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Short-range repulsive force model for near-contact interactions of bubbles
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We introduce a short-range repulsive force model to tackle near-contact interactions when the collision
occurs between bubbles. In contrast to the previous numerical method adopting the adaptive mesh refinement
technique, such a mesoscale model can be applied to a relatively coarse mesh, which can prevent the nonphysical
coalescence between bubbles without excessive mesh refinement. We assume that the repulsive force is inversely
proportional to the third power of distance, as a reasonable approximation to the short-range phase interactions.
The model is validated against two different experiments. In both experiments, two identical bubbles rising side
by side were considered. First, the experiment performed in a water-glycerol mixture helps determine the model
parameter K . Second, three typical combinations of bubble size and initial separation distance are simulated,
presenting different types of interactions, i.e., coalescence, bouncing coalescence, and bouncing separation,
agreeing well with the second experiment, which was performed in pure water. Owing to its simplicity, this
model can be easily implemented into existing codes, and it can be extended to the case with multiple bubbles
or droplets.
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I. INTRODUCTION

The dynamics of coalescence and/or repulsion between
bubbles has intrigued scientists and engineers for many
years owing to its ubiquitousness in natural processes and
engineering applications, such as air bubble dispersion in
oceans, enhanced heat and mass transfer by injecting bub-
bles in chemical and energy industries, and many others [1].
Its underlying physical mechanisms have been elucidated
by experiments [1–5] in the past decades. The rapidly in-
creasing capability of high-performance computing enables
researchers to understand the richer physics using high-
fidelity direct numerical simulations (DNS). For gas-liquid
flows including bubbles, a variety of DNS methods have
been proposed to track the interfaces, such as front-tracking
(FT) [6], volume-of-fluid (VOF) [7,8], phase-field (PF) [9,10],
and level-set (LS) methods [11]. The FT method utilizes
two separate meshes for the two different phases, making it
difficult to consider the coalescence between bubbles unless
involving an extra subgrid model. In principle, the other afore-
mentioned methods can capture the coalescence of bubbles.
However, they depend strongly on the spatial mesh resolution.
It is easy to understand that, as two bubbles approach each
other, nonphysical (or numerical) coalescence occurs when
their distance is less than one cell size [12]. Physically, as
two bubbles move toward each other, when they are very
close, a thin liquid film is formed in the gap, which requires a
certain drainage time before the occurrence of coalescence.
This problem involves an enormously large span of length
scales [13]: from the largest scale of bulk flow structure to
the smallest scale, the thickness of the liquid film. Usually,
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the liquid film can be as thin as a few nanometers, several
orders of magnitude smaller than the bubble size [14]. It is
challenging to separate these length scales with numerical
simulations. For example, the standard front-capturing meth-
ods (VOF, PF, and LS) require adaptive local mesh refinement
to represent such a thin liquid film and avoid undesirable
nonphysical coalescence of bubbles [15,16]. The influence of
mesh refinement for a simple two-bubble system has been
tested [12], indicating that the cell number could reach up
to 1 billion even in two-dimensional simulations. Apparently,
it is unaffordable to simulate the near-contact bubble-bubble
interactions in such a way for real applications, when many
three-dimensional (3D) bubbles are considered.

In a special scenario, in bubble swarms, since the coales-
cence or breakup of bubbles plays an insignificant role in their
statistic characteristics, numerical algorithms can be proposed
to compulsorily avoid the coalescence of bubbles [17]. First,
the FT method employs Lagrangian control points to track
the interfaces explicitly; therefore, it can naturally avoid the
coalescence of bubbles. In extreme cases, when the different
Lagrangian control points representing different bubbles co-
exist in the same mesh cell, they will not extrude each other
further due to the fact that they share the same velocities of
background fluid. For the front-capturing methods, multiple
markers were introduced to distinguish between the different
bubbles, then each bubble can be tracked by its own volume
fraction field (based on VOF) [18] or signed distance function
(based on LS) [14]. Indeed, for this special scenario, as the
collisions between bubbles are relatively rare at the low void
fraction, and more importantly, people are concerned ma-
jorly with the statistic characteristics, instead of the details of
bubble-bubble interactions, these numerical treatments have
been proved to provide reliable results consistent with the
experimental measures [17].
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However, in some instances, when the interactions between
bubbles/droplets or their contact with a substrate are impor-
tant, the drainage process of the thin film should be resolved.
From a microscopic point of view, it is related to the combined
action of nanoscale attractive and/or repulsive forces, such as
van der Waals and electrostatic forces, steric interactions, and
hydration repulsion and depletion attraction [19]. Practically,
it can be modeled by introducing a lubrication equation, which
has been applied in cases in which the bulk flow is also
in microscales [20,21]. Although a considerable amount of
theoretical and experimental works have been devoted to de-
scribing this complicated process of near interactions within
intervening liquid films [22], from a numerical standpoint, the
direct introduction of near-interaction forces at a molecular
level requires resolving the spatial scales from nanometers
to millimeters, which is far beyond the capability of current
computing power. It can only be achieved by introducing
simplified models. For example, a model accommodating the
coalescence and breakup of droplets was implemented in
the multiple-marker coupled LS/VOF (CLSVOF) method for
head-on collision of two identical droplets [23]. The imple-
mented coalescence model was based on a computationally
efficient film drainage model, which predicts if and when
two colliding droplets will coalesce. When the contact time
between two colliding droplets exceeds the predicted film
drainage time, the marker functions of two separate droplets
are merged to accomplish the coalescence numerically. Sim-
ilarly, breakup of a droplet is accommodated by splitting the
marker function of the droplet into two [23]. However, this
model is not easy to extend to the case with multiple bubbles
or droplets.

In this paper, we propose a repulsive force model to
describe the near-contact interactions based on a VOF frame-
work, which can control the coalescence of bubbles. The
extra forcing added to the momentum equations takes effect
only within several mesh cells in the gap of two approaching
bubbles, which are easy to identify and track by looping all the
bubble-liquid interfaces. To validate this model, a series of 3D
simulations are performed considering two rising bubbles side
by side, through which an optimal empirical parameter for this
model is determined.

The remainder of this paper is organized as follows. The
numerical methods with the repulsive near-contact interac-
tion force model and numerical methodology are presented
in Sec. II, followed by its validation by using the previous
experimental data in Sec. III. Finally, we draw our conclusions
in Sec. IV.

II. NUMERICAL METHOD

A. Governing equations

We consider a system consisting of two immiscible, in-
compressible fluids occupying the space of a computational
domain. The state of such a two-phase system is described
by a single velocity field u(x, t ), a pressure field p(x, t ), and
dynamically evolved sharp phase interfaces. The differential
forms of the continuity and momentum equations are shown in
Eqs. (1) and (2), respectively, where ρ and μ are, respectively,
the mixture density and dynamic viscosity, taking constant

values in the single-fluid occupied mesh cells, and transiting
from that of one fluid to the other at the phase interface. The
subscripts f and b represent, respectively, the liquid fluid and
gas bubble phases:

∇ · u = 0, (1)

∂ρu
∂t

+ ∇ · ρuu = −∇p − ρg + ∇ · τ + Fσ + Frep. (2)

The viscous stress tensor τ is defined by Eq. (3) according
to the Newtonian formulation, where S is the rate-of-strain
tensor. Here, Fσ is included to the right side of the momentum
equation to represent the surface tension of the liquid-gas in-
terface, which takes the most popular continuum surface force
model [24], as shown in Eq. (4), where σ is the surface tension
coefficient, δs is the Dirac function, and k is the curvature of
the interface. Also, Frep is an additional repulsive forcing term
representing the effects of the near-contact forces operating at
the phase interface, of which the details will be elucidated in
Sec. II C:

τ = 2μS, S = 1
2 (∇u + ∇uT ), (3)

Fσ = σkδsn. (4)

B. VOF method

For the VOF method, the volume of one fluid, e.g., the gas
phase, is represented by a volume fraction α, governed by the
transportation equation, Eq. (5). Thereby, the mixture density
and viscosity can be calculated according to Eq. (6):

∂α

∂t
+ u · ∇α = 0, (5)

ρ = αρb + (1 − α)ρ f ,

μ = αμb + (1 − α)μ f . (6)

It is a challenge to distinguish two different phases or rebuild
a sharp interface in one mesh cell, which is the key issue for
VOF methodology. In the past decades, a large variety of VOF
schemes have been developed. Most of them can be divided
into two categories: the geometric methods, involving an ex-
plicit reconstruction of the interface from the volume fraction
field [25,26], and the algebraic methods that make no such
attempt. Algebraic VOF schemes are typically much simpler,
more efficient to implement, and not limited to structured
meshes. However, their accuracy is compromised compared
with geometric VOF schemes [27].

In this paper, a recently developed geometric algorithm
called isoAdvector is implemented to reconstruct and advect
the two-phase interfaces [8]. This algorithm consists of two
parts: First, an isosurface concept is introduced for modeling
the interface inside cells in a geometric surface reconstruction
step. Second, for the reconstructed surface, the motion of the
face-interface intersection line for a general polygonal face
is modeled to obtain the time evolution within a time step of
the submerged face area. The total VOF transported across the
face can be estimated accurately by integrating this submerged
area over the time step. In terms of volume conservation,
boundedness, surface sharpness, and efficiency, this algorithm

045110-2



SHORT-RANGE REPULSIVE FORCE MODEL FOR … PHYSICAL REVIEW E 106, 045110 (2022)

is satisfactory for the simulations of bubbly flows, where the
surface tension plays a nonnegligible role.

The spatial discretizations for the governing equations
Eqs. (2) and (5) are second-order upwind for the convec-
tion terms and central differences for the Laplacian terms,
respectively. The temporal term is discretized by an implicit
Crank-Nicolson scheme. The multigrid strategy is involved to
accelerate the convergence. The pressure-velocity coupling is
obtained by combining the PISO (Pressure Implicit with Split-
ting of Operators) and SIMPLE (Semi Implicit Method for
Pressure Linked Equations) algorithms. The volume fraction
transportation equation is solved, with the phase interfaces
updated by the isoAdvector algorithm [8].

C. Repulsive force model

Theoretically, across the interface between a bubble and
its ambient, the pressure gradient is balanced by the surface
tension force, which is given by the classic Young-Laplace
equation:

�p = σ (∇ · n), (7)

where �p is the pressure difference across the fluid interface,
σ is the surface tension coefficient, ∇ · n is the local curvature
of phase interface, and n is the unit vector normal to the
interface.

To represent all the repulsive near-contact forces (i.e., van
der Waals, electrostatic, steric, and hydration repulsion) act-
ing on much smaller scales than the mesh resolution, the
stress-jump condition across a interface can be augmented
with a repulsive term to extend the equilibrium for the Young-
Laplace equation as follows:

�pI · n = σ (∇ · n)n + Frep, (8)

where I is the identity tensor. We now consider an elementary
fluid domain �, with two bubbles moving toward each other
to a very close distance, as shown schematically in Fig. 1.
Here, a mesh cell is marked as an interface cell if its volume
fraction α is between 0.01 and 0.99. In Fig. 1, we note that
the marker points at the interfaces are selected at the cell
centers for simplicity, while for generality, these points can
be the Lagragian points moving with the interfaces, in which
case a redistribution of the repulsive forces from the Lagragian
points to the Eulerian cells would be required. In the following
content, we use points instead of cells.

The additional repulsive term Frep is the resultant force
acting on the negative direction of the unit normal vector
n of the interfaces between the two phases, which takes
effects when the interfaces representing different bubbles
move toward each other to a certain close distance. It can be
expressed as

Frep,i = −
N∑

j=1′
(fi j · n)n = −

N∑

j=1′

K

h3
i j

n. (9)

The subscript i denotes the points of the interface belonging
to bubble 1 (acceptor), and subscript j denotes the points
of the interface belonging to bubble 2 (donor). Hence, fi j is
the repulsive force acting on point i contributed from a few
approaching points j on the interface of bubble 2. The distance

FIG. 1. Schematic representation of the near interaction forces
between two approaching bubbles. Here, n (with a red arrow) is the
unit normal vector of the surface for bubble 1 at point 1 (acceptor
cell), and hi j (h11′ , h12′ , h13′ ) is the distance from the points 1′, 2′, 3′

(donor cells) of bubble 2 to their acceptor (point 1 at bubble 1).
The resultant force Frep(blue arrow) acting on point 1 is the sum
of fi j (f11′ , f12′ , f13′ ) projected to the negative direction of n, where
fi j is the repulsive force acting on point 1 by each donor. Note that
all marker points at the interfaces are selected at the cell centres for
simplicity.

of each approaching donor point j to the acceptor point i are
denoted as hi j . By projecting the repulsive force fi j from point
j to point i along the negative direction of the unit normal
vector n and making a summation from j = 1′ to N , we obtain
the resultant force Frep,i acting on point i. From Eq. (9), we see
that the direction of Frep is opposite to n.

A similar approximation has been introduced previously to
study the spreading of liquids on solids [28]. In their study, a
disjointing pressure arising from molecular forces was intro-
duced and customarily divided into several contributions. The
first molecular contribution to disjointing pressure arises from
London/van der Waals dispersion, which depends approxi-
mately on 1/h3 or 1/h4, where h is the gap thickness. In our
model, we must emphasize that it is applied to a coarser mesh,
to approximate the repulsive forces which would be observed
in a finer mesh, if the computational resource allows.

In this model, we assume that the repulsive force is in-
versely proportional to the third power of distance, as shown
in Eq. (9), which is a reasonable approximation to the short-
range phase interaction. Here, K is the controlling parameter
which represents the providing energy of near-contact forces
to resist the approach of phase interfaces, clearly implied from
its dimension. Therefore, the physical meaning of Frep is the
energy provided by the near-contact forces per unit volume. In
our numerical implementation, we set the threshold distance
for the inception of short-range contact to be 0.2Db, where Db

is the bubble diameter. In our code, K is a finite constant value
for hi j < 0.2Db and zero for hi j � 0.2Db.

Attention should be paid when calculating the repulsive
force imposed on a bubble from its adjacent bubbles. Since
the phase interface cells are identified by a global volume
fraction α, a special numerical treatment is implanted to dis-
tinguish those belonging to different bubbles. Otherwise, the
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TABLE I. The material properties and dimensionless parameters of bubbles. The dimensionless parameters are defined as Eo = ρ f gD2
b/σ ,

Re = ρ f UyDb/μ f , Mo = gμ4
f /(ρ f σ

3), where Uy is the rising velocity along the direction of gravity.

Runs Liquid Db (mm) ρ f (kg m−3) μ f (kg m s−1) σ (N m−1 Re Eo log(Mo) S (mm)

Case A 80 wt. % glyc. 3.15 1208.5 60.1 × 10−3 6.5 × 10−2 7.39 1.81 −3.4 4
Case B 60 wt. % glyc. 3.18 1153.8 10.8 × 10−3 6.77 × 10−2 78.1 1.69 −6.4 4
Case C 40 wt. % glyc. 3.23 1099.3 3.72 × 10−3 6.95 × 10−2 256.3 1.62 −8.3 4
Case D 20 wt. % glyc. 3.22 1046.9 1.76 × 10−3 7.09 × 10−2 545.9 1.50 −9.6 4

contributions from the same bubble tend to tear apart the
interface. We calculate the unit normal vectors n1, n2 of two
adjacent interface cells, as their distance is <0.2Db. Their
inner product is then given by

ψ = n1 · n2. (10)

Clearly, a simple criterion of ψ < 0 can determine that this
pair of cells belong to two different bubbles.

We note that, by introducing the localized near-contact
forces, the interactions between many bubbles can be sim-
ulated easily and efficiently with no need to solve extra
transportation equations [18]. Moreover, the form of the re-
pulsive force term added into the moment equation, Eq. (2),
is a body force which only appears in the interface cells.
It can be heuristically interpreted as a simplified model of
the short-range molecular forces acting at the nanometer and
subnanometer scales. The key control parameter K can be
measured according to the previous experimental results [4].
Since the repulsive forces play roles only in the interface cells,
<1% of all computational cells, and more importantly, the
interfaces are simply identified by the volume fraction, the
extra computational cost for the repulsive force model can be
ignored.

III. MODEL VALIDATIONS

In this section, two previous experiments are referred for
model validations [2,4]. Both of them considered a pair of
deformable gas bubbles rising side by side in a quiescent
liquid. Following closely the experimental setup, we release
two identical bubbles from the bottom of a numerical tank.
The bubbles are initially spherical and located in the same hor-
izontal plane, with their mass centers separated by a distance
S. The initial height of the bubbles from the bottom of the
tank is Db. The schematic of the computational domain is il-
lustrated in Fig. 2. The computational domain is a cuboid, with
the dimensions of 12Db × 20Db × 12Db, sufficiently large to
minimize the boundary effects. The computational domain is
discretized by uniformly distributed cubic cells or Cartesian
grids. The two bubbles start to rise simultaneously driven by
the buoyancy force, differentiating from the experiments [2,4]
in which they were injected from submerged nozzles. A to-
tal pressure boundary condition is imposed at the top outlet
boundary, and no-slip boundary conditions are imposed at the
side and bottom walls.

A. Bubbles rising in a water-glycerol mixture

The first experiment was performed in a water-glycerol
mixture [4]. By adjusting the proportion of water and

glycerol, the liquid viscosity and therefore the bubble
Reynolds number were varied, resulting in different rising
behaviors of the bubbles. For example, a single rising bubble
varies from spherical to ellipsoidal and then wobbling shape
as the Reynolds number increases. Here, we consider four
different mixture ratios, with their parameters listed in Table I.
For the numerical simulations of bubbles, the required mesh
resolution is important to capture their deformations as well
as the detailed flow structure near the interface. The resolution
tests of a single rising bubble have been investigated based on
the FT [29] and LS [30] methods. The authors suggested that
30 points along the bubble diameter would be sufficient. In
this paper, mesh independence tests of a single rising bubble
have also been performed. We choose the mixture of case B
as shown in Table I. The initial location of the bubble is at
the center of the vertical cross-section of the computational
domain. After reaching a steady state, the bubble remains at
the center of the vertical cross-section, exhibiting a steady
motion following a straight line, as shown in Fig. 3, in good

FIG. 2. Sketch of the computational domain for the simulations
of a pair of bubbles rising in a viscous liquid.
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FIG. 3. The spatial and temporal evolutions of the shape of a
single bubble rising in the 60 wt. % glycerol (case B in Table I),
obtained by (a) the previous experiments [4] and (b) the current nu-
merical simulations. The trajectories are displayed by overlaying the
images at different time instants. The time interval between the two
sequential experimental images is 10 ms, and that for the numerical
simulation is 9 ms.

agreement with the experimental observation [4]. We note
that the bubble becomes ellipsoidal as it rises. Three different
mesh resolutions � = Db/20, � = Db/30, and � = Db/80,
corresponding respectively to 20, 30, and 80 cells along the
bubble diameter, have obtained terminal rising velocities of
0.224, 0.2274, and 0.2297 m/s, respectively. The relative error
between � = Db/30 and � = Db/80 is <1%. We also present
a comparison with the experiments for case A with the mesh
of � = Db/30, with good agreement reached, as shown in
Fig. 4. Moreover, the grid independence tests have also been
carried out for case D, with a higher Reynolds number of
Re = 545.9. In that case, the bubble exhibits a wobbling rising
trajectory. As shown in Fig. 5, the difference between � =
Db/30 and � = Db/60 is very small, with the relative error
in the mean rising velocity ∼0.8%. Therefore, compromising
between the computational consumption and the accuracy, we
choose the resolution with 30 cells along the bubble diameter,
which can provide satisfactory accuracy for a 3D simulation.

The general dynamic process of two bubbles rising side
by side can be described as follows. After the bubbles are
released, the bubbles start to rise and change their shapes.
For a certain initial separation distance, owing to the wake
interactions at the early period, the bubbles are attracted to
each other. When they approach a certain distance, the pres-
sure in the film between the bubbles increases, resulting in a
deformation of the bubbles. This increasing pressure induces
a repelling force and drains the liquid out of the film. Then

FIG. 4. Time histories of rising velocities along the direction
of gravity for a single bubble in the 80 wt. % glycerol (case A
in Table I). Here, the experimental data is extracted from the pre-
vious experiments [4], and the numerical result is obtained with
� = Db/30.

the bubbles continue to approach each other on account of
inertia and surface tension, increasing the radius of the film
while decreasing the film thickness. In physical experiments,
the repelling force is only derived from the pressure feed-
back of the thin film. However, in numerical simulations, it
comes from two parts: the pressure feedback and the added
repulsive force model which is designed to compensate the
defect of mesh resolution. The inertia and surface tension
promote the coalescence, while the repelling force prevents
the coalescence. Therefore, the interacting process of bubbles
can be represented as the competition between inertia, surface
forces, and repelling force. When the repelling force plays

FIG. 5. Time histories of rising velocities along the direction of
gravity for a single bubble in the 20 wt. % glycerol (case D in
Table I). Here, � = Db/20, � = Db/30, and � = Db/60 correspond
respectively to 20, 30, and 60 cells along the bubble diameter.
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FIG. 6. The influence of control parameter K on the rising bubble pair for different water-glycerol mixtures. With the increase of K from
1 × 10−11 to 1 × 10−10 J, the bubble pair changes its behavior from numerical coalescence to bounce. Here, (a) corresponds to the bubbles in
60% glycerol solutions (case B in Table I), (b) corresponds to the bubbles in 40% glycerol solutions (case C in Table I), and (c) corresponds to
the bubbles in 20% glycerol solutions (case D in Table I).

a dominant role in this process, the approaching motion of
bubbles is arrested before coalescence; thereby, they bounce
off.

As mentioned in Sec. II C, the coefficient K is a free
parameter which can be used to tune the repulsive forces,
thus playing a significant role in the process of coalescence
or bounce. It is straightforward to note that, by varying the
magnitude of the repulsive force, it is possible to promote or
inhibit the coalescence of the colliding bubbles. Clearly, an
appropriate value of K should be calibrated by the experi-
ments to replicate the physical process. As far as this paper
is concerned, the physical coalescence of a pair of bubbles is
not only controlled by the material properties but also influ-
enced by the initial separation distance S, as addressed in the
previous experiments [2].

To determine the critical value for K , we carry out the tests
at different cases according to Table I, as shown in Fig. 6.
It is worth noting that, for case A (see Table I), in which
the terminal bubble shape is spherical, the repulsive force is
unnecessary to prevent coalescence. In other words, at this
specific initial separation distance of 4 mm, case A presents no
numerical coalescence with the current mesh resolution, even
if the value of K is set to 0. Therefore, case A is not included
in the tests presented in Fig. 6. Examining case B, as shown
in Fig. 6(a), we see that the bubbles vary from spheres to
ellipsoids, shortly after being released. For the smaller value
of K = 1 × 10−11 J, the earlier numerical coalescence occurs
at t = 0.027 s compared with the larger value of K = 5 ×
10−11 J, in which case the coalescence occurs at t = 0.03 s. It
indicates that the larger K delays the numerical coalescence.
By further increasing the magnitude of K to a critical value
of K = 1 × 10−10 J, the two bubbles bounce off without co-
alescing, resembling that observed in the experiment [4]. In
the other two tests [Figs. 6(b) and 6(c)], this critical value
of K = 1 × 10−10 J is also proved to be able to prevent the
numerical coalescence and reproduce the bouncing collision
successfully, in accord with the experimental observations [4].

The evolving process of bubble pair rising in the 80%
glycerol solutions (case A in Table I), comparing with the
experimental images [4], is shown in Fig. 7(a). In this case,
the bubbles remain approximately spherical during the whole
process, and the distance between them increases with the
rising height. The horizontal velocities of the bubbles become
stronger once the repulsion starts until they reach the max-
imum values. After that, the horizontal velocities gradually
become weaker as the bubbles rise. The predicted rising be-
havior is also in good agreement with a previous numerical
simulation [31] in which two spherical bubbles will repel each
other at the low Reynolds regime. We note that, in this process,
since the gap width between bubbles is always >0.2Db, which
is the critical distance for short-range repulsion, the artificial
repulsive force is not considered. To reveal its underlying
physical mechanisms, we present the instantaneous slice con-
tours for z vorticity for case A as well as that of a single bubble
for comparison in Fig. 8. We observe that the diffusion of the
vorticity field around the surface of bubbles covers a relatively
larger region than the separation distance. As discussed in the
previous study [32], the presence of a neighboring bubble pro-
duces an asymmetric flow field, and the vorticity distributions
are compressed within the gap, resulting in lateral repulsive
forces.

The evolution of a bubble pair rising in the 60% glycerol
solutions (case B in Table I) is shown in Fig. 7(b). Their
rising velocities, horizontal velocities, and separation distance
varying with the height are shown in Fig. 9. Differentiating
from the low Reynolds number regime (spherical bubbles in
case A), here, for Re ∼ O(10), the bubbles become ellipsoidal
as they rise. It is shown that the bubbles first attract each
other and bounce off after kissing. In the end, the bubbles rise
in their respective rectilinear paths with a nearly unchanged
separation distance. In contrast to the experimental observa-
tion [4], our numerical simulation presents a smaller final
equilibrium distance, which might originate from the different
way that the bubbles are released. In the experiments, first, the
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FIG. 7. Trajectories of bubble pair rising in different water-
glycerol mixtures with the control parameter K = 1 × 10−10 J,
shown by overlaying the images at different time instants. Here,
(a)–(d) correspond respectively to cases A–D listed in Table I. The
experimental results [4] are shown at the left side of each panel, and
the current numerical simulations are shown at the right side. In (a),
the time interval between two sequential experimental images is 25
ms, and that for the numerical simulation is 27 ms. For (b)–(d), the
time intervals are 10 and 9 ms, respectively, for the experiments and
simulations.

bubbles were released from two orifices, making it difficult
for the two bubbles to detach perfectly from the orifices at
the same time. A slight difference of detachment between the
two bubbles and a small perturbation during this stage would
lead to a largely different interaction. Second, the bubbles
were released continuously, though with a small flow rate of
air, which was supposed to minimize the effect of preceding
bubbles.

At the initial stage, we understand that the interaction is
mainly due to the Venturi effect [31]: the pair of bubbles will
always attract with each other after being released because of
the lower pressure within the gap between the pair of bubbles.
Shown in Fig. 10 is the evolution of streamwise vortices ωy

in the vicinity of the bubbles during the attraction-repulsion
period. We observe that the vortex pairs are created in the gap

FIG. 8. The slice contours for z vorticity (−30s−1 < ωz <

30s−1) around (a) a single bubble and (b) two bubbles rising in
the 80% glycerol solutions (case A in Table I). The contours reveal
that the vorticity diffusion is blocked on account of the presence of
neighboring bubble.

when the two bubbles get close due to the higher shearing in
the gap flow. During the collision, the wake-induced lift forces
repel the bubbles away, while the double-threaded vortices
are detached from the bubble interface. As the two bubbles
are separated by some distance, no additional vorticities are

FIG. 9. Rising (vertical) velocities, horizontal velocities, and
separation distance against the rising height for case B. The dashed
lines represent the previous experimental results [4] and the solid
lines the current numerical simulations. In the middle panel, the
results for both the left and right bubbles are shown.
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FIG. 10. Evolution of the wake structures in pairs during the collision of bubbles in the 60% glycerol solutions (case B in Table I), with
the isosurfaces for z vorticity (ωy = ±30s−1) colored by blue for negative and red for positive values.

produced in the gap so that the double-threaded vortices dis-
appear. We understand that the generation of double-threaded
streamwise vortices are responsible for the path instability.
Without the double-threaded streamwise vortices, the bubbles
ultimately follow a stable rectilinear trajectory, as shown in
Fig. 7(b).

As the bubble Reynolds number is further increased to
Re ∼ O(100), e.g., for cases C and D in Table I, the bubbles
present larger deformation, as shown in Figs. 7(c) and 7(d).
Again, the bubbles attract each other and then bounce off after
kissing, of which the mechanism of interaction is like case B.
However, the bubbles cannot follow a stable rectilinear tra-
jectory after collision. Instead, they keep drifting away from
each other, in the currently simulated time. We present their
vortical structures in Figs. 11 and 12. It is observed that the
vorticities accumulate in the gap when the two bubbles get
close. The wake-induced lift forces of the vortex pairs repel
the bubbles away, while the double-threaded vortices are shed
from the interface. Clearly, the interactions of wake structures
for these strongly deformed bubbles (cases C and D) are more
pronounced than the ellipsoidal bubbles (case B), separating
the two bubbles further away. We note that the bubbles might
retouch as they rise further due to their unstable and wobbling
rising paths, as observed in the previous experiments [4],
which is, however, not our major concern. The objective of
this paper is to present the capability of our repulsive model
on preventing numerical coalescence, which has been demon-
strated in the early evolving stage.

B. Bubble pairs rising in pure water

In this section, we follow another experiment [2], in
which two gas bubbles rose side by side in pure water.

In the experiments, a critical Weber number (based on the
approaching velocity) was identified, below which the two
equally sized bubbles were found to coalesce. Exceeding that
critical Weber number, after bouncing, bubbles can either co-
alesce or separate without coalescing. Here, we simulate three
typical combinations of bubble size and initial separation
distance, corresponding to three different types of interac-
tions, i.e., coalescence, bouncing coalescence, and bouncing
separation.

In Fig. 13(a), the coalescence of bubble pairs, with Db

= 1.8 mm and the initial separation distance S = 1.35Db is
shown. The bubbles approach each other until the film be-
tween the bubbles is thinned to the critical thickness when the
bubbles coalesce. From the frame of Fig. 13(a), the coalescing
process is very rapid, faster than 0.002 s, from t = 0.0195
to 0.0215 s, where the two separate bubbles become a single
dumbbell bubble. This process is consistent with the previous
experimental observation [2]. The experiments explained this
process from a microscopic level. They addressed that the
pressure in the film between bubbles increases as the bub-
bles become close, resulting in a deformation of the bubbles.
This increasing pressure in the film causes film drainage and
a repelling force (about of the order of velocity square by
Bernoulli’s law) on the bubbles. The bubbles continue to
approach because of inertia, which increases the radius of the
film and decreases the film thickness and the bubble velocity.
This thinning continues until a film thickness of the order of
100 Å is reached, the distance at which an attracting force, the
van der Waals force, becomes important, resulting in coales-
cence. Apparently, at this subgrid scale, those forces cannot
be directly resolved. Instead, they are modeled by a simple
artificial repulsive force, as implemented in our numerical
model.
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FIG. 11. Evolution of the wake structures in pairs during the collision of bubbles in the 40% glycerol solutions (case C in Table I), with
the isosurfaces for z vorticity (ωy = ±30s−1) colored by blue for negative and red for positive values.

As the bubbles are larger or the bubble inertia is in-
creased, the approach velocity increases, which favors the
coalescence. However, on the other hand, the repelling force
increases more significantly due to the increased pressure
and more pronounced deformation of the bubbles, resulting
in arrested approaching motion before coalescence and the
bubbles bounce. As shown in Fig. 13(b), with Db = 2.4 mm
and the initial separation distance S = 1.65Db, the bubble pair
exhibits bouncing-coalescence interactions. At the first touch
(t = 0.033 s), the bubbles have oriented themselves. After
that, the bubbles bounce off with considerable deformation.
At t = 0.041 s, the bubbles reach the largest separation. Then
the bubbles approach again while coalescing due to the de-
creasing inertia. It is also possible for the bubbles to retouch
twice, depending on the bubble size as well as their initial
separation distance, as reported in the experiments [2].

We note that the spurious oscillation of the vorticity con-
tours in Figs. 8 and 10–12 is due to the low spatial resolution
around the bubbles. Increasing the resolution or using a body-
fitted mesh can solve this issue, such as that used in the
previous study [32].

The aforementioned results have shown that the bubbles
can approach again when the two bubbles reach the largest
separation after bounce. In that case, the bubbles eventually
coalesce. Here, we present another case when the bubbles
eventually separate after several bounces. In Fig. 14, we show
the bouncing separation of a bubble pair, with Db = 1.4 mm

and the initial separation distance S = 1.65Db. Again, the
bubbles orient themselves with an obtuse angle at the first
touch around t = 0.036 s. Then they bounce off, exhibiting
shape oscillations. The second bounce occurs at t = 0.052 s.
After that, the bubbles separate considerably and move away
from each other without further approaching. We note that
the deformation of the second bounce (t = 0.052 s) is not as
strong as the first one (t = 0.036 s). We also make a quanti-
tative comparison in rising velocity with the experiments [2]
as well as that obtained by the previous numerical simulations
based on adaptive mesh refinement (AMR) technology [31].
Shown in Table II are the rising velocities obtained at the
end of the first bounce provided by different means. Clearly,
our repulsive model with a relatively coarse mesh resolution

TABLE II. Comparison among the experiments [2], our repulsive
model, and the previous simulations based on AMR with different
mesh resolutions [31].

Case Bounce Rising velocity (m/s)

Experiment Yes 0.26 ± 0.02
� = Db/30 (our model) Yes 0.2626
� = Db/800 (AMR) No 0.265
� = Db/1600 (AMR) Yes 0.266
� = Db/3200 (AMR) Yes 0.267

045110-9



ZHANG, PENG, SHAO, AND DENG PHYSICAL REVIEW E 106, 045110 (2022)

FIG. 12. Evolution of the wake structures in pairs during the collision of bubbles in the 20% glycerol solutions (case D in Table I), with
the isosurfaces for z vorticity (ωy = ±30s−1) colored by blue for negative and red for positive values.

FIG. 13. (a) Bubble coalescence for Db = 1.8 mm, with the initial separation distance S = 1.35Db. (b) Bouncing-coalescing bubbles for
Db = 2.4 mm, with the initial separation distance S = 1.65Db. The experimental results [2] are shown at the left side of each panel, and the
current numerical simulations are shown at the right side.
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FIG. 14. Bouncing-separation bubbles for Db = 2.8 mm, with
the initial separation distance S = 1.65Db.

provides good agreement with the experiments [2] in both
predicting the bounce behavior and the accurate prediction
of the rising velocity. In contrast, the numerical results based
on AMR with the mesh resolution � = Db/800 failed to
predict the bounce, where numerical coalescence occurs [31].
Furthermore, we present the time histories of rising velocity
for a bubble pair with bouncing separation in Fig. 15, where
the double bounces are exhibited more clearly. We observe
that the rising velocity decreases slightly at the first approach
and then increases due to the first bounce. When the velocity
reaches a maximum value, the first bounce finishes, succeeded
by the start of the second approach with a sharp drop in rising
velocity. At the second bounce, the rising velocity increases
again, and the whole bouncing process repeats. We note
that the rising velocity after the second bounce drops deeper
due to the recovery of a larger deformation. After the second
bounce, the rising velocity still fluctuates but mainly owing to
the instabilities of the bubble.

FIG. 15. Time histories of rising velocity for a bubble pair with
bouncing separation. Here, the dashed lines mark the first and second
bouncing processes.

IV. CONCLUSIONS

In this paper, we develop a short-range repulsive model to
describe the near-contact interaction of bubbles. First of all,
we calibrate the model parameter K according to the previous
experiment [4]. The critical value K = 10−10 J is determined,
which can be regarded as a constant coefficient, regardless of
flow regimes, for the energy provided by near-contact forces
to resist the approaching process. We find that this model
can be implemented for a relatively coarse mesh to prevent
the nonphysical numerical coalescence of bubbles, consistent
with the experimental observations [4].

Moreover, this model can also duplicate the different types
of bubble-bubble interactions, as compared with another ex-
periment [2]. In that experiment, two identical gas bubbles
which rose side by side in pure water were studied. Perform-
ing the numerical simulations on three typical combinations
of bubble size and initial separation distance, different types
of interactions, i.e., coalescence, bouncing coalescence, and
bouncing separation, are duplicated, agreeing well with the
experiments [2].

Owing to the idealized simplification of underlying mi-
croscale physics by our coarse-grained repulsive model, it
can investigate the behaviors with a great number of bubbles,
which is very common in industrial applications. More impor-
tantly, this model can provide relatively accurate predictions
with affordable computational power.

We would like to stress that a constant model parameter K
has been used in this paper, which we have proved to be feasi-
ble for different types of bubble-bubble interactions. However,
this coefficient is likely relevant to different parameters, such
as Re and We, which will be our future concerns.

We note that this model is feasible in the range of Reynolds
numbers from 5 to 500, with spherical or strongly deformable
bubbles. Though it is designed for coarse mesh, a sufficient
number of cells are still needed in the gap to resolve the flow
within it. Here, at least 5 cells are recommended in the gap
between bubbles for their initial configurations.

It should be pointed out that two bubbles with a distance
of <0.2Db can experience repulsive forces even in a quiescent
fluid. We have tested that, when the initial distance is <0.2Db,
repulsive forces arise, which separate the bubbles to a certain
equilibrium distance. Therefore, we would recommend the
initial separation distance to be >0.2Db, which stands for
all our validation cases. Actually, in real physical systems,
such as bubbly flows, it is reasonable to set up a finite initial
separation distance between bubbles.
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APPENDIX A: REPULSION/ATTRACTION REGIMES

We demonstrate that the interacting forces between two
bubbles can be either attractive or repulsive. Both can be
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FIG. 16. Sign of the interacting forces in the (Re, S) space
for two spherical bubbles rising side by side. From the previous
study [32]: ◦, bubbles are repelled from each other, and •, bubbles
are attracted toward each other; � and � represent respectively the
repulsion and attraction cases in the current numerical study. The
black line divides the two regimes. S is the separation distance
between bubble centers, which has been nondimensionlized by the
radius.

achieved by the induced flow pressure without switching on
our repulsive force model.

In the previous study [32], the flow past two identical
spherical bubbles arranged side by side was studied numer-
ically, with a zero-shear-stress condition imposed on the bub-
ble surface to represent clean bubbles. According to the sign
of transverse force, two regimes were identified in the (Re, S)
parametric space, corresponding respectively to the repulsive
and attractive interactions between the bubbles. Here, we se-
lect two representative separation distances S = 2.5 and 3.0
and vary the Reynolds number. To make a comparison, we
consider a large surface tension coefficient to make sure the
bubbles keep their spherical shapes during the rising process.
As shown in Fig. 16, the identified transition boundary agrees
well with the previous study [32]. In Fig. 16, we note that the
vertical axis S − 2 denotes the nondimensional gap distance,
which approaches zero when the two bubbles come in contact.

We should point out that, differentiating from the previous
study [32], we consider two freely rising bubbles; therefore,
the Reynolds numbers are calculated according to their ter-
minal rising speed. However, since our calculated points are
very close to the transition boundary, the interacting force
between the bubbles is weak, leading to slightly deflected
rising trajectories, as shown in Fig. 17, to ensure that our
comparison with the previous work is reasonable. We also
note that the shortest gap distance in the previous study was
S − 2 = 0.25, which is larger than the threshold distance for
the inception of short-range contact in our model; therefore,
the repulsive force model is inactive in the simulations shown
in Fig. 17. Nevertheless, it is still meaningful to validate the
basic framework of our solver.

FIG. 17. The separation distance against the rising height for our
near-contact model. Here, the separation distance is normalized by
the initial separation distance S, and the rising height is normalized
by the bubble diameter Db. (a) Re = 15, S = 2.5; (b) Re = 33, S =
2.5; (c) Re = 57, S = 2.5; (d) Re = 23, S = 3.0; (e) Re = 36, S =
3.0; and (f) Re = 57, S = 3.0.

APPENDIX B: THE INFLUENCE
OF THRESHOLD DISTANCE

For all the validation cases in the main text, a fixed thresh-
old distance of 0.2Db has been applied. However, the repulsive
process of two bubbles might be different if a different thresh-
old distance is used. Indeed, as we have tested, the threshold
distance is not a unique value. Nevertheless, from Fig. 18, the
threshold distances falling in the range of 0.2Db to 0.4Db are
all acceptable. We understand that the effect of repulsive force
is to push two bubbles away from each other or change their
momentum. Though the peak values of repulsive forces for
the three cases are different, their impulses, i.e., integration
of force along time, are very close. They behave similarly in
altering the momentum of the bubbles. We note that, for the
case of 0.1Db, there are only 3 cells in the gap, which is not
sufficient to resolve the gap flow.

We should also note that, as the mesh is refined, the repul-
sive force model may become unstable with a larger number
of neighboring cells. To clarify this issue, we have presented
the time histories of repulsive forces for three different resolu-
tions in Fig. 19. The case with the finest resolution of 60 cells
along the bubble diameter is still stable.
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FIG. 18. Time histories of the short-range repulsive forces as
two bubbles approach, considering four different threshold distances:
0.1Db, 0.2Db, 0.3Db, and 0.4Db.

FIG. 19. Variations of the short-range repulsive force with the
mesh size: � = Db/20, � = Db/30, and � = Db/60. It shows that
the finest resolution of 60 cells along the bubble diameter is still
stable.
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