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Equivalence between pressure- and structure-defined ionization in hot dense carbon
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The determination of the ionization of a system in the hot dense regime is a long standing issue. Recent studies
have shown inconsistencies between standard predictions using average atom models and evaluations deduced
from electronic transport properties computed with quantum molecular dynamics simulations [Bethkenhagen et
al., Phys. Rev. Res. 2, 023260 (2020)]. Here, we propose a definition of the ionization based on its effect on the
plasma structure as given by the pair distribution function (PDF), and on the concept of effective one-component
plasma (eOCP). We also introduce a definition based on the total pressure and on a modelization of the electronic
pressure. We show the equivalence of these definitions on two studies of carbon along the 100 eV isotherm and
the 10 g/cm3 isochor. Simulations along the 100 eV isotherm are obtained with the newly implemented EXT. First
principles molecular dynamics (FPMD) method in ABINIT for densities ranging from 1 to 500 g/cm3and along
the 10 g/cm3 isochor with the recently published Spectral quadrature DFT (SQDFT) simulations, between 8 and
860 eV. The resulting ionizations are compared to the predictions of the average-atom code QAAM which is based
on the muffin-tin approximation. A disagreement between the eOCP and the actual PDFs (non-OCP behavior) is
interpreted as the onset of bonding in the system.

DOI: 10.1103/PhysRevE.106.045204

I. INTRODUCTION

The ionization in a hot dense matter system is a quantity of
fundamental interest since it drives the thermodynamic prop-
erties such as the pressure and the electronic properties such
as conductivity or reflectivity. Recent experiments in the Gbar
regime, have shown the crucial role of the ionization of inner
atomic states in the compressibility of carbon [1]. However,
since the ionization does not correspond to a quantum observ-
able, it cannot be measured directly and its evaluation remains
subject of discussions. Let us mention the experiments using
pulsed electrical discharges on metallic wires that allowed first
evaluations of the ionizations in the eV-kbar region through
the measurement of the electrical conductivity [2,3].

Usually, the ionization is a byproduct of average atom
(AA) codes, solving the Schrödinger, or the Dirac equation for
a single atom in a box. In a multicenter three dimen-
sional density functional theory (DFT) resolution with the
Kohn-Sham ansatz (KS-DFT), such as in ABINIT [4], there
is no simple way to determine a number of free electrons
per atom, since we only know the global electronic density,
shared by the whole system. Driver et al. provided an approx-
imation based on the integrated density of states [5]. More
recently, the ionization has been estimated from the electrical
conductivity computed from a Kubo-Greenwood formulation,
using the concept of valence and conduction electrons with the
associated sum rules [6]. This approach shows significantly
higher ionization than the one given by an AA code such as
PURGATORIO [7], by 20% in average. This work has triggered

new studies using various AA models such as the Quantum
Average Atom Model (QAAM) [8] or the neutral pseudoatom
(NPA-HNC) model [9], for which the ionization is directly
deduced from the electronic description. To our knowledge
there are no simple approaches allowing for a direct evaluation
of the average ionization from a Quantum Molecular Dynam-
ics (QMD) simulation (the molecular dynamics version of a
KS-DFT or density matrix resolution of the N-body problem).
There is also no unique definition of the ionization making it a
difficult concept to grasp. For hot dense systems, the pressure,
which is a straightforward product of QMD simulations, is
nevertheless a signature of the mean ionization. The structure
of the plasma, as given by the ion-ion pair distribution func-
tion (PDF), is another manifestation of the average ionization,
through the effective charge of ions.

Whether along the 100 eV isotherm or the 10 g/cm3

isochor, carbon crosses regions with very different properties.
They can be characterized by the coupling of the ions, and the
degeneracy of the electrons. Note that both quantities involve
the average ionization or the mean ionization state [10], we
refer to Q to make a clear distinction with the atomic number
Z (0 � Q � Z), being aware that this denomination remains
elusive in some cases.

The behavior of the ions is characterized by the ionic
coupling parameter, the ratio of the average potential energy
to the kinetic energy. In atomic units, � = Q2/a T , where
a is the Wigner-Seitz radius a = (3/4πn)1/3/aB, aB the Bohr
radius, and n the ionic density. T is the ionic temperature
(in Hartree) and Q is the mean ionic charge which depends
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FIG. 1. Ionizations versus density from average-atom theories
along the 100 eV carbon isotherm. Blue solid line: PURGATORIO,
green solid line: TF, green dashed line: TFD. The solid black line
is the conductivity ionization [6]. Symbols are the charge computed
from the PURGATORIO pressure with option (1): red triangles; option
(2): red crosses, and option (3): red squares. The corresponding
degeneracy parameter θ , computed with an average ionization of 4, is
shown on the upper x axis. The solid black line shows the ionization
deduced from the conductivity [6], and the solid violet line with
diamonds the NPA-HNC evaluation [9].

on the electronic temperature Te. For simple systems, such
as the one component plasma (OCP), the knowledge of this
parameter allows for a complete description of the system
(thermodynamic [11], structure [12] and transport [13]).

The quantum character of the electrons, the degeneracy, is
measured by θ = Te/TF , ratio of the electronic temperature to
the Fermi temperature (kBTF = 1/2(3π2ne)2/3, with ne = Qn,

and kB the Boltzmann constant). This parameter, computed
for an average ionization of 4, is displayed in Fig. 1 (upper
scales) and reported in the third column of Tables I and II.
Along the 100 eV carbon isotherm, in the Gigabar regime
(100 TPa), the system transits from a kinetic regime at low
density (θ � 1), where the thermally activated ionization is
described by the Saha equations (left side of Fig. 1) to a de-
generate system at high density (θ � 1), where the ionization
results from orbitals overlap (right side of Fig. 1). At contrast,
along an isochor, the system which is partially degenerate at
low temperature, becomes more and more classical at high
temperature. Along the isotherm, the minimum of ionization
occurs in the vicinity of θ = 1, which corresponds to the
transition between the two regimes. Such a transition between
a degenerate system to a classical one has been recently ob-
served for deuterium by a reflectivity measurement on the
Omega laser [14].

Also given in the fourth column of Tables I and II, the
finite temperature inverse screening length as fitted by [15],
which interpolates between the Thomas-Fermi result in the
degenerate regime, and the Debye-Hückel result in the clas-
sical region. Along the 100 eV isotherm (Table I), κ is of
order of the unity and almost constant. Along the 10 g/cm3

isochor (Table II) κ decreases from 2 to 0.5 with increasing
temperature.

The aim of this paper is to show the equivalence of the
ionization deduced from the pressure QP and the ionization
QS deduced from the ionic structure. After reviewing recent
results on carbon ionization, we establish a simple model to
compute the ionization QP for a given pressure. This formu-
lation is tested against pressures given by the PURGATORIO

model. We then introduce the evaluation of the ionization by
the structure QS by matching the PDF to the OCP one. These
two independent evaluations are tested along the 100 eV car-
bon isotherm from EXT. First principles molecular dynamics
(FPMD) simulations for densities ranging from 1 to 500 g/cm3,
and along the 10 g/cm3 carbon isochore from Spectral quadra-
ture DFT (SQDFT) simulations [16] for temperatures ranging
from 0.1 to 10 MK. These evaluations are eventually com-
pared to the predictions of the average atom code QAAM

[8]. Finally, taking advantage of the equivalence of these two
definitions, we build a non-OCP behavior parameter which is

TABLE I. Properties of carbon along the 100 eV isotherm from EXT. FPMD simulations. For each density, we give the Wigner-Seitz radius
a in atomic units, the degeneracy parameter θ , the finite temperature inverse screening length κ a, the number of orbitals needed for a 64 carbon
atoms system and for a minimum occupation of 10−4, the pressure in 102 GPa (Mbar), the effective coupling parameter �, the ionizations QS

and QP, and the pressure coupling parameter �P (see Sec. VII).

ρ a θ κ a NKS-DFT P � QS QP �P

g/cm3 aB 102 GPa

1 3.180 7.6 1.05 48100 41.5 1.6 4.30 4.15 1.5
2 2.524 5.1 1.13 28160 79.5 1.7 3.97 3.92 1.7
5 1.859 2.8 1.27 13600 191.4 2.1 3.79 3.69 2.0
10 1.476 1.8 1.37 7680 383.1 2.4 3.61 3.62 2.4
20 1.171 1.1 1.50 4352 804 3.2 3.71 3.67 3.1
50 0.863 0.6 1.57 2048 2376 4.8 3.90 3.92 4.8
100 0.685 0.4 1.54 1280 6063 7.0 4.20 4.19 7.0
200 0.544 0.2 1.44 768 17142 10 4.47 4.45 9.9
500 0.401 0.1 1.30 576 76508 17 5.00 4.79 15.6
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TABLE II. Properties of carbon along the 10 g/cm3 isochor (a = 1.476 aB) from SQDFT simulations. For each temperature, we give the
degeneracy parameter θ , the finite temperature inverse screening length κ a, the pressure in 102 GPa (Mbars), the effective coupling parameter
�, the ionizations QS and QP, and the pressure coupling parameter �p (see Sec. VII).

T T θ κ a P � QS QP �P

MK eV 102 GPa

0.1 8.62 0.20 2.17 43.46 14 2.56 2.37 12.0
0.2 17.24 0.38 2.09 69.30 8 2.74 2.63 7.4
0.5 43.10 0.89 1.77 157.7 4 3.06 3.12 4.2
0.75 64.65 1.28 1.57 238.8 3 3.24 3.34 3.2
1 86.2 1.65 1.43 330.0 2.5 3.42 3.58 2.7
2 172.4 2.82 1.16 771.6 2.0 4.33 4.47 2.1
5 431.0 6.17 0.82 2260.0 1.2 5.30 5.50 1.3
10 862.0 11.72 0.61 4722.2 0.7 5.72 5.81 0.7

related to the onset of binding structures in the carbon plasma.
The EXT. FPMD, SQDFT, and QAAM models are described in
Appendices A, B, and C, respectively.

II. AVERAGE ATOM PREDICTIONS

A straightforward way to get insight on the ionization is to
solve the radial Thomas-Fermi (TF) equation for one atom
in a box representative of the density, and to compute the
radial distribution of the electronic density. Here we face a
first choice for defining the ionization: do we take the elec-
tronic density at the edge or the electronic states with positive
energy? These two definitions differ, in general by 10%, and
are notoriously wrong at low density and/or at low temper-
ature. Adding a Dirac exchange correction (TFD), improves
the prediction at low temperature.

A more accurate approach is brought by a full quantum-
mechanical resolution of an AA model such as PURGATO-
RIO [7], TARTARUS [17], atoMEC [18], QAAM [8], AVION

[19], and the neutral pseudoatom (NPA-HNC) model [9],
where for the latter a ionic structure is incorporated. The
points of the NPA-HNC model also show that the intro-
duction of an ionic structure in an AA model, by a
Hyper-netted chains (HNC) calculation, or a variational
estimation using hard spheres or OCP, does not always
improve the prediction, as we noted with the SCAALP
model [20,21].

Let us mention also the models based on Saha-Boltzmann
equations that can be coupled to collisional-radiative models
to produce opacities and a detailed description of the ionic
composition [22]. These models, are limited in density, and
also need the computation of atomic data and ionization po-
tential depression; thus introducing additional parameters.

We present in Fig. 1 a comparison of the ionizations pre-
dicted by a selection of AA models. The green solid line
and the green dashed line are, respectively, the TF and TFD
ionizations. The blue heavy curve is the PURGATORIO curve
reported in Ref. [6], the solid black line is the ionization
computed from the conductivity [6], and the solid violet line
with diamonds is the NPA-HNC evaluation [9]. One can see
that a simple TFD prediction is very close to PURGATORIO

at low density, but the conductivity evaluation is higher by
about 20%.

III. THE IONIZATION FROM THE PRESSURE

One of the most obvious effects of the ionization is to drive
the total pressure. For hot and dilute systems (kinetic regime)
the pressure is given by

P = (Q + 1)kBT, (1)

where T is the temperature and kB the Boltzman constant.
This perfect gas (PG) formulation is no longer true for dense
systems, when the Fermi degenerate pressure overtakes the ki-
netic pressure. Along isotherms the electron statistics transits
from a kinetic regime (P ∝ T ), at low density, to a degenerate
regime, at high density, where the pressure only depends on
the electronic density (P ∝ n5/3

e ).
A formulation due to Nikiforov [23] interpolates between

these two regimes for the electronic pressure of the homoge-
neous electron gas,

Pele

nekBT
= 1

kBT

[
(kBT )3 + 3.36ne(kBT )3/2 + 9π4

125
n2

e

]1/3

,

(2)
where ne was previously defined.

A similar change occurs for the ions along an isotherm,
transiting from a kinetic regime at low density to a strongly
coupled regime at high density. The OCP formulation [11] of
the pressure describes this transition

POCP

nkBT
= 1 + 1

3
[0.945 44 �1/4 + 0.179 54 �−1/4 − 0.800 49],

(3)

where the first term −0.897 52 �, which corresponds to the
lattice energy, has been omitted.

In order to test these different options we have used the fit
given by Faussurier et al. [8], that reproduces the total pressure
PAA computed by the AA code QAAM in perfect agreement
with PURGATORIO. To deduce the ionization Q from the total
pressure PAA, three options can be considered:

Option 1: Both ion and electron contributions to the pres-
sure are given by the perfect gas:

PQ = Pi
PG + Pe

PG
Option 2: The ion pressure is given by the perfect gas

and the electron pressure by the Nikiforov interpolation
formula (2):

PQ = Pi
PG + Pe

Niki.
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Option 3: The ion pressure is given by the OCP model (3)
and the electron pressure by the interpolation (2):

PQ = Pi
OCP + Pe

Niki.
We then search for the mean ionization Q that gives a

difference PAA − PQ smaller than a given precision, with the
previous options 1, 2 or 3 for computing PQ. A secant al-
gorithm is used to this end starting from two estimations
bracketing the solution: the Thomas-Fermi QT F estima-
tion that overestimates the ionization and a lower bound
QTF − 20% that underestimates the ionization. Convergence
is quickly reached, and the corresponding ionic charges versus
density are represented by symbols in Fig. 1 for the three
options.

The red triangles correspond to the option (1): fully kinetic
pressure. It quickly goes wrong as soon as the first degen-
eracy effects appear. Squares correspond to option (3) and
underestimate the ionization by 5%. The best agreement with
PURGATORIO prediction is obtained with option (2), where the
pressure of the ions is given by the perfect gas and electron
pressure by the Nikiforov interpolation formula. This is not
surprising since, in AA and QMD codes, the total pressure
is given by an electronic contribution to which a perfect gas
contribution for the ions is added. To infer the ionizations
from the pressures obtained along isotherm or isochor we will
thus use option (2).

We emphasize that our estimation of the electronic pressure
is valid in the kinetic regime but also in the degenerate regime.

IV. THE IONIZATION FROM THE STRUCTURE

We propose an alternative route provided by the effect of
the ionization on the ionic structure, which is given by the
ionic PDF, a standard output of molecular dynamics simula-
tions. The ionic structure reflects the electronic distribution
(bound and free states). If the electrons are at a higher tem-
perature than the ions, the extra ionization results in a more
structured PDF (see, e.g., Refs. [24,25]). It is known that, at
sufficiently high temperature, the PDF of any pure element,
can be matched by standard OCP results that depends only in
the coupling parameter �, defining an effective OCP (eOCP)
plasma [26–29]. This matching is not perfect, and screening
effects are evidenced by the computation of the static struc-
ture factor (SSF). The limit of the SSF of the real system at
vanishing q = ka is finite and gives the compressibility, when
the one of the eOCP is zero (q2/3�). In other words, screening
appears at long distance and eOCP is meaningful at short dis-
tances [30]. At short distances, an analytical formulation made
by Ott et al. [31], provides a link between the structure of
the PDF at half height and the coupling strength. The leading
eOCP effective coupling parameter � gives an ionization

QS =
√

�aT , (4)

where QS , a, and T are expressed in atomic units. For a given
PDF, we searched for the best agreement between QMD and
the OCP one, by varying the coupling parameter. To generate
the OCP PDFs we used the parametrization [12].

One could ask why not prefer a Yukawa-based functional?
The answer is twofold: first, neglecting screening and (arbi-
trary) short-range repulsion allows for a simple one parameter
optimization. Second, to our knowledge, there are no sim-

ple analytical PDF generators for Yukawa systems. We have
tested that our effective OCP approach describes Yukawa sys-
tems with enough accuracy [32].

The accuracy of the method can be evaluated by differenti-
ating the expression (4)

dQS = 1

2

√
aT

�
d�, (5)

which in relative errors gives dQS/QS = 0.5d�/�. A varia-
tion of 10% of the effective coupling � translates into an error
of 5% in the ionization.

V. IONIZATION ALONG AN ISOTHERM

We performed EXT. FPMD simulations of carbon at 100 eV
and for densities of 1, 2, 5, 10, 20, 50, 100, 200, and 500 g/cm3

with 64 atoms, and with a total number of 500 orbitals
only instead of the recommended number for conventional
KS-DFT calculations given in column 5 of Table I. The
Perdew-Burke-Ernzerhof exchange correlation [34] was used.
We designed special all electrons projected augmented wave
(PAW) pseudopotential with the ATOMPAW code [35] with a
small augmentation radius (0.3 Bohr) to accommodate the
high densities, with a cutoff energy of 200 Hartree. Compared
to WIEN2k [36], our pseudopotential gave a Delta factor [37]
of 0.8 meV/at on the cold curve. We checked that for the
highest density (500 g/cm3), the overlap occurrences were
never higher than 10%. We took advantage of the method to
run longer simulations with a significant number of particles
and to get more accurate PDFs. Up to 10 000 time steps of
1 atomic unit were produced, from which we discarded the
first 1 000 time steps. We used an isokinetic algorithm which
is reliable for static quantities.

The comparison of the EXT. FPMD PDFs (open black cir-
cles) with the OCP one (heavy solid red lines) is shown in
Fig. 2(a). At low density (1–5 g/cm3) this eOCP concept
works very well, since electrons are fully kinetic and are
not polarized by the ions providing an excellent agreement
between simulations and eOCP. On the other side, at high
density (500 g/cm3), the electrons start being degenerate, al-
lowing for a sound eOCP description. At intermediate density
(10–50 g/cm3) the agreement is less good since the PDF
exhibits a slight bump between 1−1.5 (in a units) that cannot
be reproduced by the eOCP model. Since the eOCP model in-
volves purely repulsive interactions, we believe that this bump
signals the onset of binding leading to complex structures. In
this case we concentrated on the closest approach distance
(the feet) and on the value for g(r) = 0.5 in the matching
procedure.

The SSF obtained, for each density, by Fourier transform-
ing the PDFs are shown in Fig. 2(b) (open black circles).
The previous eOCP coupling parameters are used to produce
eOCP SSF (heavy solid red lines) using the same analytical
generators. The general agreement is excellent [38], except
at low q where the SSF of the simulations goes to a finite
value when the eOCP one goes to zero as q2/3�. This is a
manifestation of screening we have neglected in real space at
short distance, and can be corrected at low q by the expansion
(q2 + κ2)/(q2 + κ2 + 3�) shown by the heavy blue line in
Fig. 2(b) for each temperature. The corresponding inverse
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FIG. 2. PDF (a) and static structure factor (b) of carbon along the 100 eV isotherm, and for densities of 1, 2, 5, 10, 20, 50, 100, 200, and
500 g/cm3 computed with the EXT. FPMD simulations (open black circles) and matched with the OCP one (heavy red line). The blue line in
(b) is the low q expansion of the SSF for screened systems.

screening lengths, κ , are given in Table I. As shown before
[30], screening appears at low q (long distance) when at short
distance the eOCP model (without screening) is relevant.

The effective coupling parameters and the resulting struc-
ture ionizations QS are given in Table I and are reported in
Fig. 3. The pressures were averaged from the EXT. FPMD

simulations after the equilibration phase and with a statistical
error of about 1%. They are reported in Table I, and found in
average 3–4% lower than the PURGATORIO results, resulting
in lower ionizations QP by the same amount (see Fig. 3). One
can first acknowledge the coherency of the two approaches,
pressure and structure.

To ensure the validity of our findings, we compare in
Fig. 4(a) the structure obtained with the EXT. FPMD model at
10, 50, and 200 g/cm3 and 100 eV with the one resulting in
an average-atom code coupled with an HNC calculation (the
NPA-HNC model [9]). We observe an excellent agreement for
the two lowest densities (10 and 50 g/cm3), but for the highest
density (200 g/cm3), our PDF appears slightly more structured
than the HNC result (� = 10 instead of 8). This discrepancy
can be attributed to a well-known tendency of HNC to under-
estimate the structure at strong coupling. The effective OCP
result is close to the previous data but is always a little bit off
in the region 0.75 < r/a < 1.5. Although the PDFs are very
close, the ionizations deduced from these different models are
quite different in the transition zone (θ � 1) as shown by the
violet line with diamonds in Fig. 1; which we cannot explain.

QS and QP are also in good agreement with AA estimations
such as PURGATORIO [7] or QAAM [8], which suggests that
an estimation based on the electrical conductivity may be bi-
ased by the well-known underestimation of the gap of carbon
with KS-DFT techniques. It must be noted that QAAM and
PURGATORIO, which are pure average atom codes, are in

excellent agreement. The larger differences between the vari-
ous models are observed for an intermediate density of about
10 g/cm3 which corresponds to the transition between the

FIG. 3. Ionization versus density along the 100 eV carbon
isotherm. Red diamonds with errors bars are the structure estimation
QS , and red circles the pressure estimation QP, both from EXT. FPMD

simulations. The green dashed line is the QAAM estimation. [8].
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FIG. 4. (a) Pair distribution of carbon at 100 eV and for densities
of 200 (top), 50 (middle), and 10 g/cm3 (bottom). The open black cir-
cles are EXT. FPMD simulations; dashed blue lines: NPA-HNC results
and heavy solid red lines: the effective OCP with � given in Table I.
(b) Same for carbon at 10 g/cm3 and for temperatures of 0.1 (top), 1
(middle), and 10 MK (bottom), computed with the EXT. FPMD model
(open circles) and with SQDFT simulations (solid blue line).

kinetic and the degenerate regime. We will thus address this
particular isochor in the next section.

VI. IONIZATION ALONG AN ISOCHOR

Recently, Bethkenhagen et al. [16], using the spectral
quadrature DFT method (SQDFT), produced extensive simu-
lations of 64 atoms of carbon along the 10 g/cm3 isochor for
temperatures ranging from 0.1 to 10 MK (8.6 to 862 eV). In

this case, the system then goes from a degenerate state at low
temperature to an ideal state at high temperature (see Table II).

We first used the pressure given by the simulation to get
an estimation of the ionization QP as reported in Table II. We
then used the PDFs produced by the simulation to apply the
effective OCP method. Figure 5(a) displays the comparison of
the simulation data with the best OCP fit for the whole range
of temperatures. We get a very good overall agreement, except
at low temperature (0.86 < T < 86 eV) for which we observe
a bump before the one given by the OCP model. This feature
is attributed, as in the previous case, to the onset of binding
and to the tendency of carbon to form (potentially short-lived)
dimers and more complex structures. Beyond 86 eV the agree-
ment becomes really very good and allows for the definition
of an unambiguous eOCP coupling parameter from which we
get a structural QS ionization reported in Table II.

The corresponding SSFs are shown in Fig. 5(b) and, as for
the isotherm case, exhibit the expected disagreement with the
eOCP at vanishing wave number. This behavior is restituted
by the screened formula (heavy solid blue line) with screening
parameters given in Table II.

To check the compatibility of SQDFT with our EXT. FPMD

simulations, we compare in Fig. 4(b) the PDFs produced by
both approaches for 10 g/cm3 and 0.1, 1, and 10 MK (8.62,
86.2, and 862 eV). The agreement is quite good and confirms
that the disagreement with the effective OCP at 0.1 MK can-
not be attributed to the computational approach. The pressures
given by the EXT. FPMD simulations are respectively, 4 450,
32 820, and 471 200 Gpa, in excellent agreement with SQDFT
pressures given in Table II.

We have gathered in Fig. 6 and in Table II our predictions
for the ionization of carbon along the 10 g/cm3 isochor. We

0 1 2 3

r*=r/a

0

2

4

6

8

g(
r*

)

SQDFT
OCP

100 kK

200 kK

500 kK

750 kK

1 MK

2 MK

5 MK

10 MK

Γ=14

Γ=8

Γ=4

Γ=3

Γ=2.5

Γ=2

Γ=1.2

Γ=0.7

(a)

0 2 4 6 8 10

q=k a

0

2

4

6

8

S
(q

)

SQDFT
OCP
low q

100 kK

200 kK

500 kK

750 kK

1 MK

2 MK

5 MK

10 MK

Γ=14

Γ=8

Γ=4

Γ=3

Γ=2.5

Γ=2

Γ=1.2

Γ=0.7

(b)

FIG. 5. PDF (a) and static structure factor (b) of carbon along the 10 g/cm3 isochor and for temperatures of 8.6, 17.2, 43.1, 64.6, 86.2,
174.4 31.0, and 862 eV computed with the SQDFT simulations (open black circles) and matched with the OCP one (heavy red line). The blue
line in (b) is the low q expansion of the SSF for screened systems.
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FIG. 6. Ionization versus temperature along the 10 g/cm3 carbon
isochor. Red diamonds with errors bars are the structure estimation
QS , and red circles the pressure estimation QP, both from SQDFT

simulations [16]. The green dashed and the solid black lines are,
respectively, the QAAM [8] and the Massacrier et al. estimations [33].

note again the equivalence between the two definitions of the
ionization. The error bars on QS are deduced from an error of
20% on the effective coupling parameter.

The agreement with the QAAM code is good except for the
two lowest temperatures for which QAAM predicts slightly
higher ionization (� 5%). In this region a strong departure
from the eOCP is observed which we will quantify in the next
section. For comparison, we have also added the prediction of
Massacrier et al. [33], which is significantly higher (� 20%).

VII. NON-OCP BEHAVIOR

As shown from Figs. 3 and 6 and from Tables I and II,
ionizations obtained by the pressure or by the structure are
equivalent. These latter being defined by an adjustment by eye,
it would be interesting to introduce a more systematic defini-
tion. This is done by taking the pressure ionization QP and by
deducing the corresponding coupling parameter �P = Q2

P/aT
which is very close to the previous � (see Tables I and II).
We thus can define unambiguously an effective OCP through
the ionization given by the pressure. The coupling values are
nearly identical to the effective coupling leading to a PDF
almost indistinguishable from the previous one obtained by
the fitting process. We can now quantify the mismatch be-
tween the simulated and the OCP PDFs. We define a non-OCP
behavior by

�NO =
∑

i

[gi(ri ) − gOCP(ri )]
2r2

i . (6)

1 10 100

Density(g/cm
3
)

10
-5

10
-4

N
on

-O
C

P

5 2 1 0.5 0.2
θ

10 100 1000

Temperature (eV)

10
-5

10
-4

0.20.2 0.5 1 2 5 10
θ

(a) 100 eV isotherm (b) 10 g/cm
3
 isochor

FIG. 7. Non-OCP behavior along, (a): the 100 eV isotherm, and
(b): the 10 g/cm3 isochor. The dashed line represents the finite tem-
perature inverse screening length divided by 104 and the red line a
power law x−0.7.

The summation is restricted to the largest distance L/2, where
L is the length of the box in a units, explored when computing
the g(r) in a simulation of N atoms (L/a = (4π/3)1/3N1/3 =
1.612 N1/3). The lower this parameter, the closer to a pure
OCP the system is. We have represented �NO in Fig. 7 along
the 100 eV carbon isotherm (a) and along the 10 g/cm3 carbon
isochor (b). Along the isochor, the situation is rather simple:
the higher the temperature, the lower is this parameter, i.e.,
the closer to a pure OCP the system is. In the range of tem-
peratures �NO scales as ∝ T −0.7 [red line in Fig. 7(b)] and
is coherent with a decreasing screening parameter κ (dashed
line). Along the 100 eV isotherm, the situation is more com-
plex: �NO first increases up to density of about 50 g/cm3 and
after decreases with the density, with no clear scaling. Along
the isotherm, the screening parameter κ is almost constant.

VIII. CONCLUSION

We have proposed an alternative definition of the ioniza-
tion in the hot dense regime, based on molecular dynamics
simulations in the DFT framework. More precisely, using the
EXT. FPMD method, we have produced molecular dynamics
simulations along the 100 eV carbon isotherm, from which
we have extracted ionizations either from the total pressure
or from the structure by matching the PDFs with an eOCP.
These two equivalent points of view are leading to evaluation
of the ionization consistent with previous PURGATORIO and
QAAM estimations. We have also tested our approach along
the 10 g/cm3 carbon isochor with a completely different ap-
proach (SQDFT) and found the same equivalence between
pressure and structure defined ionization, still in agreement
with AA models. Finally, when this equivalence no longer
works, at low temperature or intermediate degeneracy, we
propose a parameter that measures the tendency of the system
to form bonds and complex structures (dimers, polymers).

We believe that this eOCP technique could be used in
experiments to extract an average ionization from the Fourier
transform of an x-ray diffraction image of the plasma which
shows the static structure factor [39].
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APPENDIX A: THE EXT. FPMD METHOD

Running simulations for carbon along the 100 eV isotherm,
between 1 and 500 g/cm3 is rather challenging. As said before,
we must be able to handle simulations in a kinetic regime (θ =
8) at low density and in an almost fully degenerate regime
(θ = 0.1) at high density (see Table I). In the first case the
difficulty arises from the huge number of orbitals to consider.
We can see in Table I, that up to 48 100 orbitals are needed for
a 64-atom system at the lowest density of 1 g/cm3 under the
constraint of a minimum occupation of 10−4. At high density,
if the simulation becomes much easier, due to the low number
of orbitals, special care must be brought to the pseudopotential
to avoid overlap occurrences and to allow for an almost full
ionization which supposes an all-electrons pseudopotential.

To circumvent these, the constraints we used the recently
implemented the EXT. FPMD option [40] in ABINIT to produce
KS-DFT molecular dynamics of hot systems in an economic
way. Instead of considering a number of orbitals adapted to
the density as reported in Table I, which depends on the
degeneracy parameter θ and on the minimum occupation [41],
we used a fixed number of 500 orbitals for the whole range of
densities with a constant number of 64 ions.

This economy is made possible by considering only ac-
tive orbitals that are involved in bound/free processes for
electrons. Orbitals of higher energy are left and replaced by
a free electron gas description whose density of states is
shifted by an energy U0 as evidenced by Zhang et al. [42].
This approach should not be confused with the orbital free
molecular dynamics method (OFMD [43]), since, even at very
high temperatures, inner core orbitals are preserved. It is the
ionization of 1s states that drives the maximum of shock
compressibility curve (the Hugoniot), which turns out to be
different from the one obtained by OFMD simulations.

In the EXT. FPMD approach, all contributions are split in
two parts. For example, the kinetic energy contribution reads

EK = −
Nc∑

i=1

fn
〈
ψi

∣∣∇2
∣∣ψi

〉 + 2
∫ ∞

NC

fnε
FG
n dn, (A1)

where the discrete summation is made on the Nc

Kohn-Sham orbitals ψi explicitly kept in the calculation
(here 500), and the second part involves the electron gas
energy εFG

n = 1/2(6π2n/
)2/3 of the nth (singly occupied)
orbital, 
 is the volume, β = 1/kBT is the temperature, μ is
the chemical potential, and fn = (eβ(εFG

n +U0−μ) + 1)−1 is the
Fermi-Dirac occupation (shifted by U0). There are different
strategies to set the shift in energy U0 and we choose to
average the potential energy in the whole box of simulation
[40].

All contributions are corrected by the corresponding elec-
tron gas formulations and are analytical. The kinetic energy
contribution is given by

EFG
K =

√
2

π2




β5/2
F 3

2

(
γ , βεFG

Nc

)
, (A2)

where γ = β(μ − U0) and F 3
2
(γ , ñ) is the incomplete Fermi

integral of order 3/2

F 3
2
(a, b) =

∫ ∞

b

x3/2

ex−a + 1
dx, (A3)

with the lower bound b = βεFG
Nc

and a = γ . Improved analyti-
cal expressions for Fermi integrals (complete and incomplete)
can be found in Ref. [44].

Similarly, the number of electrons reads

NFG
e =

√
2

π2




β3/2
F 1

2

(
γ , βεFG

Nc

)
. (A4)

The correction to the stress tensor is straightforward.

σ FG
αβ = − 2

3

δαβEFG

K . (A5)

The correction on the electronic pressure will automatically
follow as it is proportional to the trace of the stress tensor
P = −σii/3, and is obviously computed after we have added
the Fermi gas contributions to the stresses.

APPENDIX B: SPECTRAL QUADRATURE (SQ) METHOD

The spectral quadrature (SQ) method [45] is a density-
matrix based O(N ) method for the solution of the Kohn-Sham
equations that is particularly well suited for calculations at
high temperature. In the SQ method, all quantities of inter-
est, such as energies, forces, and stresses, are expressed as
bilinear forms or sums of bilinear forms which are then ap-
proximated by quadrature rules that remain spatially localized
by exploiting the locality of electronic interactions in real
space [46], i.e., the exponential decay of the density matrix
at finite temperature [47–50]. In the absence of truncation, the
method becomes mathematically equivalent to the recursion
method [51,52] for the choice of Gauss quadrature, while
for Clenshaw-Curtis quadrature, the classical Fermi operator
expansion (FOE) [53,54] in Chebyshev polynomials is re-
covered. Being formulated in terms of the finite-temperature
density matrix, the method is applicable to metallic and in-
sulating systems alike, with increasing efficiency at higher
temperature as the Fermi operator becomes smoother and the
density matrix becomes more localized [55]. O(N ) scaling
is obtained by exploiting the locality of the density matrix
at finite temperature, while the exact diagonalization limit
is obtained to desired accuracy with increasing quadrature
order and localization radius. Convergence to standard O(N3)
plane-wave results, for metallic and insulating systems alike,
is readily obtained [55,56].

While mathematically equivalent to classical FOE methods
in the absence of truncation for a particular choice of quadra-
ture, the more general SQ formulation affords a number of
advantages in practice [55,56]. These include: (1) The method
is expected to be more robust since it explicitly accounts
for the effect of truncation on the Chebyshev expansion.
(2) The method computes only the elements of the density
matrix needed to evaluate quantities of interest—e.g., only
diagonal elements to obtain densities and energies—rather
than computing the full density matrix (to specified threshold)
as in FOE methods. (3) The method computes the Fermi
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energy without storage or recomputation of Chebyshev ma-
trices as required in FOE methods. (4) The method admits
a decomposition of the global Hamiltonian into local sub-
Hamiltonians in real space, reducing key computations to
local sub-Hamiltonian matrix-vector multiplies rather than
global full-Hamiltonian matrix-matrix multiplies as in FOE
methods. Since the associated local multiplies are small (ac-
cording to the decay of the density matrix) and independent
of one another, the method is particularly well suited to
massively parallel implementation; whereas the global sparse
matrix-matrix multiplies required in FOE methods pose sig-
nificant challenges for parallel implementation [57].

APPENDIX C: QAAM CODE

The nonrelativistic version of the quantum average-atom
model QAAM is used [8]. QAAM is based on the muffin-tin
approximation to describe the electronic structure. Assuming
that the electrons are in local thermodynamic equilibrium at
the temperature Te and using the finite-temperature density-
functional-theory in the local density approximation [58–60],
the average-atom equations reads

[−h̄2/(2me)∇2 + Vie(r)]ψa(r) = εaψa(r), (C1)

where h̄ is the reduced Planck constant, me is the electron
rest mass, and εa a one-electron energy. a ≡ n� for the bound
states and a ≡ ε� for the continuum states, where n(�) is the
principal (orbital) quantum number. Vie(r) is the Kohn-Sham
potential

Vie(r) = −Z2
e

r
+ e2

∫
dr′ ne(r′)

|r − r′| + Vxc(r), (C2)

where e is the elementary charge and Z is the nuclear charge.
Vxc(r) is the finite-temperature exchange-correlation potential
[61]. The one-electron wave function

ψa(r) = Pa(r)

r
Y�a,m�a

(θ, φ)χmsa
(σ ) (C3)

introduces the spherical harmonics Y�,m(θ, φ) and the spin
function χms (σ ). The bound and continuum wave func-
tions are normalized such that

∫ +∞
0 drPn�(r)Pn′�(r) = δnn′ and∫ +∞

0 drPε�(r)Pε′�(r) = δ(ε − ε′).
The total electron density is ne(r) = ne,b(r) + ne, f (r),

where

ne,b(r) = 1

4πr2

∑
n�

f (εn�, μ, Te)D�Pn�(r)2

and

ne, f (r) = 1

4πr2

∑
l

∫ +∞

0
dε f (ε, μ, Te)D�Pε�(r)2.

D� = 4� + 2 and f (x, μ, Te) = [1 + e(x−μ)/kBTe ]−1 is the
Fermi-Dirac distribution function. μ is the chemical potential
determined such that

∫ a
0 dr4πr2ne(r) = Z , where a is the

previously defined Wigner-Seitz radius (see Sec. I). Assuming
that Vie(r) = 0 for r � a, the wave functions and the Kohn-
Sham potential are self-consistently computed. Concerning
the bound states, principal quantum number values up to
15 can be considered. Concerning the continuum states, the
maximum orbital quantum number �max is set equal to 15.
Following Blenski and Ishikawa [62], the contribution of or-
bital quantum number higher than �max is evaluated using a
well-known sum rule obeyed by the Bessel functions. Once
the self-consistent process complete, the average ionization
Q is evaluated using Q = 4π

3 a3ne(a) [63].
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