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Time-integral iteration method for two-dimensional anomalous transport
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A methodology is developed to describe time-dependent phenomena associated with nonlocal transport in
complex, two-dimensional geometries. It is an extension of the “iterative method” introduced previously to
solve steady-state transport problems [Maggs and Morales, Phys. Rev. E 99, 013307 (2019)], and it is based on
the “jumping particle” concepts associated with the continuous-time random walk (CTRW) model. The method
presented explicitly evaluates the time integral contained in the CTRW master equation. A modified version of
the Mittag-Leffler function is used for the waiting-time probability distributions to incorporate memory effects.
Calculations of the propagation of “anomalous transport waves” in various systems, with and without memory,
illustrate the technique.
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I. INTRODUCTION

It is widely perceived that frontier investigations of trans-
port phenomena of fundamental and practical interest require
the consideration of nonlocal processes [1–7]. In the spatial
domain, the nonlocality can arise from the presence of large
fluctuations and/or ballistic effects that connect distant posi-
tions. In the time domain, nonlocality results from an effective
memory associated with the intrinsic structure of the medium
where transport occurs. In practice, spatial nonlocality and
temporal memory are at work simultaneously, to varying
degrees. In addition, most of the nonlocal transport environ-
ments are bounded, and often their characterizing parameters
exhibit a zero-order nonuniformity. The present investigation
considers a methodology for incorporating these essential fea-
tures in nonlocal transport problems where a two-dimensional
(2D) geometry is appropriate.

In this manuscript, the “jumping particle” iterative method
for modeling steady-state nonlocal transport in bounded,
nonuniform systems [8] is extended to include time depen-
dence. The method for solving time-dependent problems is
based upon the explicit, numerical evaluation of the time
integrals contained in the master equation of the continuous-
time random walk (CTRW) jumping particle model [9]. The
jumping particle concept involves a waiting-time probability
distribution function (PDF) and a jump distance PDF. The
waiting-time PDF is time-dependent but is assumed to be
independent of spatial location. A modified version of the
one-parameter Mittag-Leffler function [10] is used to model
a waiting-time PDF with memory of limited persistence. The
jump distance PDF depends upon spatial location but is as-
sumed independent of time. Two-parameter Lévy α-stable
distributions are used to model the jump PDFs.

It should be noted that an extensive literature exists that
describes nonlocal transport in terms of fractional deriva-
tives [11–16]. Since this approach results from an asymptotic
approximation to the underlying CRTW jumping particle

model, it is, in a certain sense, automatically included in
the integral formulation being considered here. The scaling
properties extracted from the fractional derivative formulation
are reproduced by the numerical solutions of the time-integral,
iterative method.

The manuscript is organized as follows. Section II presents
the basis for the transport equation considered. Section III
explains how the time integration is handled. A test of the
methodology is provided for the 1D limit in Sec. IV. The
properties of anomalous transport waves are illustrated in
Sec. V. A discussion of the results and conclusions are found
in Sec. VI. Appendix A explains the connection between the
jumping particle formulation and Fick’s law.

II. TRANSPORT EQUATION

It is desired to compute the spatial profile resulting from
nonlocal transport of some scalar quantity (e.g., density or
temperature) in a 2D system. Transport is presumed to arise
from “information carriers” (e.g., particles) that experience
a transition or “jump” from one spatial location to another
as described by the continuous-time random walk (CTRW)
model [2]. The master equation describing the probability of
a “particle” being at position (x̄, ȳ) at time t̄ , P(t̄, x̄, ȳ), is

P(t̄, x̄, ȳ)

= δ(x̄)δ(ȳ)

{
1 −

∫ t̄

0
ψ (t̄ ′)dt̄ ′

}
+

∫ t̄

0
dt̄

′
ψ (t̄ − t̄ ′)

×
∫ ∞

−∞

∫ ∞

−∞
dx̄

′
dȳ

′
η(p(x̄

′
, ȳ′), x̄− x̄

′
, ȳ− ȳ′)P(t̄ ′, x̄′, ȳ′).

(1)

The quantities t̄, x̄, ȳ are time and spatial position
measured in physical units. The quantity P(t̄, x̄, ȳ) is a
joint probability distribution function in the CTRW model,
with a δ-function initial condition, P(t̄ = 0, x̄, ȳ) = δ(x̄)δ(ȳ).
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The waiting-time probability, the probability of a particle
not jumping in the time interval [0, t̄], is ψ (t̄ )dt̄ and the
probability of a particle jumping from (x̄

′
, ȳ′) to (x̄, ȳ) is

η(p(x̄
′
, ȳ′), x̄ − x̄

′
, ȳ − ȳ′)dx̄

′
dȳ

′
. In this study, the waiting-

time probability distribution function, ψ (t̄ ), is assumed to be
independent of position, and the jump probability distribu-
tion function, η(p(x̄, ȳ), x̄, ȳ), is assumed to be independent
of time. The parameters characterizing the jump distribution
are allowed to vary with position, and the function p(x̄, ȳ)
specifies the parameter variation. The initial condition is taken
to be that all the particles are located at (x̄, ȳ) = 0.

The ability to choose the functional form of the waiting-
time probability distribution function allows for studying a
variety of temporal evolutions (e.g., memory effects) that
result in subdiffusive dynamics. Here the waiting-time prob-
ability distribution function (PDF) is taken to be proportional
to the single-parameter Mittag-Leffler function defined as

Ea(−(t̄/τ̄ )a) =
∞∑

k=0

(−(t̄/τ̄ )a)k

�(1 + ak)
, 0 < a � 1. (2)

The time variable ranges from 0 to tup = t̄up/τ̄ , where t̄up

denotes the upper limit, in physical units, of the time inter-
val considered in numerical calculations. The parameter τ̄ is
referred to as the “characteristic waiting time” of the waiting-
time PDF. Setting the parameter a in Eq. (2) equal to unity
(a = 1) results in a waiting-time PDF that is the Poisson dis-
tribution. The Poisson distribution is the exponential function
and represents a Markovian process in which memory effects
are absent. The Mittag-Leffler PDF with parameter values be-
tween 0 and 1 (0 < a < 1) represents processes with memory,
as the asymptotic form of the Mittag-Leffler function exhibits
an algebraic tail and scales as Ea(−t̄ a) ∼ 1/t̄ a. Probability
distribution functions are normalized so that the integral of
the function over time is unity. Since the “tail” of the Mittag-
Leffler function does not decay rapidly, it is necessary to use
some technique to truncate the slowly decaying tail to obtain a
finite result for the normalizing integral. Truncation is accom-
plished here by limiting the length of the slowly decaying tail
to t̄ � t̄lim. For t̄ > t̄lim, the Mittag-Leffler function is modified
to decay as exp(−(t̄ − t̄lim )). If t̄ is everywhere less than
t̄lim (i.e., t̄lim � t̄), then the tail is limited by using “top-hat”
truncation in the time dimension over the range 0 � t̄ � t̄up.
There is no need to modify the Mittag-Leffler function when
a = 1 because it is already exponentially decaying. The time
interval over which a modified Mittag-Leffler PDF represents
a memory effect is determined by the value of the parameter,
t̄lim. Therefore, the parameter t̄lim is referred to, in the follow-
ing discussion, as the memory persistence time.

If the parameter a is between 0 and 1, 0 < a < 1, the
modified Mittag-Leffler function, Ẽa, has the integral repre-
sentation [17]{

Ẽa(−(t̄/τ̄ )a) = ∫ ∞
0 dx e− xt̄

τ̄

π

x(a−1)sin(πa)
x2a+2xacos(πa)+1

Ẽa(0) = 1; 0 < a < 1

}
;

[
t̄

τ̄
� t̄lim

τ̄

]
,

Ẽa(−(t̄/τ̄ )a)

= Ẽa(−(t̄lim/τ̄ )a)exp

(
−

(
t̄

τ̄
− t̄lim

τ̄

))
;

[
t̄

τ̄
>

t̄lim
τ̄

]
.

(3)

The integral representation of the Mittag-Leffler function
given in Eq. (3) is useful to obtain a numerical evaluation
of the function when 0 < a < 1. To ensure that the modified
Mittag-Leffler function represents a PDF, it is normalized so
that its integral is unity over the interval sampled,

Ẽa → Ẽa/

∫ tup

0
dt ′Ẽa(t ′). (4)

In lieu of using a Laplace transform approach and obtain-
ing fractional temporal derivative operators [18], this study
presents solutions of the transport equation based upon the
explicit numerical evaluation of the time integrals in Eq. (1)
using ψ = Ẽa.

Solutions to Eq. (1) are numerically computed at discrete
spatial points, (x̄i, ȳ j ). In a discrete space, it is conve-
nient to introduce an expression for the transported scalar,
T (t̄, x̄, ȳ), in terms of individual probabilities T (t̄, x̄, ȳ) =∑

i

∑
j Ai, j Pi, j (t̄, x̄, ȳ), where each Pi, j (t̄, x̄, ȳ) satisfies

Eq. (1) with the following initial condition: Pi, j (0, x̄, ȳ) =
δ(x̄ − x̄i )δ(ȳ − ȳ j ). The use of the variable name T for the
generic scalar is motivated by applications in which it rep-
resents the temperature of a bounded system. From the
definition of the scalar T, the transport equation for T (t̄, x̄, ȳ)
is obtained from Eq. (1),

T (t̄, x̄, ȳ)

= T (0, x̄, ȳ)Iψ (t̄ ) + S(t̄, x̄, ȳ) +
∫ t̄

0
ds ψ (t − s)

×
∫∫ ∞

−∞
dx̄′dȳ′ η(p

(
x̄

′
, ȳ′), x̄ − x̄

′
, ȳ − ȳ′) T (s, x̄′, ȳ′).

(5)

The term S(t̄, x̄, ȳ) in Eq. (5) has been added to rep-
resent the contribution from external sources and Iψ (t̄ ) =
1− ∫ t̄

o ds ψ (s). The term T (0, x̄, ȳ)Iψ (t̄ ) represents the system
response to the initial conditions. The term Iψ (t̄ ) decays with
time, and the rate of decay depends upon the parameters
chosen for the Mittag-Leffler function. For example, with a
Poisson waiting-time distribution (a = 1), Iψ (t̄ ) = e−t̄ .

For practical applications, it is useful to have equations that
describe systems of limited physical extent. For this purpose,
it is assumed that the jump distributions, η, are nonzero only
over a limited spatial region, R. Further, assume that the extent
of the region R is characterized by a scale length, L̄, and
that all points in the region have magnitudes less than L̄,
{|x̄|, |ȳ| � L̄}. The jump distributions are required to have zero
value outside the spatial region R. The “truncation” of the
jump distributions is accomplished by multiplying them by
a “top-hat” function,

Fth(x̄, ȳ) =
[

1, (x̄, ȳ) ∈ R,

0, (x̄, ȳ) /∈ R.
(6)

Consider the truncation of the jump distribution with
peak located at the point (x̄, ȳ), η(p(x̄, ȳ), x̄ − x̄

′
, ȳ − ȳ′).

Since the jump distributions are probability densities, it is
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required that∫ ∞

−∞
dȳ

′
∫ ∞

−∞
dx̄′ η(p(x̄, ȳ), x̄ − x̄

′
, ȳ − ȳ′) Fth(x̄

′
, ȳ′)

=
∫∫
©

R
dx̄′dȳ

′
η(p(x̄, ȳ), x̄ − x̄

′
, ȳ − ȳ′)

= 1; ∀ (x̄, ȳ) ∈ R. (7)

Normalizing the position variables to L̄ and the time to τ̄

gives dimensionless spatial coordinates (x, y) = (x̄/L̄, ȳ/L̄,),
and dimensionless time, t = t̄/τ̄ . For convenience in numer-
ical calculation of the spatial integral, change the notation to
a double integral and set T, the temperature, to zero for points
outside the region R, T (t, x, y) = 0, (x, y) /∈ R. The condition
that the temperature is zero outside the region R is a boundary
condition for the system. In the scaled coordinates, the model
transport equation for T (t, x, y) is

T (t, x, y)

=
∫ t

0
ds ψ (t − s)

∫ 1

0

∫ 1

0
dx′dy′η′(p(x′, y′), x− x′, y− y′)

× T (s, x′, y′) + T0(x, y)Iψ (t ) + S(t, x, y); T (t, x, y)

= 0, (x, y) /∈ R. (8)

In Eq. (8), the dimensionless jump distribution is denoted
by η′ = ηL̄2, and T0(x, y) is a term used to set the initial value
of the temperature profile.

The jump distribution functions are chosen to be Lévy
α-stable distributions as discussed in Maggs and Morales [8].
The Lévy α-stable distributions are characterized by two pa-
rameters, (α, γ ). The order of the distribution, α, is restricted
to the range 1 � α � 2, and the width of the distribution, γ ,
is positive (γ > 0). Lévy distributions are computed numeri-
cally using an inverse Fourier transform of the characteristic
function, L̃(α, γ , kF ), with kF denoting the Fourier wave
number. An example of the characteristic function suitable for
describing an isotropic jump distribution in 2D geometry with
(x, y) coordinates is

ln[L̃(α, γ , kF )] = −(γ |kF |)α, |kF | = (
k2

x + k2
y

) 1
2 . (9)

The parameters (α, γ ) are allowed to be functions of po-
sition, in which case the jump distributions are separately
computed at each spatial point in the domain using the val-
ues of (α, γ ) at that point. The characteristic function of an
anisotropic form of the Lévy distribution, suitable for de-
scribing transport in magnetic confinement devices, is given
in [21]. Finding specific values of the parameters, [α, γ , τ̄ ],
needed to apply the transport model to a physical system
depends upon experimental measurements of the system to be
modeled. An example of the methods used to select parameter
values for modeling the steady-state temperature profile in the
LHD helical plasma device is given in [21].

The model transport system confined to the spatial region,
R, is taken to consist of a contiguous spatial region Rtr , in
which transport is nonlocal, surrounded by a heat reservoir
region, Rhr, Rtr + Rhr = R. The interface between the regions
Rtr and Rhr is treated in the following fashion. Jumps are
allowed from the transport region Rtr into the heat reservoir
region Rhr, but not from Rhr into the region Rtr . The jump

distributions in region Rtr are set to zero outside the region
R by using “top-hat” truncation as described by Eq. (6). The
truncated jump distributions are renormalized, as described
by Eq. (7), so that their spatial integrals are unity as befits a
probability distribution. The temperature of the heat reservoir
region, Rhr, is maintained at zero so that particles jumping
from Rtr into Rhr transport energy out of Rtr , and thus represent
an energy loss process for the transport region.

The discrete form of Eq. (8) is obtained by using a cal-
culation grid of (Nt + 1) × (N + 1) × (N + 1), with separate
points to represent the scalar variable, T (t, x, y). The grid rep-
resenting the spatial part of T (t, x, y) has (N + 1) × (N + 1)
evenly spaced points, with spacing h, (xi = ih, y j = jh) and
0 � i � N ; 0 � j � N . The vector representing time has
(Nt + 1) evenly spaced points with spacing 
t , tm = m
t ,
and 0 � m � Nt . The discrete form of Eq. (8) is then given
as

T (m, i, j) = Iψ (m)T0(i, j) + S(m, i, j)

+
[

m∑
k=0


t ψ (m, k)

×
{

N∑
l=0

N∑
n=0

h2η′
SA(i, l, n, j)T (k, l, n)

}
. (10)

In Eq. (10), the symbol, [�, indicates that the sum over
the time index k is to be interpreted as a symbolic represen-
tation of a numerical approximation to the time integral. The
sizes of the temporal and spatial grids are determined by the
physical phenomena under study. For spatial grids, a grid size
small enough to properly model the transport coefficients is
needed. Transport coefficients are proportional to γ α , with γ

the width of the jump distributions. The size of the spacing
in the spatial grid, h, must be small enough that γ � h to get
an accurate representation of the jump distributions. The size
of the temporal grid must be large enough to encompass the
time intervals of the physical processes under study. The time
step is always greater than or equal to τ̄ , the characteristic
time of the waiting-time distribution. Temporal phenomena
with timescales less than τ̄ are not represented in the jumping
particle model.

The self-adjoint form of the jump probability distribution
function is represented by the term η′

SA in Eq. (10). It is
crucial for obtaining correct solutions, when the parameters
are allowed to have spatial gradients, that the self-adjoint (SA)
form of the jump distribution is used. The self-adjoint form
is obtained by ensuring that η′

SA remains unchanged under
interchange of i with l (x with x′) and j with n (y with y′),

η′
SA(i, l, n, j) = [η′(i, l, n, j) + η′(l, i, j, n)]/2. (11)

III. TIME INTEGRATION

The time integral term in Eq. (10) can be recast as[
m∑

k=0


tψ (m, k)

{
N∑

l=0

N∑
n=0

h2η′
SA(i, l, n, j) T (k, l, n)

}

=
[

m∑
k=0


tψ (m, k)Tsi(k, :, :) , (12)
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with the spatial iteration term (denoted by subscript “si”)
given by

Tsi(k, :, :) =
N∑

l=0

N∑
n=0

h2η′
SA(:, l, n, :) T (k, l, n). (13)

The process for finding solutions using Eq. (12) is as fol-
lows. An initial profile in space and time is chosen. Starting
from that profile, an updated spatial profile at each time step is
computed. The updated profile at time step k, Tnext (k, :, :), is
computed from the old profile at time step k, Tprev(k, :, :). The
updated profile is initially zero and is computed from the pre-
vious profile by adding up all the contributions from jumping
particles originating at each point in Rtr . That is, Tnext (k, :, :) =
Tprev(k, i, m) η

′
SA(i, :, :, m) + Tnext (k, :, :) for all points (i, m)

in Rtr . After the jumps from all the points in Rtr are added
up, the temperature in the heat reservoir region, Rhr, is set
to zero. This process is repeated for all time steps and then
the time integral portion of Eq. (12) is computed. The pro-
cess is repeated using the updated space-time profile as the
beginning profile for the next iteration, until the changes in
the space-time profile, after iteration, are below a specified
limit.

The reader is reminded that the notation [�, involving the
sum over k in Eq. (12) represents a method for preforming
the numerical integration rather than an actual straightforward
summation. In numerical computations, the spatial iteration
term is evaluated at fixed, evenly spaced time points of the
normalized time variable t (k) = k
t = k. That is, the value
of 
t is 1 (
t = 1), so that the physical time points are
spaced at intervals of τ̄ . To speed computation, spatial pro-
files are computed only at integer values of normalized time.
This restriction limits the method to physical processes that
occur on timescales longer than the characteristic waiting
time.

Computing spatial profiles at integer values of normalized
time means the discrete time step in numerical calculations is
the characteristic waiting time τ̄ . The accuracy of a numerical
evaluation of the time integral is improved by employing the
subsampling technique. In subsampling, the temporal resolu-
tion is increased by a factor sr, referred to as the “sampling
rate.” The new time variable becomes t1 = t (0) : 1

sr : t (Nt )
and has Nsr + 1 points, Nsr = srNt . The higher resolution
waiting-time PDF becomes ψ (m1, k1) with both m1 and k1 ∈
[0, sr × Nt ] and 
t1 = 
t/sr. Using Simpson’s rule with a
sampling rate of sr = 2, or Boole’s rule with a sampling rate of
sr = 4, not only provides the advantage of improved accuracy,
but ensures that every interval of the original time variable
becomes an interval with the proper number of points for
applying the integration formulas (i.e., an odd number for both
methods). With sr = 2, 
t → 
t/2 = 
t1 and the interval
from t to t + 
t then has three points, t, t + 
t1, t + 2
t1,
and Simpson’s rule can be applied to every interval of the
original time variable. Similarly, with sr = 4, 
t → 
t/4 =

t1 and the interval from t to t + 
t then has five points,
t, t + 
t1, t + 2
t1, t + 3
t1, t + 4
t1, and Boole’s rule
can be applied to find the value of the time integral at every
integer value of normalized time. The subsampling technique
means that there is no a priori requirement on the length of the

original time variable in implementing a suitable integration
algorithm.

In the underlying nonlocal transport scheme, the spatial
profiles are computed iteratively and, at each step in the
iteration process, spatial profiles are calculated only at inte-
ger values of normalized time. With the increased temporal
resolution associated with the subsampling technique used to
compute the time integral, the spatial iteration term is required
at each subsampled time step. To decrease computation time,
linearly interpolated spatial profiles are used for time points
between integer values of the subsampled time variable. Con-
sider the spatial portion of the iteration profile at time points k1

of the subsampled time variable, T 1
si (k1, :, :). For the points k1

that correspond to integer values of the original time variable,
the values of the spatial iteration term at those points can
be used without alteration. For points k1 that are between
intervals of the original time vector, the value of the spatial
term at time point k1 is estimated using linear interpolation.
For example, using Simpson’s rule, with sr = 2, the profile at
k1 = k + 1/2 is

T 1
si

(
k1 = k + 1

2 , :, :
) = 1

2 [Tsi(k + 1, :, :) + Tsi(k, :, :)]. (14)

The interpolated spatial profile is then used at step k1 in
the computation of the time integral. Analogous linear inter-
polation of spatial profiles is used when applying Boole’s rule.
This process results in a profile with sr × Nt + 1 time points
computed from only Nt + 1 spatial profiles. Time integration
is performed using spatially interpolated profiles with Simp-
son’s rule if sr = 2 or with Boole’s rule if sr = 4. The final
output of the procedure is profiles computed at integer values
of the original normalized time variable. The subsampling
technique increases computation time by a factor of sr, so the
smallest value of sr that yields sufficient accuracy should be
used.

From a detailed comparison (not shown) of the application
of Simpson’s rule, and of Boole’s rule to the solution of a
known analytic 2D transport problem, it has been found that
both methods yield nearly identical results. Since computation
times are longest for Boole’s rule, the simpler Simpson’s
rule is chosen as the preferred method. In all subsequent
computations reported here, Simpson’s rule is used for time
integration.

IV. ANOMALOUS TRANSPORT IN 1D

The ability of the time-dependent jumping particle model
to represent various anomalous transport phenomena is
demonstrated by considering transport in the simpler limit of
one spatial dimension. The 1D version of Eq. (10) is

T (m, i) = T0(i)Iψ (m) + S(m, i)

+
[

m∑
k=0


t ψ (m, k)

{
N∑

l=0

h η′
SA(i, l )T (k, l )

}
.

(15)

Equation (15) is solved next with various values of
model parameters to elucidate the transport phenomena rep-
resented by the model. The results of numerical computations

045201-4



TIME-INTEGRAL ITERATION METHOD FOR TWO- … PHYSICAL REVIEW E 106, 045201 (2022)

FIG. 1. The natural logarithm of Lévy-stable probability distri-
bution for three values of α as indicated. All distributions have the
same width γ = 2h.

are compared to a well-known 1D problem, namely the
temporal evolution of a δ-function pulse at t = 0, x = 0 under
a standard diffusive process (Fick’s law) with constant diffu-
sion coefficient Dc. The diffusion equation and the analytic
solution, TA(t, x), for this case are

∂T (t, x)

∂t
= Dc

∂2T (t, x)

∂x2
+ δ(t )δ(x),

TA(t, x) = 1

2
√

πDct
exp

(
− x2

4Dct

)
. (16)

In Eq. (16) dimensionless variables are used, and the di-
mensionless diffusion coefficient Dc is related to the physical
diffusion coefficient, D̄c, as Dc = D̄cτ̄ /L̄2. In the jumping
particle model, the standard diffusion situation is represented
by the parameter set, [α = 2, a = 1]. The extent to which this
limiting parameter set and the jumping particle model repre-
sent standard diffusion is discussed in detail in Appendix A.
The salient finding is that the jumping particle model equation
with [α = 2, a = 1] becomes the diffusion equation at long
times when the average jump length becomes small compared
to the effective scale length of the evolving profile.

A. Superdiffusion

The dynamics of particles in space are determined by the
“jump” probability distribution function. The jump PDFs used
in this study are proportional to two-parameter Lévy α-stable
distributions, η(α, γ , x), characterized by the parameters
[α, γ ]. The characteristic function (Fourier transform) of the
1D Lévy α-stable distribution is proportional to exp(−|γ k|α ).
Asymptotically, for values of α less than 2, 1 � α < 2, the
Lévy distribution decays as ∼ 1/|x|1+α , so the parameter α

determines how fast the tails of the distribution decay. The
parameter γ determines the width of the distribution. Fig-
ure 1 shows the natural logarithm of the jump probability
distribution for three values of α. All distributions shown in
Fig. 1 have the same width, γ = 2h, where h is the spacing
of points on the spatial calculation grid. For α = 2, the Lévy
distribution is a Maxwellian, and the width parameter γ is
related to the standard deviation σ as γ = √

2 σ .

FIG. 2. The temporal decay of the peak of an initial profile of
Gaussian shape, TA(1, x), is compared to the analytic solution for
standard diffusion (dashed curve) and three values of α (as indi-
cated). α values less than 2 are associated with the phenomenon of
superdiffusion.

To compare transport for different values of α, the temporal
decay of the analytic solution at t = 1, T (0, x) = TA(1, x) =
exp(−x2/4Dc)/2

√
πDc, is computed using the three jump

distributions shown in Fig. 1. The width of all distributions
is γ = 2h, two grid spacings, so that γ 2 = 4h2 = Dc. The
natural logarithms of the numerically computed profiles at the
value x = 0 versus the natural logarithm of time are shown in
Fig. 2. The blue trace shown in Fig. 2 is the standard diffusion
case ([α = 2, a = 1]), and, as discussed in Appendix A, the
jumping particle model solution initially departs from the an-
alytic solution (dashed black line) due to higher-order spatial
derivatives contained in the jumping particle model, but at
long times it agrees with the analytic solution. All numerical
solutions have an initial transient in which profile spreading is
slower than the analytic solution. The numerically computed
profile amplitude decays (asymptotically) at the same rate
as the analytic solution for α = 2 and at faster rates for the
other two values of α. The smaller the value of α, the faster
the profile decays. Transport at rates faster than the standard
rate of diffusion (here represented by the analytic solution) is
referred to as “superdiffusion.”

Figure 3 shows the spatial profiles at t = 100 for the cases
shown in Fig. 2. The spatial spreading of the profiles increases
for decreasing value of α. The spatial integral of the tempera-
ture profile can be thought of as a measure of energy content.
The spatial integrals are constant in time until the time that
the profile contacts the boundary. By “contacts” it is meant
that the boundary causes a noticeable change in the profile
derivative near the boundary. Once the profile contacts the
boundary, the value of the spatial integral decreases because
energy is lost to the boundary region. In the examples shown
in Fig. 3, only the α = 1.5 case contacts the boundary over the
time interval used for this calculation. Note that the analytic
spatial profile (black dashed line) and the α = 2 profile (solid
blue line) agree quite well at this late time.
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FIG. 3. The spatial profiles for the standard diffusion analytic
solution (dashed curve) and three values of α (as indicated) are
shown for a scaled time t = 100. Profile spreading is strongest for
the smallest value of α (yellow trace).

B. Subdiffusion

The time dynamics of jumping particles is determined
by the functional form of the waiting-time probability dis-
tribution function. In this study, the waiting-time PDF has
the functional form of the modified Mittag-Leffler function
given in Eq. (3). Figure 4 compares four possible waiting-
time distributions. Three are associated with examples of the
modified Mittag-Leffler function in which memory is present,
and the other is associated with the Poisson distribution in-
dicated by the label “No memory.” The three examples of
PDFs with memory all have the parameter a = 0.9. They
are distinguished by the persistence of the memory, tlim =

FIG. 4. The natural logarithm of the PDFs associated with the
modified Mittag-Leffler function is shown for a = 0.9 and three val-
ues of the memory limit parameter, tlim. Also shown for comparison
is the PDF with no memory (blue trace).

FIG. 5. Memory and memory persistence affect the rate of tem-
poral decay of an initial Gaussian spatial profile for α = 2. The
case labeled “No Limit” has tlim = 200 = tup. Compare this figure
to Fig. 2.

20, 100, 200. The case with tlim = 200 is an example of a
persistent memory, or the “no limit” case, because the length
of the time interval considered in subsequent numerical calcu-
lations is tup = 200.

To illuminate the effects of various waiting-time distri-
butions and compare results to cases of superdiffusion, the
temporal decay of the initial Gaussian profile TA(1, x) is com-
puted for the waiting-time probability distributions shown in
Fig. 4. The jump distributions for all cases are Lévy distri-
butions with α = 2, so that superdiffusion is not present. The
case with a = 1 corresponds to a Poisson waiting-time distri-
bution so that this case is the same as the α = 2 case shown in
Fig. 2. Solutions for this set of parameters [α = 2, a = 1] are
labeled as “No memory” in the figures.

Figure 5 shows the temporal decay of the initial spatial
Gaussian profile, TA(1, x), for the “No memory” case and
for three cases corresponding to the modified Mittag-Leffler
PDFs shown in Fig. 4. All cases with memory decay at a
slower rate than for the “No memory” case. This type of
behavior is referred to as “subdiffusive” behavior. The case
with persistent memory (the purple trace in Fig. 5) decays
the slowest. The case with tlim = 100 (yellow trace) decays
at a faster rate and exhibits a change in the rate of decay at
times greater than tlim. The case with the shortest memory
persistence (orange trace) decays at the fastest rate but is still
slower than the “No memory” case.

The spatial profiles at the end of the numerical calcula-
tions, t = tup = 200, are shown in Fig. 6. The rate of profile
spreading is determined by parameter a and the value of tlim.
The only profile to contact the system boundaries is the “No
memory” case; all profiles of the cases with memory are
contained within the system.

C. Mixed nonlocal transport

Figure 7 shows an example of transport when both
subdiffusion (blue trace) and superdiffusion (yellow trace)
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FIG. 6. The spatial profiles at scaled time t = 200 for the four
cases shown in Fig. 5. For the three memory cases shown, none of the
profiles reach the system boundaries, while the profile corresponding
to standard diffusion (blue trace) reaches the system boundaries.

are present. For comparison to previous results, the sub-
diffusive case with the slowest rate of profile decay
[a = 0.9, tlim = 200] is combined with the superdiffusive case
with the fastest rate of decay [a = 1, α = 1.5] to give a case
[a = 0.9, tlim = 200, α = 1.5]. The combined case (orange
trace) has a decay rate intermediate between the subdiffusive
and superdiffusive cases. Figure 7(a) shows the natural log-
arithm of the profile amplitude at x = 0 versus the natural
logarithm of time for all three cases. Figure 7(b) compares
the spatial profiles for the three cases at the last time point
in the calculation, t = 200. It is apparent that subdiffusive
processes are very effective at slowing the rate of decay and
spatial spreading of the temperature profile.

V. ANOMALOUS TRANSPORT WAVES

For a system whose dynamics is governed by a transport
equation, such as the jumping particle equation, temporal os-
cillations in the source propagate but not as plane waves. That
is, the trajectories of constant phase of the spatial and temporal
oscillations are not proportional to x = ω/k t . As an example,
consider the diffusion equation with constant diffusion coef-
ficient Dc = 1, ∂T/∂t = ∂2T/∂x2. A solution proportional to
exp(−i(ωt−kx)) results in the phase relation iω = k2. Con-
stant phase trajectories for the diffusion equation are parabolic
rather than linear, and the amplitude experiences strong spatial
attenuation. It is instructive to investigate the behavior of
“wave” propagation in systems with anomalous transport [19].
Waves are generated by starting with steady-state conditions
and sinusoidally oscillating the source amplitude by a small
amount. Details of applying the iteration method to obtain
steady-state profiles are given in [8]. In cases with superdiffu-
sion and subdiffusion, constant phase trajectories in a system
with an oscillating source can be rather complicated, but all
such cases are lumped together in this study under the heading
“anomalous transport (AT) waves.” Calculations of AT waves

FIG. 7. Combining the subdiffusive process [a = 0.9,

tlim = 200, α = 2] (blue trace) with the superdiffusive process
[a = 1, α = 1.5] (yellow trace) results in an intermediate behavior
[a = 0.9, tlim = 200, α = 1.5] (orange trace). (a) The natural
logarithm of the amplitude at x = 0 vs the natural logarithm of time
for the three cases. (b) The spatial profiles at scaled time t = 200 for
the three cases.

in 1D are performed using the 1D version of Eq. (10) given by
Eq. (15).

A. AT waves in 1D

The temporal and spatial behavior of 1D oscillations in
the presence of superdiffusion and no memory (i.e., a = 1)
is calculated for three values of α: α = 2, 1.8, and 1.5. AT
waves are excited in a system in steady state by introducing
a small sinusoidal oscillation of the source. The AT wave
patterns are found by taking the difference between the system
with the oscillating source and the steady-state system.

Steady-state profiles for the three values of α are shown
in Fig. 8(a) along with the steady-state source. AT waves are
generated by modulating the source amplitude for a limited
time interval. The source amplitude is modulated by 5% for
seven cycles, as shown in Fig. 8(b).
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FIG. 8. (a) Steady-state profiles for three values of α and the cor-
responding steady-state source (dashed black line). The steady-state
source is multiplied by a factor of 100 for clarity. (b) The amplitude
of the modulated source.

Figure 9 shows contours of the difference between the
modulated profile and the steady-state profile for each case.
The time shown covers the interval after the source modula-
tion ceases. “Waves” are launched by the modulated source.
The “waves” are not plane waves, but rather profile structures
that propagate and thus resemble waves. Shown in each panel
of Fig. 9 are the locations in time and space of the wave
crests and wave phases. These two quantities can behave
differently. The wave crest is the location of the maximum
of the spatial profile at a fixed time. Note from Fig. 9 that the
location of a wave crest is at the maximum temporal extent
of a given contour. In contrast, the wave phase is the location
of the maximum of the temporal profile at a fixed position.
Figure 9 indicates that the wave phase location coincides with
the largest spatial extent of a given contour.

Figure 10(a) shows the paths of both the AT wave crests
and wave phases as functions of space and time. The solid
curves are the same as those shown in Fig. 9, but in this
figure each value of α is color-coded. The wave crest paths
show the time and space locations of the spatial maximum
of the difference profile for positive values of x-position and
for scaled times between 130 and 400. The spatial profiles
of the AT waves are shown in Fig. 10(b) for all α values at
time t = 230. The vertical yellow arrow shows the relation
of the wave crest path to the spatial profile at t = 230 for
α = 1.5. The wave phase paths show the time and space
locations of the temporal maximum for negative values of

FIG. 9. Color contours of the difference between profiles in the
modulated system and the steady-state system are shown for three
values of α. Also shown are the trajectories in space and time of the
wave crests and wave phases for each value of α (see also Fig. 10).
These waves correspond to the superdiffusion regime without mem-
ory effects (a = 1). The amplitude color bar for each panel is on the
right.

x-position and for times between 130 and 400. The maximum
in time of the AT waves is related to the maximum in time
of the source modulation. The dashed black lines are fits to
each wave crest and wave phase path. The fits have the form
x f it (t ) = a f + b f t1/α . The behavior of the wave crest paths is
the same as the self-similarity variable of the Green’s function
for 2D nonlocal transport as described by Kullberg et al. [20].
Both the wave phases and wave crests follow the space-time
behavior of the self-similarity variable, but the fitting parame-
ters (a f , b f ) differ for each case.

A method for studying superdiffusive transport in az-
imuthally symmetric 2D systems was developed by Kullberg
et al. [20]. In contrast to the techniques used in the present
study, their method is based on a fractional Laplacian op-
erator, and the temporal dynamics represented by a first
derivative in time, i.e., without memory effects. That previ-
ous study identifies a self-similarity variable, denoted as λ,
associated with the propagator function (Green’s function)
that describes the radial propagation of δ-function pulses. The
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FIG. 10. (a) The paths of the wave crests for the three values of
α are shown as functions of positive x-position and time. The paths
of the wave phase are shown for the three values of α as functions
of negative x-position and time. The solid curves are data extracted
from the contour plots shown in Fig. 9. The dashed lines (barely
visible due to overlap) are proportional to t1/α . (b) Spatial profiles
of AT waves launched by the modulated source are shown for three
values of α without memory effects (a = 1). The vertical yellow
arrow relates the wave crest to the wave crest path at t = 230.

self-similarity variable is (Eq. 42 of [20]),

λ = r̄ − r̄′

(χ̄α t̄ )1/α
= r − r′

γ t1/α
. (17)

In Eq. (17), barred variables are in physical units and
unbarred variables are normalized. The second form of the
self-similarity variable in Eq. (17) arises from defining the
transport coefficient associated with the jumping particle
model as χ̄α = γ̄ α/τ̄ , where γ = γ̄ /L is the characteristic
spatial scale of the Lévy jump distribution, and τ̄ is the
characteristic waiting time associated with the waiting-time
distribution. In 1D the self-similarity variable in Eq. (17) has
the same form as the function used to fit the wave crest paths

shown in Fig. 10(a), xfit (t ) = a f + b f t1/α with a f = x′ and
b f = λγ .

The study of AT waves when subdiffusive processes are
present also uses the method of modulating the steady-state
source amplitude by 5% for a brief time interval. The differ-
ence is that the time vector is 201 points in length, tup = 200,
and the source oscillations are present for two cycles over the
range 6 � t � 31 with an oscillation period equal to 12.5. An
illustration of the source modulation is shown in Fig. 12. Only
the behavior of wave crest paths is shown for the subdiffusive
case.

Figure 11(a) shows contours of AT wave amplitudes for
a system with α = 2, a = 0.9, and tlim = 20. The display is
limited to positive x-values in the range 0 � x � 0.5, and
to the time interval after the source oscillations are absent,
40 � t � 200. The space-time path of the AT wave crest is
indicated by the blue trace. In this case, AT waves spread
out at a rate slower than the rate for standard diffusion (a =
1). The space-time path of the crest is proportional to t0.45

(indicated by the dashed black trace) in contrast to the t0.5

dependence in the no-memory case (a = 1). With a Mittag-
Leffler waiting-time PDF, del Castillo–Negrete [18] defines a
similarity variable associated with the Green’s function, η =
x̄(χ̄1/a

αa t̄ )
−a/α = x

γ
t−a/α with χ̄αa = γ̄ α/τ̄ . The wave crest

path shown in Fig. 11(a) follows a space-time path propor-
tional to the similarity variable, x ∼ η t a/α ∼ t0.9/2 = t0.45.

Figure 11(b) illustrates AT wave propagation for the case
with α = 2, a = 0.9, and tlim = 100. Two very distinct prop-
agation regions are evident. At times shorter than the memory
persistence (t < 100), AT waves appear to propagate toward
the center of the system. At longer times, AT waves propa-
gate outwards away from the source region. An interesting
phenomenon, evident in Fig. 11(b), is an “echo” of the mod-
ulated source appearing in the system response in the time
range, 105 < t < 135. The inward propagation phenomenon
and the source echo arise because of the change in the waiting
time PDF describing this system. The slowly decaying tail
of the modified Mittag-Leffler PDF transitions to an expo-
nential decay after times exceeding the memory persistence
time (refer to Fig. 4). The slowly decaying portion of the
PDF leads to a persistence of the source profile in the wave
profile for times up to tlim. The persistence of the source
leads to the appearance of inward propagation because the
source profile dominates the wave profile. The slowly decay-
ing portion of the PDF also tends to smooth out the temporal
oscillations in the modulated source. When the PDF tran-
sitions to exponential decay, the smoothing effect is absent
and the source reappears, at low amplitude, in the system re-
sponse (the “echo”). The “echo” phenomenon occurs because
the transition from a model system with memory (a < 1)
to one with no memory (a = 1) is abrupt. Such an abrupt
transition is probably “unphysical” and may not occur in real
systems.

Figure 11(c) presents a case with a persistent memory, that
is, a case in which the persistence time is equal to or longer
than the time vector used in numerical calculations. For this
case, α = 2, a = 0.9, and tlim = 200. With persistent memory,
AT waves appear to propagate inward rather than outward
because the source profile (located in the system center)
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FIG. 11. (a) Contours illustrating AT wave propagation for a
case with limited memory, tlim = 20. As expected for a subdiffusive
process, the wave crests spread away from the center at a rate pro-
portional to t0.45 as indicated by the dashed black trace. (b) Contours
for the case in which memory lasts for 100 waiting times. While the
memory persists, the AT wave appears to propagate toward the center
of the system. At times later than the persistence time, wave crests
spread away from the center. (c) Contours illustrating AT wave prop-
agation in the case of persistent memory. With persistent memory,
AT waves appear to propagate inward because of the persistence of
the source profile at all times. A line cut of the temporal behavior at
x = 0 for these three cases is shown in Fig. 12.

becomes increasingly dominant as the wave profile decays
with time.

Figure 12 shows the temporal behavior of AT waves at
the center of the system. Figure 12(a) is an overview that
illustrates the response of each individual system shown in

FIG. 12. The temporal behavior of AT waves at the center of the
system. Panel (a) shows the response to the source modulation. Panel
(b) presents a magnified view illustrating the delayed response, or
echo, to the source in the cases with limited memory persistence.

Fig. 11 to the modulated source. For comparison, the standard
diffusion case with α = 2 and a = 1 is also shown and labeled
as “No memory.” The largest amplitude response occurs for
the system with “No memory.” Figure 12(b) is a magnifi-
cation of the curves in panel (a) that elucidates the source
“echo” response. The yellow trace in Fig. 12(b) is for the
system with memory persistence equal to 100 waiting times.
The dashed black trace shows the temporal behavior of the
source modulation. Source oscillations reappear in the system
response one persistence time (tlim = 100) after the source
oscillations begin as indicated by the arrows in Fig. 12(b).
Source oscillations also reappear in the system with shorter
memory persistence (orange trace, tlim = 20) but are not as
evident in the contour plot shown in Fig. 11(a). No source
echo is present in either the system with persistent memory
(purple trace) or the system with “No memory” (blue trace).

Figure 13(a) presents a summary view of the space-time
paths for AT wave crests shown in Fig. 11. The “No memory”
case is also included for comparison. All wave crest paths for
the cases with memory indicate that AT waves spread much
slower away from the source as compared to the standard dif-
fusion case. Figure 13(b) shows the spatial profiles at t = 200.
The profile for the “No memory” case has reached the system
walls, while all the other profiles have yet to reach the system
boundaries. The profiles for the systems with limited memory
persistence (orange and yellow traces) have shapes like that
of the “No memory” case (blue trace), a negative minimum in
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FIG. 13. (a) The space-time wave crest paths from Fig. 11 are
plotted together with the path for standard diffusion (“No memory”)
for easy comparison. (b) The spatial profiles of the waves at t = 200.
The profile for the case with a = 0.9 and tlim = 200 is positive
everywhere due to the persistence of the source profile.

the center of the system flanked by two positive maxima. The
influence of the source profile for these two cases is absent
at this late time. The mean spatial value of these two profiles
is zero. In contrast, the profile for the system with persistent
memory is positive everywhere because of the influence of the
source.

B. AT waves in 2D

Figure 14 shows contours of AT wave propagation in a 2D
system with azimuthal symmetry and α = 1.7 and a = 1.
Two values of the jump distribution width are used. One
system has γ̄ /L̄ = γ = 0.005 and the other has a jump width
twice as large, γ = 0.01. The effective transport coefficient is
proportional to γ α so that the system with a jump distribution
width two times larger has a transport coefficient 3.25 times
larger. The spatial calculation grid in the 2D system has grid
spacing h = 0.01 and the calculation time is half the size of

FIG. 14. Contours of AT wave propagation along the radial di-
rection in an azimuthally symmetric 2D system. (a) System with a
small jump distribution width, γ = 0.005. (b) System with a larger
jump distribution width, γ = 0.01.

that in the 1D calculations. As indicated by Eq. (17), propa-
gation of AT waves is expected to follow a curve proportional
to t1/α , or in this case with α = 1.7, t0.5882. The dashed black
lines in Fig. 14 are the expected paths of AT wave propagation.
The actual locations of the AT wave crests are indicated by the
solid blue traces. The jagged appearance of the actual wave
crest paths is due to the limited spatial resolution of the com-
putation grid. The two curves agree quite well for the smaller
value of γ , γ = 0.005, but the two curves diverge at late times
for the larger γ value. The propagation of AT waves in the
2D system with γ = 0.01 shows the effects of finite system
size. The system is “small” for the larger value of transport
coefficient. AT wave propagation is changed as the waves
approach the system boundary. At early times, the wave crest
trajectory [blue trace in Fig. 14(b)] follows expected behavior.
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FIG. 15. (a) Contours of AT wave amplitude with γ = 0.01 at
time t = 80 [red dashed line in Fig. 14(b)]. (b) Contours of AT
wave amplitude with γ = 0.01 at time t = 140 [blue dashed line in
Fig. 14(b)]. Solid curves are values along the dashed lines.

At intermediate times, the wave slows as it approaches the
system boundary. At very late times, the maximum value of
the wave occurs at the boundary because, at late times, the
wave has negative values over the entire system.

Contours of wave amplitude together with spatial profiles
taken along a diameter are shown in Fig. 15. Two times are
chosen for display, as indicated by the dashed lines at constant
time in Fig. 14(b). The first time at t = 80 (red dashed line)
is when the wave is not interacting with the boundary, and the
second time at t = 140 (blue dashed line) is when the wave is
interacting with the boundary.

The time-dependent jumping particle model is capable
of handling nonuniform 2D systems. As a demonstration, a
model system representing a fictional magnetic confinement
device is chosen to study the propagation of AT waves. Fig-
ure 16 displays the geometry of the magnetic surfaces of the
model system. The fictional scenario chosen mimics a trans-
port device by having very strong transport along magnetic
surfaces as opposed to transport across magnetic surfaces. The
spatial jump distributions that model this transport scenario
are described by Eq. (11) of Ref. [21]. The width of the

FIG. 16. Magnetic surfaces that mimic a magnetic confinement
device are used to provide a 2D asymmetric geometry. The jump
distribution width in the direction along magnetic surfaces (γv) varies
with position as indicated by the dashed, red contours. The jump
distribution width across magnetic surfaces is uniform. Contours
(as indicated) show the spatial shape of two jump distributions
with α = 2.

jump distribution along magnetic surfaces [6], labeled γv , is
one grid spacing in the center of the magnetic surfaces and
increases to four grid spacings in regions near the boundary,
as indicated by the red, dashed contour lines in Fig. 16. The
jump distribution width across magnetic surfaces, γu, is unity
everywhere. Two values of the α parameter are chosen to
study wave propagation: α = 2 and 1.5. Contours of the jump
probability distribution with α = 2 and these choices of γu

and γv are shown at two locations in Fig. 16. One example
is located at the center of the magnetic surfaces where γv =
γu = 1 and is isotropic. The other is in the outer regions where
γv = 4, γu = 1 and it is strongly asymmetric.

Waves are launched by modulating a source located as
shown in Fig. 16. The steady-state temperature profile as-
sociated with the source and magnetic surface geometry is
computed. Waves are launched by modulating the source
amplitude by 5% for two cycles with a period of 12.5 normal-
ized time units. The modulation occurs over the normalized
time interval 6 � t � 31. Wave behavior is studied by taking
the difference between the modulated source profile and the
steady-state profile. Figure 17 shows the waves launched by
the oscillating source for the two α values at t = 54. Contours
of spatial amplitude are shown, rather than a time-space plot,
as they present a clearer picture of the difference between
the two cases. For the time shown, the nonlocal waves with
α = 1.5 (dashed contours) have reached the center of the mag-
netic surfaces, while the local, α = 2, waves (solid contours)
have not. Both wave patterns exhibit the effects of the strong
asymmetry in the jump distributions, but the nonlocal case
propagates across and along magnetic surfaces at a faster rate
than the local case even though the jump distribution widths
are the same for the two cases. The transport coefficient is
proportional to (γ̄ /L̄)α, and since γ̄ /L̄ < 1 the α = 1.5 case
has a larger transport coefficient than the α = 2 case.

045201-12



TIME-INTEGRAL ITERATION METHOD FOR TWO- … PHYSICAL REVIEW E 106, 045201 (2022)

FIG. 17. Contours of wave amplitude for the two α values are
shown at t = 54. Solid contours show the wave pattern for α = 2 and
dashed contours for α = 1.5. The change in γv , the jump distribution
width along magnetic surfaces, from 1 in the center to 4 on the
periphery, is indicated by the red contour lines.

VI. DISCUSSION AND CONCLUSIONS

This study uses the master equation of the “jumping parti-
cle” model introduced by Montroll and Weiss [9] to model
complex nonlocal transport problems that arise in bounded
systems whose zero-order parameters vary with position. The
key elements of the model are a probability distribution for the
size of particle jumps in space and a probability distribution
for the length of time a particle “waits” before jumping. The
probability distribution functions used to represent spatial dy-
namics are Lévy α-stable distributions characterized by two
parameters: the distribution width, γ , and the distribution or-
der, α. The distribution width of the spatial PDF, γ , is referred
to as “the step size.” Lévy distributions are characterized by
“long tails” and are associated with the dynamics of superdif-
fusion. The waiting-time probability distribution is taken to be
a modified form of the Mittag-Leffler function characterized
by the parameters a and tlim. The modified version of the
function can represent a dynamic process with no memory by
setting a = 1, in which case tlim is not relevant. Processes with
memory of limited persistence are represented by choosing
a < 1 and a value of tlim less than the length of the computa-
tion time vector. The value of tlim then determines the length
of time the memory effect persists.

It is demonstrated that the jumping particle model equa-
tion with parameter values a = 1 and α = 2 contains spatial
derivatives higher than second order, giving rise to a transient
initial response that decays rapidly with time. The jumping
particle model with these parameter values represents the
standard diffusion equation at long times. The Lévy α-stable
jumping particle probability distributions with 1 � α < 2 lead
to nonlocal spatial transport that is superdiffusive, that is,
faster than Fick’s law diffusion. The modified Mittag-Leffler
waiting time distribution with a < 1 describes transport pro-
cesses with memory. Memory effects lead to subdiffusive
transport, that is, transport at rates slower than standard dif-
fusion. Limited memory persistence results in transport that is

faster than transport with persistent memory but still slower
than transport without memory. It is found that memory is
very effective at suppressing the profile spreading effects of
nonlocality.

The utility of the model in solving time-dependent prob-
lems is illustrated by investigating the propagation of waves
in situations when anomalous transport processes are present.
These so-called anomalous transport (AT) waves are investi-
gated in 1D and 2D systems by starting with a steady-state
system and sinusoidally modulating the amplitude of the
source. Both the wave maximum and the wave phase of
anomalous transport waves in 1D with nonlocal jump distribu-
tions and no memory propagate along space-time paths with
functional dependence x ∼ t1/α . Spatial nonlocality (α < 2)
leads to waves that spread faster than normal diffusion waves
(α = 2). In the situation with memory of limited persistence
(a < 1) and local diffusion (α = 2), the space-time paths as-
sociated with wave features have the functional form x ∼ t a/α

for times longer than the memory persistence time. For times
less than the memory persistence time, wave profiles are in-
fluenced by the persistence of the source profile.

The propagation of AT waves was studied in an az-
imuthally symmetric 2D system with no memory and nonlocal
spatial transport (α = 1.7). With a 101 × 101 calculation grid
and a step size of half a grid spacing (γ = 0.005), the wave
crests follow the expected space-time path, r ∼ t1/1.7. For
a step size twice as large, wave propagation is affected by
the system boundaries, illustrating that the concept of system
“size” is dependent upon the magnitude of the transport coef-
ficient.

AT wave propagation in a geometry that mimics a mag-
netic confinement device was studied as an application of the
time-dependent jumping particle model in a nonuniform 2D
system. Two transport scenarios were investigated, one with
α = 2 (local, Fick’s law transport) and the other with nonlo-
cal transport with α = 1.5. Both transport scenarios have the
same jump sizes as a function of position. Jump sizes are con-
stant and equal to one grid spacing across magnetic surfaces.
The jump size in the direction along magnetic surfaces is one
grid spacing in the center of the magnetic surfaces, and it
increases to four grid spacings towards the outer regions of the
magnetic surfaces. It is shown that the propagation speed of
AT waves is asymmetric, with waves spreading fastest along
the magnetic surfaces in concert with the transport coefficient.
Wave propagation is faster for the nonlocal case as compared
to the local case.

The advantage of the method over the explicit use of
fractional derivatives is that it can handle irregularly shaped
boundaries and spatial variations in the parameters. Since the
fractional derivative approach results from an asymptotic ap-
proximation to the underlying CRTW jumping particle model,
it is, in a certain sense, automatically included in the integral
formulation presented here. The scaling properties extracted
from the fractional derivative formulation are reproduced by
the numerical solutions of the time-integral, iterative method.

In the model, the number of free parameters is, at a min-
imum, α, γ , and the shape of the boundary. There could be
more parameters as when magnetic coordinates are used, and
γ varies along and across the field. Also, spatial variations in
any or all of the parameters can occur. Using the maximum
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size of the system to scale spatial variables is a convenience
but not a necessity. Any physically meaningful length could
in principle be used for scaling. A rectangular grid was used
for simplicity in the results shown, but the method can also
handle irregular calculation grids. Also, the method is easily
extended to 3D, but, as is natural, the computational resources
needed for its implementation become quite demanding.

Although a magnetic confinement system was used to high-
light the capabilities of the methodology (Figs. 16 and 17),
the time-dependent iteration technique should be useful for
describing general systems that exhibit anomalous trans-
port. The method can handle subdiffusive and superdiffusive
systems in which boundaries play an important role. Some ex-
amples of possible applications include anomalous transport
in living cells [23,24], in crowded polymer solutions [25] and
crowded lipid bilayers [26], flows in porous media [27] and
in nanofluids between parallel plates [28], heat fluctuations in
carbon lattices [29], and models of societal events [30,31].

APPENDIX

It is instructive to determine the extent to which the jump-
ing particle model with the parameter set [α = 2, a = 1]
represents the process of standard diffusion (Fick’s law).
When the parameter α equals 2 (α = 2), the spatial jump
distribution is a Lévy-stable distribution with α = 2 and jump
step size γ and is equivalent to a Gaussian distribution with√

2 σ = γ . The diffusion coefficient associated with this
jump distribution is Dc = γ 2. When the Mittag-Leffler pa-
rameter is unity (a = 1), the waiting-time distribution is the
Poisson distribution, which is proportional to the exponential
function, exp(−t ). The relation of the jumping particle model
to standard diffusion is investigated by comparing numerical
solutions in 1D to the analytic 1D diffusion problem given
in Eq. (16). For comparing the jumping particle model to
standard diffusion, it is useful to have a 1D version of the
time-dependent jumping particle model. The 1D version of
Eq. (10) with a Poisson waiting-time distribution is

T (t, x) =
∫ t

0
ds e−(t−s)

∫ 1

0
dx′η′(p(x′), x − x′) T (s, x′)

+ T0(x)e−t + S(t, x). (A1a)

An equation equivalent to Eq. (A1a) is∫ 1

0
dx′η′(p(x′), x − x′) T (t, x′)

= ∂T (t, x)

∂t
+ T (t, x) + S1,

S1(t, x) = S(0, x)e−t + e−t ∂[et S(t, x)]

∂t
. (A1b)

In addition, results can also be compared to the 1D trans-
port matrix model described by Maggs and Morales [22]. The
time-dependent transport matrix model equation is

T m+1 =
[

ãI+ M−1
w


t

]−1{[
−(1− ã)I+ M−1

w


t

]
T m+ M−1

w S̃m

}
.

(A2)

FIG. 18. The temporal decay of the natural logarithm of the
profile amplitude at x = 0 is compared for two numerical solutions
of the jumping particle model and the diffusion equation.

The term T m denotes the solution vector at time t =
m
t, T m = T (m, i), and the source S-tilde is S̃m = ãSm+1 +
(1−ã)Sm with ã = (3−α)/2. The identity matrix is denoted
by I , and M−1

w is the inverse of the transport matrix, Mw.
In 1D, steady-state solutions of the jumping particle model

agree closely with analytic solutions of the diffusion equa-
tion, except near the boundaries because of the boundary
interface used in the jumping particle model. The α = 2
jump distribution reasonably represents the standard Fick’s
law diffusion in the steady-state case. The temporal problem
is a different matter. To test the temporal behavior, the an-
alytic solution shown in Eq. (16) is compared to the results
of iterating the 1D time-dependent jumping particle model,
Eq. (A1a). Solutions to Eq. (A1a) are obtained by starting
with the analytic profile, TA, given in Eq. (16), evaluated at
t = 1, as an initial profile. That is, the initial profile of the
iterated solution is TA(1, x) = exp(−x2/4Dc)/2

√
πDc. This

initial profile is evolved forward in time using an iteration
of the 1D jumping particle model [Eq. (A1a)] with Simp-
son’s rule for the time integration. The iterated solution is
compared to the analytic solution in Fig. 18. The comparison
(yellow dashed line) shown in Fig. 18 is the natural logarithm
of the amplitude of the profile at x = 0 versus the natural
logarithm of time. Also shown in Fig. 18 is the solution (solid
blue trace) obtained using the time-dependent transport matrix
solutions obtained from Eq. (A2). The numerical solutions
are compared to the analytic solution, shown by the solid
orange line with a slope of −0.5 in this log-log plot. The two
numerical solutions agree with each other but differ from the
analytic solution.

The conclusion drawn from this exercise is that the time-
dependent jumping particle model, as embodied by Eqs. (A1a)
and (A2), does not represent the diffusion equation at early
times. The difference between the jumping particle model
equation and the diffusion equation can be elucidated by
considering the spatial integration term that appears in the
jumping particle model,

∫ 1
0 dx′η′(p(x′), x−x′) T (t, x′). For
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this exercise, consider a simplified version of this term,∫ 1
0 dx′η′(x−x′)T (t, x′), and change the integration variable to

x′ → x−x′′, so that the integral expression becomes∫ 1

0
dx′η′(x − x′)T (t, x′) →

∫ x+1

x
dx′′η(x′′)T (t, x − x′′).

(A3)
Expanding the expression T (t, x−x′′) in a Taylor series and

using the expression in Eq. (A3) results in∫ 1

0
dx′η′(x − x′)T (t, x′)

=
∫ x+1

x
dx′′η′(x′′)T (t, x − x′′)

= T (t, x) +
∞∑

n=1

M (2m) ∂
2mT (t, x)

∂x2m
. (A4)

In Eq. (A4), the first term on the right-hand side results
because η′(x) is a probability distribution and thus its integral
is unity. In the summation over m, only even moments appear
because the jump distributions are taken to be symmetric
functions so that odd moments are zero. The even moments
M (2m) are

M (2m)(x) =
∫ x+1

x
dx′′ (x′′)2m

2m!
η′(x′′)



∫ 1

0
dx′′ (x′′)2m

2m!
η′(x′′) = M (2m). (A5)

The moments depend upon the variable x but, if x is not
near the boundaries of the spatial interval so that the function

η′(x′′) is not truncated, the moments are constants as assumed
in the last expression in Eq. (A5). The jumping particle model
equation, Eq. (A1b), with the simplified spatial integral term,
can be written as

∂T (t, x)

∂t
=

∫ 1

0
dx′η′(x − x′)T (t, x′) − T (t, x)



∞∑

m=1

M (2m) ∂
2mT (t, x)

∂x2m
. (A6)

If only the first moment term, M (2), is kept, the jumping
particle model equation is the diffusion equation and M (2)

is the diffusion coefficient. However, in addition to the first
even moment, the jumping particle model equation contains
all the higher, even, derivatives of the spatial profile. The
2m-moment term is proportional to (γ̄ /L̄s)2m, where γ̄ is the
physical size of the average jump, and L̄s is the physical
size of the gradient scale length of the temperature profile.
The steady-state profiles associated with the jumping parti-
cle model contain these higher derivative terms, but they are
negligible if, as is generally the case, γ̄ /L̄s � 1. In the steady-
state case, the discrepancy in the profiles due to the boundary
interface difference is many orders of magnitude larger than
discrepancies associated with higher derivative terms. For the
comparison of the jumping particle model to the analytic ex-
ample given in Eq. (16), the profile scale length, L̄s = 2

√
D̄t̄ ,

increases with time while the average jump length, γ̄ , is con-
stant. Thus, the ratio γ̄ /L̄s → 0 as t → ∞ so that the jumping
particle model equation becomes the diffusion equation at
long times, and the analytic solution agrees with the numerical
solutions as indicated in Fig. 18.
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