect mobility calculations. Finite
samples from the MCMC algorithm presented above might
be smoothed by fitting to a histogram or using kernel den-
sity estimation, for instance. Alternative, generative modeling
techniques (e.g., generative adversarial networks) might be of
interest. Furthermore, the indirect mobility can also be ap-
plied to solutions of the time-integrated Smoluchowski PDE,
as explored in Nagel et al. [52] (see Appendix A 3). That
application requires estimating the stationary distribution’s
probability distribution function rather than only requiring
samples drawn from that distribution. In the context of the
algorithm of Nagel et al. [52], this could be accomplished, for
instance, by using an auxiliary neural network to represent the
stationary distribution and imposing a self-consistency condi-
tion on the distribution of y values at the absorbing boundary
condition.

C. Computational cost comparison

The demonstration in Sec. III A confirmed that the direct
and indirect mobilities are equivalent, as derived in Ap-
pendix B. Those simulations used an MCMC algorithm to
sample the stationary distribution required for the indirect
mobility calculations. As discussed, if every trajectory used
to calculate indirect mobility requires an independent MCMC
sample, and if the MCMC samples require a large value of
Nrelax, then the cost of the MCMC sampling protocol will
dominate the cost of the indirect mobility calculation. Luckily,
as explored in Sec. III B, it appears possible to reduce this
overhead cost significantly. At least for the model described
in Sec. II B, a small number of MCMC samples can be recy-
cled across many trajectories without introducing substantial
error. Convergence of the MCMC sampler is expected to be
exponential in Nrelax in general (Appendix B 2), but geometric
bottlenecks were argued in Sec. II B to produce particularly
fast convergence. Altogether, it appears that the cost of sam-
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pling the stationary distribution by MCMC can be made a
negligible fraction of the computational cost of the indirect
mobility calculation in many cases.

With this established, the current section compares the
computational costs of the direct and indirect mobility for-
mulations. It is based on the theoretical cost analysis in
Appendix C, which is briefly recounted below. The predicted
convergence rates of the two mobilities are tested against their
actual performance on the problem of nanoparticles in the
slit-well from Sec. II B. The analysis ignores the cost of the
MCMC sampling protocol, based on the arguments above that
this is likely a small addition to the overall cost of the indirect
mobility.

Appendix C contains an analysis of the approximate com-
putational cost of measuring the mobility to a target level of
relative error ε using either the direct or indirect mobility for-
mulations. The convergence rates are estimated by leveraging
the detailed prediction of the limiting x position distribution
obtained in Appendix B. Specifically, the limiting distribu-
tion is predicted to be a normal distribution with mean and
variance given by Eqs. (B15) and (B16), reproduced here for
convenience:

〈x(t )〉 = L
t

〈τ1〉 + L
1

2

σ 2

〈τ1〉2
− 〈δx〉, (11)

var(x(t )) = L2 σ 2

〈τ1〉2

t

〈τ1〉 + L2 5

4

σ 4

〈τ1〉4
+ var(δx ). (12)

Here L is the period length of the system, 〈τ1〉 is the mean first-
passage time across each period (assuming the stationarity
condition for auxiliary coordinates), and σ is a correlation-
adjusted standard deviation of the first-passage time across
each period [Eq. (B7)].

The quantity δx is an additional random variable introduced
in Appendix B 4 to account for the motion of analytes against
the net long-time direction of motion. In particular, 〈δx〉 is a
measure of the mean fluctuation of the analyte’s x position
between its first contact with period k and period k + 1. Be-
cause of the stationarity condition, the statistics of δx do not
depend on k, and thus δx plays no role in determining the
mobility. However, as discussed below, it does play a very
important role in the rate of convergence of the direct mobility
calculation.

A measurement of the direct mobility using particle sim-
ulations essentially amounts to generating a sample of x(t )
values to estimate 〈x(t )〉 in the direct mobility definition
[Eq. (1)]. Appendix C 1 uses the predicted mean and variance
of x(t ) to deduce the mean relative error [Eq. (C2)] and stan-
dard relative error [Eq. (C3)] of the direct mobility estimator
in terms of L, 〈τ1〉, σ , and 〈δx〉. These errors are expressed as
functions of the number of independent trajectories sampled
and the total runtime for which the trajectories are evolved.
The total relative error of the direct mobility estimator is
obtained by adding the mean and standard error in quadrature.

Equation (C2) states that the mean relative error of the
direct mobility estimator is proportional to

1

2

σ 2

〈τ1〉2
− 〈δx〉

L
(13)

divided by the total runtime of the simulated trajectories. This
prefactor can potentially become very small if its two terms
are comparable in magnitude. However, understanding the
behavior of δx was deemed beyond the scope of the analysis
in Appendix C. The direct and indirect mobility convergence
rates were compared with the approximation δx ≈ 0. This
choice is one of the significant limitations of that analysis,
and the numerical demonstrations below will investigate the
implications on convergence rates obtained in practice.

The error convergence of the indirect mobility estima-
tor was approximated by assuming that first-passage times
across any given period have exponentially decaying tails.
Specifically, the probability density function ρ(τ1) of the first-
passage time is assumed to be of the form [Eq. (C6)]

ρ(τ1) ≈ 1

τ ∗ exp
(
− τ1

τ ∗
)

(14)

at large τ1, where τ ∗ is some constant. This is generally
a fair assumption since the tails of the τ1 distribution are
generated by those stochastic trajectories that remain trapped
for extended periods (see the theoretical frameworks in Ap-
pendix A 2). However, it is not generally the case that τ ∗
is equal to the mean first-passage time 〈τ1〉. Nonetheless,
the simplifying assumption τ ∗ ≈ 〈τ1〉 was made in parts of
Appendix C, as a proper characterization of τ ∗ is difficult
in general. This is the second major limitation in the theo-
retical comparison between the direct and indirect mobility
convergence rates and will also be addressed in the numerical
demonstrations below.

The analysis in Appendix C culminates in predictions for
the total computation time necessary to achieve a relative error
of ε using either method when a total of Npara parallel threads
are available. Figure 7 summarizes the main results of the
analysis. Figure 7(a) shows the predicted ratio of the runtimes
for the direct and indirect mobility estimators. Results are
shown for Npara = 103, 104, 105 and with the assumption that
the coefficient of variation σ0/〈τ1〉 of the first-passage time
across a single period is 0.5, 1.0, or 3.0. Here, σ0 is the actual
standard deviation of the first-passage time, which is assumed
to be similar to the correlation-adjusted standard deviation σ ;
see Appendix C for details.

The general conclusion is that, given sufficient access to
parallel computing hardware, the indirect mobility appears to
be a more efficient choice. Figure 7(b) illustrates that for target
errors below ε ≈ 1/Npara, the two mobility formulations have
roughly the same runtime. Conversely, the maximum advan-
tage of using the indirect mobility occurs for target errors
close to σ0/〈τ1〉√

Npara
, as indicated in Fig. 7(c). As Npara increases,

the relative cost of the indirect mobility to the direct mobility
decreases at all values of ε, but the ε at which the ratio is
maximized shifts to lower values. In practice, ε values near
0.1–1% are commonly used in MNFD research, and the Npara

values listed in Fig. 7 are increasingly affordable thanks to
GPU acceleration. Thus, Fig. 7 shows that the theoretical
analysis of Appendix C predicts accelerations of an order
of magnitude or more by switching to the indirect mobility
formulation under practically relevant conditions.

However, as noted above, the analysis in Appendix C
and the results in Fig. 7 are based on two questionable
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FIG. 7. Ratio of the predicted runtimes for the direct and indirect mobility estimators, for various choices of Npara (indicated by line
color) and CV = σ0/〈τ1〉 (indicated by line style). The predicted runtime ratio is plotted against (a) the target relative error ε, (b) εNpara,
and (c) ε

√
Npara/(σ0/〈τ1〉). The black vertical line in panel (b) indicates the predicted transition of the direct mobility estimator from order

O(1/Tdirect ) to order O(1/
√

Tdirect ), while the black vertical line in (c) indicates the predicted transition of the indirect mobility estimator
from exponential convergence to order O(1/

√
Tindirect ). All plots neglect the cost of MCMC sampling and the effect of correlations between

first-passage times (i.e., assume ψ = σ/σ0 = 1; see Appendix C).

approximations. First, it neglects the effect of the quantity
〈δx〉 in Eq. (C1), which characterizes the motion of analytes
against the net force between the first passage to the kth period
and the first passage to period k + 1. Second, it assumes that
the first-passage times are exponentially distributed with a
time constant τ ∗ that is similar in magnitude to the mean
first-passage time 〈τ1〉. If 〈δx〉 is large or τ ∗ � 〈τ1〉, then the
predicted computational advantages of the indirect mobility
over the direct mobility may be smaller than expected.

Figure 8 presents numerical measurements of the runtimes
and estimated relative errors for the direct and indirect mo-
bility estimators, computed from simulations of nanoparticles
in the slit-well device (Sec. II B). In each subplot of Fig. 8,
four physical scenarios are considered: all combinations of

E∗ = 0.2, 20 and a = 0.1, 0.75. The simulation protocol is
the same one used in Sec. III A, with calculations paral-
lelized across Npara = 104 threads. The direct mobility curves
in Figs. 8(a) and 8(c) correspond to measurements taken
throughout a single long simulation trajectory. Each data point
for the indirect mobility estimators in Figs. 8(b) and 8(d) is
sampled independently using a varying number of trajectories
(although the same MCMC samples of the stationary distri-
butions are recycled for each physical scenario). Runtimes
are reported in simulation time units, and relative errors are
estimated against the final direct mobility values for each of
the four physical scenarios.

In Figs. 8(a) and 8(b), the colored dotted lines correspond
to the predicted runtime necessary to achieve a given relative

FIG. 8. (a), (b) Measured runtimes for (a) direct mobility estimators and (b) indirect mobility estimators shown as a function of estimated
relative error, for four physical scenarios indicated in the legend. Pe indicates the Péclet number Pé = E∗a and CV stands for the coefficients
of variation σ0/〈τ1〉. (c), (d) Deviation of the measured (c) direct mobility and (d) indirect mobility behavior from the predicted behavior. All
results for Npara = 104.
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error ε [Eqs. (C23) and (C30)]. The black dotted lines denote
T ∼ 1/ε and T ∼ 1/ε2 scaling, corresponding to the expected
limiting behavior of the direct mobility estimator. In Figs. 8(c)
and 8(d), the measured mobility results are divided by the
predicted behaviors; the solid black line indicates where the
simulation results and the theoretical predictions are in agree-
ment. The dotted black line indicates a scaling of 1/ε, as
discussed below.

In Fig. 8(a), the red and green lines match the theoretical
predictions quite well, but it is clear that the blue and orange
series are performing significantly better than expected from
the analysis. Specifically, Fig. 8(c) shows that for sufficiently
large values of ε, the orange line is about twice as fast as
expected, and the blue line is roughly two orders of magnitude
faster than expected. The deviation by this constant factor
persists until a certain level of relative error is achieved, below
which the ratio of measured to predicted runtimes decays to 1
at a rate of 1/ε [indicated by the dotted line in Fig. 8(c)]. These
transition points in Fig. 8(c) coincides with the similar transi-
tion points in Fig. 8(a) at which the corresponding runtimes
change from scaling as 1/ε to scaling as 1/ε2.

The disagreement between theory and reality for the con-
vergence of the direct mobility estimator is more prominent
for smaller Péclet numbers. This behavior can be tentatively
attributed to the omitted term 〈δx〉/L acting to reduce the
prefactor of the mean relative error by a constant amount.
As explained in Appendix C 1, the mean relative error of
the direct mobility estimator decays as ε ∼ 1/T with runtime
T , whereas its standard relative error decays as ε ∼ 1/

√
T .

At large ε, the total error of the direct mobility estimator is
dominated by the mean relative error. Since the mean relative
error prefactor is missing 〈δx〉/L, the measured runtime dis-
agrees with the prediction by a constant factor. Conversely,
at sufficiently small ε, the total error becomes dominated by
the standard relative error, which does not depend on 〈δx〉/L.
In the small ε regime, the disagreement with the theory de-
cays at the same rate as the mean relative error, i.e., 1/ε. At
large Péclet numbers, however, it appears that indeed 〈δx〉 ≈ 0
since the measured runtime versus error agrees well with the
prediction from Appendix C.

Whereas the direct mobility is performing much better than
predicted in some cases, Figs. 8(b) and 8(d) show that the
indirect mobility is performing somewhat less well than ex-
pected. The case with the lowest Péclet number (blue) exhibits
runtimes nearly an order of magnitude larger than expected
over much of the ε range. The other three cases (orange, green,
red) have runtimes that only exceed the predicted runtime by
a factor of 2–3 or less at all values of ε. These observations
can be attributed to the difference between τ ∗ and 〈τ1〉, which
were assumed to be equal in the theoretical predictions.

The difference between τ ∗ and 〈τ1〉 is better understood
by considering the coefficient of variation than the Péclet
alone. Indeed, the orange and green lines have very similar
coefficients of variation but very different Péclet numbers;
whereas only green agrees with theory in the direct mobility
case [Figs. 8(a) and 8(c)], both agree comparably well with
theory in the indirect mobility case [Figs. 8(b) and 8(d)].
The coefficient of variation is equal to 1 for an exponential
distribution, and the case of exponentially distributed first-
passage times corresponds to τ ∗ = 〈τ1〉. More generally, the

coefficient of variation of a distribution is a common metric
for the relative importance of the distribution’s tails. In any
case, the magnitude of the gap between theory and practice
for the indirect mobility appears less significant than that
observed for the direct mobility.

In summary, the theoretical convergence analysis con-
ducted in Appendix C and illustrated in Fig. 7 overpredicts
the advantage of the indirect mobility in two ways. When
the Péclet number is low, the direct mobility performs better
than expected, likely because of the action of δx to reduce the
mean relative error at large ε. When the coefficient of variation
is large, the indirect mobility performs worse than expected,
likely because τ ∗ is significantly larger than 〈τ1〉. Note that
in the case of nanoparticles traversing the slit-well device, the
Péclet number correlates very strongly with the coefficient of
variation in the diffusive regime [23]. Both of these effects
tend to diminish the computational advantage of the indirect
mobility over the direct mobility.

Regardless, the predicted computational advantage of the
indirect mobility is still discernible in this system. Figure 9(b)
is a plot of the ratio of the measured runtimes for the direct
and indirect mobility estimators shown in Figs. 8(a) and 8(b),
obtained by linearly interpolating the direct mobility curves
in Fig. 8(a). Also included (dotted lines) are the theoretical
predictions of the ratio based on Eqs. (C23) and (C30) (as
shown in Fig. 7).

As expected from the discussion of Fig. 8, the measured
runtime ratios match the theoretical prediction at high Péclet
numbers but significantly deviate at lower Péclet numbers.
Nonetheless, the indirect mobility estimator consistently con-
verges faster than the direct mobility estimator for the three
largest Péclet numbers for ε in the range of 0.1–1%. The
largest increase in speed is observed for the green line, which
converges roughly six times faster to an error of approxi-
mately 0.5%.

Figures 9(a) and 9(c) show how the measured runtime
ratios change when these experiments are repeated with
fewer parallel threads (Npara = 103) or more parallel threads
(Npara = 105), respectively. For Npara = 103, the difference
between the two estimators is difficult to resolve at any ε

value. As noted in Appendix C 3, the two algorithms are
expected to have roughly identical convergence rates for small
values of Npara. In practice, the direct mobility appears slightly
more efficient, especially given that this plot omits the cost of
sampling the stationary distribution for the indirect mobility
estimator.

Conversely, for Npara = 105, the advantage of the indirect
mobility is quite clear [Fig. 9(c)]. In this case, observations are
much better described by the theory from Appendix C. Even
for the blue line, where the low Péclet number and large coef-
ficient of variation were previously identified as substantially
favoring the direct mobility, the indirect mobility calculation
is several times faster at errors near 0.1%. The green and red
lines, corresponding to the larger Péclet numbers, are well-
described by the theory and are 10–20 times faster to compute
at errors near 0.1%.

These results demonstrate that using the indirect mobility
formulation may indeed be significantly faster under practical
conditions. As noted earlier, target errors of 0.1–1% are typ-
ically appropriate for simulation studies of periodic MNFDs.
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FIG. 9. Ratio of the measured runtimes for direct and indirect mobility estimators as a function of estimated relative error ε. Values for
the direct mobilities were interpolated/extrapolated linearly to the required values of ε. The colored dashed lines show the predicted ratio of
runtimes for each case based on Eqs. (C23) and (C30). The solid black line shows a ratio of 1, whereas the dashed black line shows a scaling
of 1/ε. Results shown for (a) Npara = 103, (b) Npara = 104, (c) Npara = 105.

The effective values of Npara in practice depend somewhat on
implementation details but can be estimated (at least for some
implementations on certain NVIDIA GPUs) as 16 times the
number of CUDA cores [53]. For our implementation, perfect
parallelization to the level of Npara ≈ 104 was easily achieved
on a GTX 1650, a very modest consumer-grade GPU with
896 CUDA cores. The case of Npara = 105 was meant to illus-
trate what could be achieved by parallelizing across roughly
ten such GPUs, a practice which is increasingly becoming
commonplace. Experiments on a GTX 1080 Ti suggested that
a single card of that variety could deliver Npara ≈ 5 × 104,
consistent with it having 3584 CUDA cores. Although its per-
formance was not tested with our implemented simulations,
the RTX 3090 is listed as having 10496 CUDA cores, which
may correspond to Npara ≈ 1.5 × 105 on a single card.

Depending on implementation details, simulations of M-
body molecules may effectively be limited to roughly M times
smaller values of Npara on the same hardware. This would be
the case, for instance, if roughly M threads were allocated to
accelerate each independent trajectory. This may or may not
be advantageous compared to running serial M-body simula-
tions on each of the Npara threads; such considerations likely
depend on the physics of the system being simulated and are
beyond the present scope. Regardless, the increasing afford-
ability of massively parallel computing resources will enable
larger Npara values for increasingly complex molecules. For
instance, a set of 10 RTX 3090 cards could enable Npara = 105

with M as large as 150, in which case the indirect mobility
formulation may feasibly be roughly five times faster than the
standard direct mobility formulation, especially for systems
with moderate-to-large Péclet numbers and/or geometric bot-
tlenecks.

IV. CONCLUSION

The theoretical and empirical results presented in this
work support the claim that the indirect mobility formulation
[Eq. (2)] may be a more efficient option for computing the
effective mobility of biomolecules driven through periodic
geometries than the traditional direct mobility formulation
[Eq. (1)]. The indirect mobility formulation leads to expo-
nentially faster convergence in the limit of unlimited parallel

computing capacity and arbitrarily small target errors. Given
the growing importance and availability of parallel computing
hardware for computational science, the relevance of this re-
sult is likely to increase in the future.

Even under realistic conditions of finite parallel comput-
ing capacity and target errors near or slightly below 1%,
the indirect mobility can still be a substantially more effi-
cient approach. In general, the relative performance of the
two approaches appears to depend on a few key physical
parameters of the system under study and especially on the
balance of drift to diffusion. In the example model of nanopar-
ticles traversing the slit-well device, the indirect mobility was
demonstrated to converge up to an order of magnitude faster
in some circumstances (specifically, when the Péclet number
is moderate or large), even using quite modest computing
hardware.

Future work is needed to assess the relative merit of
the indirect mobility formulation in simulations of other
biophysical systems. The theoretical discussions in the ap-
pendices apply to a fairly general model of the transport
of biomolecules through periodic geometries. However, the
theoretical analyses of computational cost in Appendix C
are limited by the approximations of nearly exponential
first-passage time distributions and nearly negligible analyte
motion against the direction of the applied force. The em-
pirical results reveal that, in some cases, the direct mobility
is actually a substantially more efficient estimator than the
indirect mobility. Nonetheless, this only appears to be a prac-
tical concern in very weakly driven systems. Highly driven
systems, where the indirect mobility is most useful, are likely
to be of more practical relevance to the design of MNFDs.
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APPENDIX A: REVIEW OF RELATED
THEORETICAL FRAMEWORKS

Below are included reviews of other theoretical frame-
works in which the direct and indirect mobilities have been
shown to be equivalent. These derivations are less general than
the derivation in Appendix B. The result of Appendix B is
more broadly applicable, as it does not make strong assump-
tions about the separation of timescales in the system, and
it holds for many-body molecules and for time-varying force
fields. Moreover, Appendix B yields specific equations for the
limiting x position distribution, enabling the convergence rate
analysis in Appendix C.

1. Quasi-1D systems: Fick-Jacobs theory

The Fick-Jacobs equation was first presented by Jacobs
[54] as an effective one-dimensional model for steady-state
diffusion in a confined system of varying cross-sections.
Essentially, the two- or three-dimensional Smoluchowski
equation is integrated across the cross-section of the system.
The volume available to particles in these transverse coor-
dinates is approximated in the Fick-Jacobs equation by an
additional free energy term. A more rigorous formulation was
put forth by Zwanzig [55], who greatly increased the appli-
cability of the equation by formulating a position-dependent
effective diffusion coefficient. Further extensions and correc-
tions were proposed in subsequent works [56,57].

The Fick-Jacobs equation and similar approaches have
been used successfully to explain diffusion in quasi-one-
dimensional systems with or without applied forces, including
cases with periodic geometries [58–64]. However, despite the
various refinements that have been proposed, it generally fails
to perform adequately within certain limits. Because the the-
ory assumes rapid relaxation in the transverse coordinates, it
tends to encounter problems in systems with strong applied
forces or sudden changes in cross-sectional area [65–72].
Moreover, the theory has a limited capacity to handle spatial
variations in the applied force field, especially in the direction
of the transverse coordinates (see however Pompa-García and
Dagdug [64] for an example where Fick-Jacobs was success-
fully extended in this manner). Most importantly, for studying
biomolecules in periodic MNFDs, the Fick-Jacobs equation is
restricted to the diffusion of single Brownian particles and
does not directly deal with the case of many-body molecules.

Since the Fick-Jacobs equation is effectively one-
dimensional, it benefits from many results applicable to the
one-dimensional Smoluchowski equation. While studying the
effective diffusion coefficient of one-dimensional Brownian
particles in tilted periodic potentials, Reimann et al. [73] and
Reimann et al. [74] proved that the indirect mobility [Eq. (2)]
is equal to the direct mobility [Eq. (1)]. Lindner et al. [75] con-
nected that work to a classical result due to Stratonovich [76].
These results have since been used to compute mobilities in
periodic quasi-one-dimensional systems [58,70,71]. However,
this proof of equivalence is naturally restricted to the scope of
applicability of Fick-Jacobs theory. Moreover, because it is
based on one-dimensional approximations of point-particles,
arguments like those in Reimann et al. [73] cannot account for
correlations between crossing times (cf. Appendix B 2).

2. Large barriers: Poisson point processes

The equivalence of the direct and indirect mobilities is also
known to hold in the case that a large free energy barrier
obstructs the transport of molecules across each period of the
system. In such a setting, there is a well-defined separation
of timescales between the period-to-period transport process
and all other processes occurring in the system. Reaction rate
theories, such as Kramers theory, can be brought to bear on the
problem (see Hänggi et al. [50] for a review of such theories).

Systems in this regime can be described as Poisson point
processes. The probability that a particle initially trapped in
a given period has not yet escaped to the next period decays
exponentially as a function of time:

P(not absorbed after time t ) ∼ exp(−λt ). (A1)

Moreover, transfers between distinct periods will certainly be
statistically independent events since, by assumption, these
events occur more slowly than all other relaxation timescales
in the system. For such exponentially distributed times, the
mean rate λ is related to the mean first-passage time τ by

λ = 1

〈τ 〉 . (A2)

In the context of mobility through periodic geometries, the
mean position on long timescales will thus be

〈x(t )〉 → Lλt = Lt

〈τ 〉 . (A3)

Dividing both sides by t yields the equivalence of Eqs. (1) and
(2).

These theories have been used to analyze particle transport
in titled periodic potentials [50]. However, Kramers theory
and related reaction rate perspectives are restricted in appli-
cability by their strong assumption of timescale separation.
Whereas Fick-Jacob methods assume rapid relaxation of po-
sition coordinates in the directions transverse to bulk motion,
reaction rate theories generally assume rapid relaxation of all
processes but the dominant transport process. This approxi-
mation again breaks down in situations with strong driving
forces and nonequilibrium effects.

Despite their limitations, these theories are still widely
used to describe motion in periodic MNFDs. In particular,
the assumption of exponentially distributed times is often used
to justify physical models based on mean first-passage times
(see, for instance, Han et al. [19], Cheng et al. [23], and
Wang et al. [41], for a few examples of such arguments).
The results presented in this work show that the connection
between transport rates and mean first-passage times can be
extended to more general physical circumstances, so long as
the stationary distribution upon which the mean first-passage
times are based is defined appropriately.

3. Other mean first-passage time methods

Besides the Fick-Jacobs and reaction rate theoretical
frameworks, there have also been a variety of other cases
in which mean first-passage times were used to understand
the mobilities of molecules traversing periodic geometries.
In particular, mean first-passage time perspectives have
been used successfully to study the driven diffusion of
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Brownian particles in geometries with abruptly changing
cross-sections, where the Fick-Jacobs perspective is not appli-
cable [66–69,72]. We will also mention in passing that these
studies have successfully used mean first-passage time frame-
works to understand effective diffusion, another important
concept in the research and development of periodic MNFDs.
The Lifson-Jackson method is one of the earliest methods
that studied effective diffusion from this perspective [69,77].
We will briefly comment on how our result connects to the
concept of effective diffusion in Appendix B 4, but leave more
careful considerations of this aspect for future work.

The Smoluchowski equation describing the evolution
of the position probability density function for Brownian
molecules is another important theoretical framework for
mean first-passage time analysis. An adjoint equation to the
Smoluchowski equation can be constructed whose solution at
any point in the domain equals the mean first-passage time
from that point to absorbing regions on the domain’s boundary
[78]. In fact, essentially, this method was used by Lifson and
Jackson [77] in their analysis.

Another very similar equation is the time-integrated
Smoluchowski equation, whose solution is commonly de-
noted g0 [79]. The source term in the time-integrated
Smoluchowski equation corresponds to a certain choice of
initial particle positions in the system, and the solution g0 has
the property that its integral over the domain equals the mean
first-passage time. A recursive hierarchy of equations can be
constructed to obtain the higher moments of the first-passage
time in the same manner.

The qualitative behavior of g0 solutions in a periodic
MNFD was studied by Magill et al. [44]. This analysis mo-
tivated a certain normalization of first-passage times, which
elucidated a universal scaling behavior across system geome-
tries. Moreover, Magill et al. [44] argued that the long-time of
molecules traversing that MNFD was entirely determined by
the first and second moments of the first-passage times across
each period, which would be completely captured by the g0

and g1 fields.
Elaborating on the g0 field as a proxy for connecting

MNFD geometries with effective mobilities, Nagel et al. [52]
used a method based on neural networks to solve g0 in a sys-
tem similar to that studied by Cheng et al. [23]. By computing
four-dimensional approximations of g0 as a function of both
domain coordinates and model parameters, Nagel et al. [52]
demonstrated the idea of using neural networks to construct
differentiable mappings from system design parameters to
physical observables of interest (in this case, effective mo-
bility). The use of g0 in this way is a particular motivation
for understanding the indirect mobility; the direct mobility
formulation cannot be expressed in such a straightforward
manner as the solution to a partial differential equation.

APPENDIX B: DERIVATION OF THE EQUIVALENCE
OF DIRECT AND INDIRECT MOBILITIES

This section presents a proof that the indirect mobility
[Eq. (2)] is equivalent to the more common direct mobility
[Eq. (1)], so long as the initial conditions used to compute the
indirect mobility are chosen correctly. The approach of the
proof is to derive the limiting form of the position distribution

ρ(x) at long times in terms of the mean first-passage time
across a single period 〈τ1〉. From this solution, it is possible
to equate the limiting drift velocity limt→∞〈x(t )〉/t to L/〈τ1〉.
It then follows readily that the two mobility definitions are
equivalent.

The general setup for the proof (Appendix B 1) is very
similar to the arguments presented previously by Reimann
et al. [73] and Magill et al. [44]. The final steps of the proof
(Appendices B 3 and B 4) are very similar to the steps taken
by Magill et al. [44]. The argument justifying x ≈ kL despite
analyte backflow (Appendix B 4) is essentially the same used
by Reimann et al. [73]. However, the first part of the derivation
(Appendix B 2) differs substantially from prior derivations to
account for correlations in the crossing times between peri-
odic subunits. Such correlations were absent in the system
studied by Magill et al. [44] because of geometric bottlenecks
between the periodic subunits and were irrelevant to the study
of Reimann et al. [73] which considered only Brownian point
particles in a one-dimensional system. They are handled here
via the judicious application of the Markov chain central limit
theorem to an appropriately constructed Markov chain model
of the transport process.

1. The time to first cross k subunits

Recall from Sec. II A that xi denotes the threshold into the
ith period, θi denotes the values of the auxiliary coordinates
measured at the first time for which x(t ) = xi, and ti,i+1 de-
notes the time between first contact with xi and first contact
with xi+1. Now let us denote by τk the total first-passage time
from the original analyte position at x = x0 to the threshold of
the kth periodic subunit at x = xk . By definition,

τk = t0,1 + t1,2 + t2,3 + · · · + tk−1,k, (B1)

where ti,i+1 is the time to reach xi+1 for the first time after hav-
ing reached xi for the first time. In the rest of this section, the
index k will be used to indicate the total number of channels
being crossed, whereas the index i with 0 � i � k − 1 will be
used to refer to the intermediate channels crossed along the
way to the kth channel.

Since τk is the sum of a series of random variables, it
is tempting to appeal to the central limit theorem to deduce
its limiting distribution. However, the application of the cen-
tral limit theorem would require that the random variables
{ti,i+1}k−1

i=0 be identically distributed and uncorrelated. As will
be shown in Appendix B 2, it is usually possible to initialize
the auxiliary coordinates θ0 such that the {ti,i+1}k−1

i=0 are indeed
identically distributed. However, it is not generally possible to
eliminate the correlations between the crossing times. Specif-
ically, the correlation of ti,i+1 with ti−1,i is mediated by the
auxiliary coordinates θi measured at first contact with xi.

Conveniently, the nature of these correlations is still very
tractable. The Markovian assumption made in Sec. II A
amounts to the statement that the sequence {θi}k−1

i=0 is a Markov
chain. Thus, the random process

(θ0, t0,1) → (θ1, t1,2) → · · · → (θk, tk,k+1) → · · · (B2)

is also a Markov chain. Incidentally, since θi alone completely
specifies the joint distribution of (θi+1, ti+1,i+2), Eq. (B2) is
a special type of Markov chain known as a hidden Markov
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model; however, this has no bearing on the current analysis.
What is important is that the ti,i+1 are fixed observables (i.e.,
real-valued functionals) of the state (θi, ti,i+1).

2. The stationary distribution

The distribution of τk can be deduced by applying the
Markov chain central limit theorem to the Markov chain given
by Eq. (B2). This theorem generalizes the central limit theo-
rem, which applies to a sum of independent and identically
distributed (i.i.d.) random variables to the cumulative sum
of real-valued functionals of a stationary Markov chain. In
particular, we will consider the functional g(θi, ti,i+1) = ti,i+1.
Note that many variations and extensions of the Markov chain
central limit theorem exist, but we only need to appeal to the
version of Doob [80].

To apply the theorem, it is necessary for the Markov chain
to be initialized in its stationary distribution π , which satisfies

π (θi+1, ti+1,i+2) = π (θi, ti,i+1). (B3)

In particular, because the marginal distributions of each ti,i+1

are completely determined by θi, this reduces to the require-
ment that

π (θi+1) = π (θi). (B4)

In general, the existence and uniqueness of a Markov
chain’s stationary distribution π depend on the details of its
transition operator. If the state space is finite, then it is suf-
ficient for the transition to be irreducible and aperiodic. This
is the case, for instance, when every state θi+1 has a nonzero
probability of occurring after any state θi. Physically, this type
of behavior is common: motion driven by Brownian noise, for
instance, usually behaves this way.

Unfortunately, ensuring the existence and uniqueness of
a stationary distribution π can be challenging in the case of
Markov chains with continuous state spaces—irreducibility
and aperiodicity of the transition operators are no longer suf-
ficient conditions. Alas, this is probably the more common
scenario in biophysics, for instance, where the auxiliary coor-
dinates θ are the atomic coordinates of a molecule and space
is modeled as continuous. Various conditions are known to
ensure existence and uniqueness of stationary distributions for
continuous state spaces; see for instance Doob [80] or Harris
[81]. In particular, if θi+1 is distributed according to a proba-
bility density function that is continuous in θi, irreducible, and
aperiodic, then Eq. (B2) satisfies the conditions of Example
2 on page 215 of Doob [80]. Under these conditions, the
stationary distribution exists and is unique, and the Markov
chain converges exponentially fast to this stationary distribu-
tion from any initial condition. The auxiliary coordinates θ

are likely to satisfy this condition (at least to a very good
approximation) in most relevant biophysical models.

The exponential convergence of Eq. (B2) to its stationary
distribution π suggests that Markov Chain Monte Carlo is a
practical method for sampling from π . That is, if Eq. (B2)
can be initialized in any convenient state θ0 and the evolution
of the system is simulated until its first passage through krelax

of periods through the device, then the final state θkrelax will
be approximately sampled from π . The number of relax-
ation periods krelax should not need to be very large if the

convergence of Eq. (B2) to π is indeed exponential for the
system under study. The computational cost of this sampling
method will be neglected from the cost analysis of computing
the indirect mobility in Appendix C. However, an empirical
examination of its performance in practice will be presented
in Sec. III B for the example of nanoparticles in the slit-well
system (Sec. II B).

Finally, assuming that the system is initialized according
to the stationary distribution, the Markov chain central limit
theorem can be applied to deduce the distribution of Eq. (B1).
In general, the Markov chain central limit theorem states that
in the limit of large k, for any real-valued function g of the
stationary Markov chain state (θi, ti,i+1),

ρ

[
k−1∑
i=0

g(θi, ti,i+1)

]
→ N [k〈g(θ0, t0,1)〉, kσ 2]. (B5)

This result closely resembles the classical central limit the-
orem. For instance, 〈g(θ0, t0,1)〉 is the ensemble average of
g(θ0, t0,1) taken with respect to the stationary distribution π .
However, the quantity σ in Eq. (B5) is not simply the variance
of g; see below.

For the choice g(θi, ti,i+1) = ti,i+1, and since τk =∑k−1
i=0 ti,i+1 and τ1 = t0,1, it follows that

ρ(τk ) → N (k〈τ1〉, kσ 2), (B6)

where 〈τ1〉 is the mean first-passage time across the first pe-
riodic subunit when the analytes are initialized according to
π (θ0). The parameter controlling the variance of τk is

σ 2 = varπ (t0,1) + 2
∞∑

i=1

covπ (t0,1, ti,i+1), (B7)

where varπ and covπ denote variances and covariances, re-
spectively, computed when the system is initialized according
to π (θ0). Since the ti,i+1 are all identically distributed, the
relationship can be rewritten in the form

σ 2 = varπ (t0,1)

[
1 + 2

∞∑
i=1

corrπ (t0,1, ti,i+1)

]
, (B8)

where corrπ (t0,1, ti,i+1) are the correlations between distinct
crossing times. The first term is the variance of the first-
passage time across any single periodic subunit. The terms
in the series capture the correlations in the passage times
ti,i+1 across distinct subunits i, which are mediated by the
correlations in the degrees of freedom θi. In the special case
where these correlations are all zero, we recover i.i.d. behavior
in the {ti,i+1}k−1

i=0 and the result reduces to the standard central
limit theorem.

3. The number of subunits k that have been crossed
at least once at the time t

Consider the (discrete) random variable k̃(t ), the number
of channels that the analyte has crossed at least once at time
t . The probability that k̃(t ), exceeds some threshold k is given
by

P(k̃(t ) � k) = P(τk � t ) =
∫ t

0
ρ(τk )dτk . (B9)
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Under the conditions leading to Eq. (B6), this integral can be
approximated for large k (or, equivalently, large t) as

P[k̃(t ) � k] ≈ 1

2

[
1 + erf

(
t − k〈τ1〉√

2kσ 2

)]
. (B10)

From Eq. (B10), the probability mass function of k at any
(large) time t can be obtained as

P[k̃(t ) = k] = P[k̃(t ) � k] − P[k̃(t ) � k + 1]. (B11)

However, a more useful form can be deduced by making a
discrete-to-continuous approximation, i.e., by pretending that
k is a continuous random variable. When k is large, which is
the limit of interest, this is an arbitrarily good approximation.
Given this, it is therefore sensible to say that the limiting
probability density function for k after a long time t is

ρt (k) ≈ −∂ρ[k̃(t ) � k]

∂k
= t + k〈τ1〉√

8πk3σ 2
exp

[
− (t − k〈τ1〉)2

2kσ 2

]
.

(B12)

Although ρt (k) is a probability density function, the corre-
sponding probability mass function is approximately

P
[
k̃(t ) = k

] ≈
∫ k+0.5

k−0.5
ρt (k)dk ≈ ρt (k). (B13)

At long times, ρt (k) changes very little from k − 0.5 to k +
0.5, and this approximation is again arbitrarily good. In other
words, ρt (k) can be interpreted fairly as the probability that,
at time t , the analyte has reached xk at least once but has not
yet reached xk+1.

4. The position distribution at long times

Equation (B12) does not directly describe the position of
the analyte at a time t . During the time interval after its first
passage to xk and before its first passage to xk+1, the analyte
can potentially move to any position with x < xk+1. However,
as argued below, the distinction between k(t ) and x(t )/L is
negligible at long times, so Eq. (B12) is in fact an acceptable
proxy for the position distribution. The discussion is in the
same spirit as that put forth in Reimann et al. [73].

Consider the analyte’s x position, x(t ), in the time interval
of duration tk,k+1 occurring between τk (when it first reaches
xk) and τk+1 (when it first reaches xk+1). Write x(t ) = xk+1 −
δx(t ), such that δx(t ) is the distance from the analyte’s current
position to xk . The motion of the analyte in the direction of
−x̂ carries an energetic cost, as it opposes the direction of the
applied force. This is in addition to any entropic cost incurred
for moving through the periodic MNFD. Thus, the probability
of observing the analyte at x = xk+1 − δx at any point during
this time interval will decrease rapidly when δx � L.

More importantly, by the system’s periodicity and the
Markov chain’s stationarity, it must be that the dynamics of
the random variable δx do not depend on k (although corre-
lations between consecutive period crossings are possible).
Thus, the typical size of δx at any time between τk and τk+1

is independent of k. For sufficiently large k, the typical dis-
tance that an analyte might move in the −x̂ direction after
reaching xk and before reaching xk+1 is therefore arbitrarily
small compared to the total distance it has traveled since
t = 0. Similarly, the duration tk,k+1 will be a small fraction

of the total time τk . Thus, although the analyte may briefly
move short distances away from xk before reaching xk+1, these
fluctuations do not affect the ensemble dynamics in the limit
of long time or, equivalently, large k.

Making the substitution x ≈ kL − δx in Eq. (B12) yields

ρt (x + δx ) ≈ Lt + (x + δx )〈τ1〉√
8π (x + δx )3(Lσ 2)

× exp

(
− (Lt − (x + δx )〈τ1〉)2

2(x + δx )(Lσ 2)

)
. (B14)

Equation (B14) gives a mean of

〈x(t )〉 = L
t

〈τ1〉 + L
1

2

σ 2

〈τ1〉2
− 〈δx〉 (B15)

and a variance of

var[x(t )] = L2 σ 2

〈τ1〉2

t

〈τ1〉 + L2 5

4

σ 4

〈τ1〉4
+ var(δx ). (B16)

As argued above, the statistics of δx are roughly independent
of time on the timescale of period-to-period transport. In par-
ticular, we must have that 〈δx/t〉 and var(δx/t ) converge to
zero for large t .

At long times, we also find that Eq. (B14) converges to a
normal distribution (Appendix B 4 a). In this limit, the con-
stant terms in Eqs. (B15) and (B16) are negligible, and

ρt (x) → N
(

L
t

〈τ1〉 , L2 σ 2

〈τ1〉2

t

〈τ1〉
)

. (B17)

In this form, it is clear that, on long timescales, distance is
naturally counted in units of L, and time in units of 〈τ1〉 (see
Lindner et al. [75] for related modeling).

Finally, it follows from Eqs. (B15) or (B17) that

lim
t→∞

〈x(t )〉
t

= L

〈τ1〉 . (B18)

Dividing both sides by �, we recover the desired result:
Eq. (1) for the direct mobility is equivalent to Eq. (2) for the
indirect mobility.

An additional result is that the quantity

Deff = 1

2

σ 2

〈τ1〉2

L2

〈τ1〉 (B19)

behaves as an effective diffusion coefficient for the analyte.
The ratio σ/〈τ1〉 is almost the coefficient of variation of τ1. It
differs because σ contains corrections due to the correlations
between consecutive crossing times [Eq. (B8)]. Thus, we see
that the model nicely reflects how correlations directly impact
the dispersion of analytes as they travel through the system.

a. The limiting position distribution at long times is Gaussian

This section contains the derivation that the probability
density function in Eq. (B12) converges to the probability
density function of a normal distribution. Consider the shifted
and scaled variable

q =
k − t

μ

σ
μ

√
t
μ

, (B20)
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which at large times will have a mean approaching zero and a
variance approaching one. This has probability density func-
tion

ρ(q; t ) =
1 + 1

2
σ√
μt q√

2π
(
1 + σ√

μt q
)3

exp

[
− q2

2
(
1 + σ√

μt q
)
]
. (B21)

When considering values of q that are small compared to
√

μt
σ

,
the distribution will be very close to its limiting form of

ρ(q; t ) → 1√
2π

exp

(
−q2

2

)
= N (0, 1). (B22)

At any fixed t , no matter how large, the distribution of q will
differ from this limiting form for sufficiently large q, i.e., in
the distant tails of the distribution. However, given that the
distribution is normalized, at very large t , the total probability
assigned to these distant tails will be vanishingly small. The
same derivation applies to the distribution in terms of x + δx,
rather than k [Eq. (B14)].

APPENDIX C: CONVERGENCE ANALYSIS

In this section, we will analyze and compare the numerical
properties of the direct and indirect mobility formulations.
Specifically, we will examine the computational cost of es-
timating each kind of mobility using molecular dynamics
simulations of the analyte moving through the periodic ge-
ometry. Certain simplifying assumptions will be needed to
advance the analysis. Most importantly, the analysis of the di-
rect mobility will neglect the dynamics of δx (Appendix B 4),
and the analysis of the indirect mobility will be based on
the assumption that first-passage times are exponentially dis-
tributed at long times. The predicted scaling behaviors will
be compared to numerical results on the example described in
Sec. II B.

The underlying simulation implementation is assumed to
be identical between the two cases, except for boundary and
termination conditions. In particular, we will not consider
the convergence of numerical error with respect to the dis-
cretization scheme. The error introduced by discretizing the
equations of motion depends on the discretization scheme.
Better schemes can be combined with either mobility for-
mulation, and this consideration is essentially orthogonal to
the comparison being made here. Of course, the discretization
error may propagate differently in the simulations that would
be used to calculate direct and indirect mobilities. Thus, in
practice, some residual numerical error will always exist be-
tween the two.

1. Convergence of direct mobility

The direct mobility is typically estimated as

μ̂direct = 1

�tdirect

[
1

Ndirect

Ndirect∑
j=1

x( j)

]
, (C1)

where Ndirect molecules are simulated (independently) for a
long period of time tdirect and the final states are used to
estimate the direct mobility. In practice, tdirect is commonly
chosen approximately as the time after which at least a certain

number of periods kdirect ≈ tdirect/〈τ1〉 will have been traversed
on average.

Equations (B15) and (B16) from Appendix B, allow us
to predict the limiting behavior of the relative error between
μ̂direct and the true direct mobility μdirect. For large tdirect, each
particle’s position is identically and independently normally
distributed with mean and variance given by Eqs. (B15) and
(B16). The relative error is thus also normally distributed, with

mean

(
μ̂direct − μdirect

μdirect

)
≈

(
1

2

σ 2

〈τ1〉2
− 〈δx〉

L

)
1

kdirect
, (C2)

stderr

(
μ̂direct − μdirect

μdirect

)
≈ σ

〈τ1〉
1√

Ndirectkdirect
, (C3)

where we have ignored terms of order O[1/(kdirect
√

Ndirect )]
in the standard error. The mean relative error depends on the
behavior of 〈δx〉, which is outside the scope of the present
study. In the following discussion, we will consider the simple
case of 〈δx〉 ≈ 0, which we expect to be reasonable for highly
driven systems. As we will see in the numerical demonstra-
tions (Sec. III C), 〈δx〉 plays an important role in weakly driven
systems.

The mean relative error [Eq. (C2)] indicates a bias due to
the finite simulation time with which the direct mobility is
being estimated. It cannot be reduced except by increasing
kdirect, and it decays at a rate of O(1/kdirect ). Conversely, the
standard relative error [Eq. (C3)] captures the intrinsic noise
in the mobility estimator. This decays as O(1/

√
kdirect ), which

is slower than the decay of the mean relative error. Thus, the
direct mobility estimator will be statistically indistinguishable
from an unbiased estimator for sufficiently long runtimes.

The limiting behavior of the direct mobility estimator is
jointly affected by kdirect and Ndirect. A reasonable choice (see,
e.g., Mark and Baram [82]) for a single scalar error is the
square root of the expected square of the relative error be-
tween μ̂direct and the true direct mobility μdirect:

ε2
direct := E

[(
μ̂direct − μdirect

μdirect

)2]
≈ bias2 + sdterr2, (C4)

where bias is the mean relative error given by Eq. (C2) and
stderr is the standard relative error given by Eq. (C3).

2. Convergence of indirect mobility

Estimating the indirect mobility is tantamount to estimat-
ing the mean first-passage time of particles crossing a single
period starting from the initial conditions x = x0 and θ0 ∼
π (θ ). We will assume that the stationary distribution π (θ0)
is known and/or can be sampled efficiently. A careful cost
analysis of this sampling process is relegated to future work.

First, let us consider estimating the indirect mobility using

μ̂indirect = L

�

(
1

Nindirect

Nindirect∑
j=1

τ
( j)
1

)−1

, (C5)

which is based on sampling Nindirect instances τ
( j)
1 of the

first-passage time. It may be difficult in general to ascertain
whether this is an unbiased estimator of the indirect mobility.
To make progress on this and other questions, we propose that
it is reasonable to assume that the first-passage time across
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one period is roughly exponentially distributed at long times.
Thus, throughout the rest of this discussion, we will assume

ρ(τ1) ≈ 1

τ ∗ exp
(
− τ1

τ ∗
)

(C6)

at large τ1, where τ ∗ is some constant. Heuristically, this will
be the case for systems in which the first-passage process
converges to a steady-state behavior after initial transient be-
havior decays. It is consistent with the spirit of Kramers theory
(Appendix A 2) since we are restricting our attention to the
residual first-passage process on long timescales (compared
to all other timescales of relaxation in the system). This can
be justified more rigorously for many typical systems by
considering the behavior of the eigenfunctions of the Smolu-
chowski equation in the presence of an absorber (e.g., as done
by Grigoriev et al. [83] when studying the narrow escape
problem); in this case, τ ∗ will be the first eigenvalue of the
PDE. In particular, although the equivalence of indirect and
direct mobilities was proven in Appendix B for any system,
including those where transient dynamics are nonnegligible,
our error analysis in this section will apply to convergence
rates within the limit of long times after transient phenomena
have abated.

In the case of an exponential distribution, it is known that
the simple estimate used in Eq. (C5) is indeed a maximum
likelihood estimator but is nonetheless biased. Specifically,
the limiting relative error in the mobility estimator for expo-
nentially distributed first-passage times is simply

mean

(
μ̂indirect − μindirect

μindirect

)
≈ 1

Nindirect
. (C7)

In any case, since the Nindirect samples of τ
( j)
1 are inde-

pendent, we can estimate the standard error of the indirect
mobility estimator in Eq. (C5). The error in the estimate of
〈τ1〉 will go as

stderr

(
〈τ1〉 − 1

Nindirect

Nindirect∑
j=1

τ
( j)
1

)
≈ σ0√

Nindirect
, (C8)

where we have introduced the notation σ0 := stddev(τ1) to
indicate the standard deviation of τ1. Propagating the uncer-
tainty therefore yields that

stderr

(
μ̂indirect − μindirect

μindirect

)
= σ0

〈τ1〉
1√

Nindirect
. (C9)

Note that, as expected, the standard error of the indirect mobil-
ity estimator scales as O(1/

√
Nindirect ). This bias is negligible

relative to the standard error for sufficiently large Nindirect. The
total error will therefore also converge as

εindirect ≈ σ0

〈τ1〉
1√

Nindirect
. (C10)

In our experience, the coefficient of variation is of order one,
and the bias is thus at most a 1% correction to Eq. (C10).

3. Comparing convergence: Entirely serial computation

First, let us analyze the runtimes of the direct and indirect
mobility estimators in the case where all computations are per-
formed in serial. Then the total runtime for the direct mobility

estimator will be proportional to

Tdirect = tdirectNdirect ≈ 〈τ1〉kdirectNdirect, (C11)

up to a constant factor based on the implementation of the
simulations (i.e., the real time elapsed per unit of simulation
time simulated). We will assume for the rest of this section that
this proportionality factor is some constant and omit it from
the discussion.

The error of the direct mobility estimator can be decreased
by increasing either kdirect or Ndirect. The runtime is linear in
each of these, and the standard relative error depends equally
on both quantities. However, the bias depends only on kdirect,
and so the best choice in this circumstance is to fix Ndirect = 1.
Thus, using Eqs. (C11) and (C4), the runtime necessary to
reach a small relative error ε scales as

Tdirect

〈τ1〉 ≈ 1

2

σ 2

〈τ1〉2

1

ε2
(1 +

√
1 + ε2) → σ 2

〈τ1〉2

1

ε2
. (C12)

The term 1 + √
1 + ε2 is very nearly equal to two for reason-

able values of ε (say, below 10%).
Similarly, the total runtime for the indirect mobility esti-

mator will be approximately proportional to

Tindirect ≈ 〈τ1〉Nindirect (C13)

for large Nindirect. Using Eqs. (C13) and (C10), we find that its
runtime will therefore grow as

Tindirect

〈τ1〉 ≈ σ 2
0

〈τ1〉2

1

ε2
. (C14)

Therefore, in the case of purely serial computing, the two
formulations are nearly identical. Both have runtimes of order
O(1/ε2). The convergence of the direct mobility estimator is
influenced by crossing time correlations (via σ ), whereas the
indirect mobility estimator is not. The direct mobility estima-
tor will exhibit more error in highly correlated systems than
the indirect mobility estimator. However, correctly sampling
the stationary distribution required for the indirect mobility
estimator may become more difficult in such systems. In any
case, neither algorithm is clearly advantageous when compu-
tations are done in serial.

4. Comparing convergence: Entirely parallel computation

Now, suppose instead that all sampling of trajectories will
be computed entirely in parallel. Although the total number
of floating-point operations will be the same as in the case of
serial computation, in the case of parallel computation, it is
often of more interest to consider the total elapsed time from
the start of the algorithm to the termination of the last parallel
thread of the computation.

For the direct mobility estimator, every parallel thread has
the same fixed runtime (up to fluctuations in the computing
speed). Thus, the total time elapsed will simply be propor-
tional to the duration of each trajectory:

Tdirect = tdirect ≈ 〈τ1〉kdirect. (C15)

The standard relative error will be vanishingly small, so the
error will be dominated by the bias. Thus, the runtime will
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now converge as

Tdirect

〈τ1〉 ≈ 1

2

σ 2

〈τ1〉2

1

ε
. (C16)

This is substantially better than in the case of purely serial
computation [Eq. (C12)] and is now of order O(1/ε).

Assessing the total time elapsed for the indirect mobility
estimator is more complicated. Because the indirect mobility
is independently sampling the first-passage time, each sam-
ple’s runtime is a stochastic quantity. In the case of serial
computation, the central limit theorem ensures that the esti-
mate in Eq. (C13) will be fairly accurate for large Nindirect.
However, if trajectories are computed entirely in parallel, then
the elapsed time from start to finish will be dictated by the
sample of the maximum first-passage time rather than the
mean first passage time:

Tindirect ≈ max
Nindirect

(
τ

( j)
1

)
. (C17)

Naturally, the sample maximum will depend on the simulated
ensemble size Nindirect.

The typical maximum first-passage time can be estimated
if we again suppose that, at long times, the first-passage time
is exponentially distributed. Setting the cumulative distribu-
tion of Eq. (C6) equal to 1 − (1/Nindirect ) yields the following
estimate for the time at which the last particle will escape:

1

Nindirect
≈ exp

(
−Tindirect

τ ∗
)

(C18)

⇒ Tindirect ≈ τ ∗ ln (Nindirect ). (C19)

A more rigorous justification for this runtime estimate can
be obtained by considering the distribution of the maximum
of an ensemble of i.i.d. exponentially distributed variables.
By appealing to Poisson processes and harmonic numbers,
one can recover the logarithmic scaling of Tindirect with
Nindirect again. Incidentally, when the coefficient of variation
of the first-passage time is greater than one, the argument to
the logarithm in Eq. (C19) should, in fact, be the fraction
of the population belonging to long tails of the distribution.
However, because the dependence is logarithmic, the effect of
this correction is small.

Note that this perspective implicitly assumes that all paral-
lel computation hardware remains reserved for the respective
calculations until all trajectories are completed. This is, in
fact, true for the direct mobility estimator since all parallel
computations will have the same runtime. Conversely, most
samples generated towards the indirect mobility estimator will
have runtimes much smaller than the maximum first-passage
time. Thus, Tindirect is undoubtedly an overestimate of the com-
putational cost in settings where parallel computing resources
can be repurposed dynamically as soon as these samples ter-
minate.

In any case, using Eq. (C19) for the runtime with Eq. (C10)
for the error, we see that the indirect mobility estimator con-
verges exponentially as

ε ≈ σ0

〈τ1〉 exp

(
−1

2

Tindirect

τ ∗

)
. (C20)

Equivalently,

Tindirect ≈ 2τ ∗ ln

(
σ0

〈τ1〉
1

ε

)
. (C21)

Thus, as ε becomes small and 1/ε becomes larger, the
required runtime grows only logarithmically. This will be ex-
ponentially faster than the convergence of the direct mobility
estimator for small ε.

The results of this analysis have some caveats. The pref-
actor in Eq. (C16) is likely overestimated in general, because
〈δx〉 has been ignored. Meanwhile, it is possible that τ ∗ �
〈τ1〉. These corrections will tend to improve the relative per-
formance of the direct mobility estimator against the indirect
mobility estimator, as is indeed observed in the numerical
demonstrations of Sec. III C. Regardless, because the indi-
rect mobility converges exponentially [Eq. (C20)], whereas
the direct mobility converges as Tdirect ∼ O(1/ε) [Eq. (C16)],
these corrections are only important in comparing behavior
at moderately large ε. When unlimited parallel computation
is available, the indirect mobility formulation will always be
much more efficient at sufficiently small ε.

5. Comparing convergence: Limited parallel computation

In practice, of course, unlimited parallelization is not feasi-
ble. Suppose that Npara samples can comfortably be simulated
in parallel. For ensemble sizes larger than this, calculations
must be broken into batches of Npara.

In this case, the direct mobility estimator’s runtime will
scale as

Tdirect ≈ 〈τ1〉kdirect

⌈
Ndirect

Npara

⌉
, (C22)

where �·� denotes the ceiling function. Because of the ceiling
function, the runtime does not increase with the number of
parallel trajectories until Ndirect reaches an integral multiple
of Npara. Thus, the best choice of Ndirect is certainly at least
Npara. However, going from Ndirect = Npara to Ndirect = 2Npara

increases the runtime by a factor of two while leaving the
bias [Eq. (C2)] unchanged. Increasing kdirect by a factor of two
would have the same impact on runtime and standard relative
error but would also decrease the bias. Mirroring the reasoning
from Appendix C 3, we thus find that the optimal choice is
precisely Ndirect = Npara.

Using Eq. (C4) with Ndirect = Npara and Eq. (C22) yields
the runtime necessary to attain a target accuracy ε:

Tdirect

〈τ1〉 = 1

2

σ 2

〈τ1〉2

1

ε2

1

Npara
[1 +

√
1 + (εNpara )2]. (C23)

This is similar to the result for serial computation [Eq. (C12)]
but differs in two places. First, the prefactor of 1/Npara corre-
sponds to the acceleration of convergence by a factor of Npara

in the small-ε limit. Here, the error is dominated by noise
[Eq. (C3)] and ε ∼ O(1/

√
Tdirect ). Increasing the number of

independent samples is essentially as beneficial as increasing
kdirect by the same amount.

However, the term (εNpara )2 inside the square root of
Eq. (C23) corresponds to an acceleration at larger values
of ε. Since the computational cost does not increase with
Nindirect until Ndirect = Npara, the convergence for Ndirect < Npara

045304-18



PARALLEL COMPUTING FOR MOBILITIES IN PERIODIC … PHYSICAL REVIEW E 106, 045304 (2022)

is essentially the same as in the case of unlimited parallel
computation. Specifically, when εNpara � 1

1 +
√

1 + (εNpara )2 ≈ εNpara, (C24)

which implies that

Tdirect

〈τ1〉 ≈ 1

2

σ 2

〈τ1〉2

1

ε
. (C25)

In other words, when Ndirect < Npara, the error is dominated
by bias [Eq. (C2)], and the convergence is of order ε ∼
O(1/Tdirect ).

Consider now the indirect mobility estimator. Its runtime
in the case of limited parallel computation depends on the
manner in which it is implemented. We will consider two ap-
proaches. To enable these more complicated analyses, we will
assume first-passage times are distributed exponentially as per
Eq. (C19) with τ ∗ ≈ 〈τ1〉. Accounting for deviations from a
single exponential distribution makes these algorithms more
challenging to analyze. Conservative approximations can be
obtained by increasing the runtime estimates by τ ∗/〈τ1〉.

First, consider an algorithm for computing the indirect
mobility estimator in which Nindirect trajectories are initiated
at once and evolved in time at the same rate. The first Npara

trajectories are incremented by one timestep, then the next
Npara are incremented once, and so on until all trajectories
have been incremented once. Early in the simulation, it will
take �Nindirect/Npara� passes to increment all trajectories by
one timestep. As the simulation advances and some events
terminate, fewer passes will be required to increment time.
In this case, the runtime will scale as

Tindirect

〈τ1〉 ≈ ln (Nlast ) (C26)

+
M−1∑
k=1

ln

[
Nindirect − (k − 1)Npara

Nindirect − kNpara

]
[M − (k − 1)]

(C27)

= (4M − 2) ln(M ) − ln(M!) + ln(Nlast ), (C28)

≈ (3M − 2) ln(M ) + M + 1

2
ln(2πM ) + ln(Nlast ),

(C29)

where M = �Nindirect/Npara� and Nlast = Nindirect − (M −
1)Npara. The factor of ln(Nlast ) accounts for the maximum
first-passage time in that final batch. The approximation in
Eq. (C29) is based on Stirling’s approximation, and reveals
that this runtime is O[M ln(M )].

Consider next an alternative implementation of the indirect
mobility estimator with limited parallel computation. In this
case, the simulation begins by initializing only Npara trajecto-
ries. A new trajectory is initiated on the same thread whenever
a trajectory terminates until a total of Nindirect has been
initiated. In this case, the runtime will scale as

Tindirect

〈τ1〉 ≈ Nindirect − Nmin

Npara
+ ln (Nmin), (C30)

where Nmin = min(Nindirect, Npara ). The first term estimates the
time until a total of Nindirect trajectories have been initiated,

and the second term estimates the time required for the sim-
ulations to terminate thereafter. This algorithm’s runtime is
O(Nindirect ).

Surprisingly, this second implementation is consistently
faster than the first one. There are two reasons for this. First,
it ensures that no parallel computing threads are idle until the
last batch of simulations when some idling is inevitable. More
important, however, is that the second algorithm allows for
a natural balancing of fast and slow events across different
threads. Threads on which events terminate quickly will more
quickly be reinitialized with new events. Conversely, in the
first algorithm, all events are simulated independently so that
the maximum first-passage time overall Nindirect events factors
into the overall runtime. Worse, the speed at which these long
trajectories are simulated is impaired by a factor of O(M ) for
most of the runtime. We will proceed with the analysis of the
second, faster algorithm, but we include the analysis of the
first version here as a warning to the reader.

Equation (C30) can be written more explicitly as

Tindirect

〈τ1〉 ≈
{

ln (Nindirect ), Nindirect � Npara,
Nindirect
Npara

+ ln (Npara ) − 1, Nindirect > Npara.

(C31)

Reversing Eq. (C10), we find that the number of samples nec-
essary for the indirect mobility estimator to achieve a target
relative error ε is

Nindirect = σ 2
0

〈τ1〉2

1

ε2
. (C32)

Substituting Eq. (C32) into Eq. (C31) yields the runtime re-
quired to achieve the target accuracy. When Nindirect � Npara,

Tindirect

〈τ1〉 ≈ 2 ln

(
σ0

〈τ1〉
1

ε

)
. (C33)

This is equivalent to Eq. (C20). In this regime, the error be-
haves as if there were unlimited parallelism and so decreases
exponentially with runtime.

Conversely, when Nindirect > Npara,

Tindirect

〈τ1〉 ≈ σ 2
0

〈τ1〉2

1

ε2

1

Npara
+ ln (Npara ) − 1. (C34)

This is very similar to the result for entirely serial computation
[Eq. (C14)], but accelerated by a factor of Npara. The ln(Npara )
term arises here because the large parallel batches are more
vulnerable to rare long-duration events. However, this term is
negligible in the limit of Nindirect � Npara and the error scales
as O(1/

√
Tindirect ), as expected. In fact, on the limit of small

target error and/or small Npara, the two mobility formulations
are once again essentially equivalent up to a factor of ψ =
σ/σ0.

Figure 7 in the main body of the paper summarizes the the-
oretically predicted ratio of runtimes for the direct and indirect
mobilities; ψ was factored out from the direct mobility run-
time. Figure 7(a) shows the predicted ratio as a function of
the final relative error ε. The colors blue, orange, green corre-
spond to Npara = 105, 104, 103, respectively. A typical modern
consumer-grade GPU can effectively deliver tens of thousands
of parallel threads, justifying Npara = 104 for single-body
molecule simulations. Parallelizing across ten such GPUs is
reasonably economical in many cases, motivating the case
Npara = 105. Conversely, many-body molecules will reduce
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the number of independent simulations that can be conducted
in parallel, which motivated the choice of Npara = 103. The
different line styles correspond to coefficients of variation
equal to 3 (solid), 1 (dashed), and 0.5 (dotted), which are
values encountered in the example system from Sec. II B [23].
The lines are truncated at the values of ε such that either
kdirect or Nindirect would be required to equal 10 or less; the
various modeling assumptions certainly do not apply in that
regime.

Altogether, the theoretical analysis predicts that the indi-
rect mobility estimator will converge up to 2–70 times faster
than the direct mobility estimator under these circumstances.
The ε of maximum relative advantage is in the range of 0.1–
1%. This is often a perfectly acceptable error threshold for
assisting with the research and design of periodic MNFDs,
as modeling errors are often larger than this. As noted, at
very small target relative errors, the estimators are essentially
equivalent (i.e., the ratio converges to 1).

Figures 7(b) and 7(c) highlight the expected transitions of
the direct and indirect mobility estimators, respectively, from
parallel-like scaling to serial-like scaling. For the direct mobil-
ity estimator, this occurs at ε ≈ 1/Npara, where for the indirect
mobility estimator it occurs near ε ≈ (σ0/〈τ1〉)/

√
Npara. The ε

value of maximum relative advantage for the indirect mobility
estimator is expected to occur somewhere between these two
points.

As noted at the end of Appendix C 3, the net effect of the
correlation factor ψ does not clearly favour either algorithm.
Although it directly amplifies the predicted runtime of the
direct mobility estimator, it likely also increases the cost of
sampling the stationary distribution. In any case, it does not
appear that large correlation functions are likely to occur in
most applications, so this effect is likely to be modest. If there
are applications of interest where ψ is found to be large, then
this aspect of the algorithm should be investigated in more
detail.
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