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The equilibrium configuration of a gas and brine in a porous medium, and the timescales to reach equilibrium,
are investigated analytically. If the gas is continuous in the pore space, we have the traditional gravity-capillary
transition zone: Pc(Sw ) = �ρgz where Pc is the capillary pressure (pressure difference between the gas and
aqueous phases), Sw is the aqueous phase (brine) saturation, �ρ = ρw − ρg is the density difference between
the phases, g is the gravitational acceleration, and z is a vertical distance coordinate increasing upwards,
where z = 0 indicates the level where Pc = 0. However, if the gas is disconnected, as may occur during water
influx in carbon dioxide and hydrogen storage, then the nature of equilibrium is different where diffusion
through the aqueous phase (Ostwald ripening) maintains a capillary pressure gradient consistent with the
thermodynamically-determined brine density as a function of depth: Pc = P∗[e(Vgρw−mg)gz/RT − 1] + ρwgz, where
P∗ is the aqueous phase pressure at z = 0, Vg is the specific molar volume of the gas dissolved in the aqueous
phase, mg is the molecular mass of the gas, R is the universal gas constant, and T is the absolute temperature.
The capillary pressure decreases with depth. This means that a deep column of trapped gas cannot be sustained
indefinitely. Instead a transition zone forms in equilibrium with connected gas near the top of the formation: its
thickness is typically less than 1 m for carbon dioxide, hydrogen, methane or nitrogen in a permeable reservoir.
The timescales to reach equilibrium are, however, estimated to be millions of years, and hence do not significantly
affect long-term storage over millennia. At the scale of laboratory experiments, in contrast, Ostwald ripening
leads to local capillary equilibrium in a few weeks to a year, dependent on the gas considered.
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I. INTRODUCTION

Capillary trapping—the isolation of nonwetting phase gan-
glia surrounded by a wetting, aqueous phase in a porous
medium—has been suggested as a rapid and effective way
to immobilize carbon dioxide, CO2, and other gases over
months to years in permeable rock, ensuring that the trapped
phase cannot escape [1,2]. In CO2 storage this is desirable,
preventing migration of the gas back into the atmosphere
and contributing to climate change. In hydrogen storage, and
natural gas recovery, this effect is undesirable as it limits the
amount of mobile gas that can be produced and used. How-
ever, this analysis ignores transport of dissolved species in the
aqueous phase. Brine containing dissolved CO2 is denser than
the unsaturated aqueous phase, and will therefore sink. This
can lead to a convective dissolution process which may largely
dissolve the CO2 over thousand-year timescales [3]. This adds
to storage security as the CO2 moves further away from the
surface and is no longer in its own phase.

Another phenomenon which has received less attention is
Ostwald ripening, where diffusive transport of gas dissolved
in the aqueous phase acts to make the local capillary pressure
uniform [4–6]. The equilibrium concentration of gas in the
aqueous phase is a function of the gas pressure, normally
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expressed by Henry’s law:

H = ∂C

∂Pg
, (1)

where C is the concentration of gas dissolved in the aqueous
phase (in this paper we will express this in units of moles/m3),
Pg is the gas pressure (Pa), or, for mixtures, the partial pressure
of a specific component in the gaseous phase. H is the Henry’s
law constant with SI units of mols/(m3· Pa). If H is indeed a
constant, which we will assume for simplicity here:

C = HPg. (2)

The implication of Henry’s law is that in equilibrium, with
a constant concentration C, the gas pressure should also be
constant. In capillary trapping, nonwetting gas ganglia are ini-
tially formed with different capillary pressures Pc = Pg − Pw

where Pw is the aqueous phase (water or brine) pressure,
governed by the local contact angles, pore structure, and the
nature of the displacement process [5,7].

Ostwald ripening refers to diffusion-driven transport to
eliminate concentration gradients in the aqueous phase such
that the capillary pressure in each gas ganglion (bubble) is
constant. In a bulk fluid, this leads to the disappearance of
small bubbles (which have smaller radii of curvature and
hence higher capillary pressures from the Young-Laplace
equation) and the accumulation of all the gas which is not
dissolved into a single, large, spherical bubble. In porous
media the process is more complex since multiple equilibrium

2470-0045/2022/106(4)/045103(6) 045103-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8725-0250
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.045103&domain=pdf&date_stamp=2022-10-10
https://doi.org/10.1103/PhysRevE.106.045103


MARTIN J. BLUNT PHYSICAL REVIEW E 106, 045103 (2022)

FIG. 1. A schematic of the situation studied in this paper. We
consider gas storage and production in a porous medium otherwise
saturated with brine (the aqueous phase): this could be a carbon diox-
ide or hydrogen storage site, or natural gas production. We assume
that mobile gas is retained below a low permeability cap rock. Brine
influx has led to capillary trapping of gas with an initial distribution
of saturation with depth as indicated on the left. Ostwald ripening,
facilitated by diffusive transport of gas dissolved in the aqueous
phase, leads to a redistribution of trapped gas ganglia (shown in
green; the solid is dark brown and brine is white). Higher water
pressures with depth lead to larger dissolved concentrations of gas,
giving a vertical concentration gradient and an upwards diffusive
flux. Eventually a new position of gravity-capillary equilibrium will
be reached, Eq. (10), over a timescale given by Eq. (16). This leads
to a final saturation profile in equilibrium shown to the right, where
gas is trapped and confined to a thin layer below a region of mobile
gas.

configurations are possible: small ganglia do not necessarily
disappear, as their capillary pressure may decrease as they re-
treat into large pore spaces, while the growth of larger ganglia
is suppressed by the entry capillary pressure required to fill
narrow throats between wider pore spaces [4,6].

Previous work has shown that in laboratory experiments of
capillary trapping combined with pore-scale imaging, locally
trapped ganglia do have different capillary pressures, but with
a well-defined peak, or mode value, which suggests that over
the timescale of the experiments, from a few hours to a day,
Ostwald ripening may be sufficiently rapid to establish partial,
but not total, equilibrium over lengths of a few millimeters
[5,7,8]. Experiments on two-dimensional micromodels with
water and air indicated times to reach equilibrium of order a
day over distances of approximately 1–2 mm [4], while fast
X-ray imaging detected significant rearrangement of trapped
ganglia in sandstone over a period of 30 hours [9]. Other
pore-scale imaging experiments have shown the disappear-
ance of small trapped ganglia of air within a few hours [10].
Pore-scale simulations have also demonstrated that multiple
configurations of local capillary equilibrium are possible as
trapped ganglia rearrange themselves in the pore space [6].
At larger scales, simulations and analytic analysis have been
applied to heterogeneous media with spatially varying capil-
lary pressure [11]. Over the scale of meters, local equilibrium
is achieved over timescales as long as thousands of years,
comparable to the times needed for significant convective
dissolution of ganglia [3].

This paper will study the impact of Ostwald ripening
on gas storage, shown schematically in Fig. 1. We assume

that influx of brine after injection, or during production, has
led to capillary trapping of the gas in the pore space sur-
rounded by the aqueous phase. The contributions of this work
will be threefold. Firstly, most work to date has focused
on CO2 storage; here we will also consider the behavior of
hydrogen, natural gas (methane), and nitrogen. Secondly,
we will demonstrate that in equilibrium trapped ganglia are
confined to a small transition zone of less than 1 m below
continuous gas, and provide a pore-scale picture of this phe-
nomenon. Thirdly, we will show, however, that the timescales
to reach this equilibrium are millions of years. This means that
large regions of trapped gas are stable for periods relevant to
storage applications.

II. CAPILLARY-DISSOLUTION-GRAVITY EQUILIBRIUM

This paper is concerned with the configuration of two
phases in a porous medium: an aqueous phase and a partially
soluble gaseous (or supercritical) phase. Specifically, we will
study equilibrium conditions considering buoyancy, capillary
forces and phase exchange between gas and liquid (Henry’s
law) where the mechanism for maintaining equilibrium is dif-
fusion of dissolved species in the aqueous phase, as outlined in
Fig. 1. We will assume that the aqueous phase is not flowing,
and so we will not investigate convective dissolution, which
has already been well studied [3]. We will also ignore min-
eralization which may play a significant role in permanently
sequestering CO2 in the longterm [12], and assume that the
small gradients in concentration do not affect reaction rates.

A. Equilibrium with continuous gas

To set the scene, first assume that the gaseous phase is
connected, defined such that gas can flow in the pore space,
indicated as mobile gas in Fig. 1. In this case we achieve
the well-known capillary-gravity equilibrium, observed, for
instance, in the initial saturation distribution in hydrocarbon
reservoirs. We will not plod through the derivation but simply
state [13]:

∂P

∂z
= −ρg, (3)

for both gas and aqueous phases, leading to

Pc(Sw ) =
∫ z

0
�ρgdz, (4)

where the capillary pressure is traditionally written as a func-
tion of the aqueous phase saturation, Sw, �ρ = ρw − ρg is
the density difference between the phases, g is the accelera-
tion due to gravity, and z is a vertical coordinate increasing
upwards where z = 0 is the free water level defined where
Pc = 0. In CO2 storage applications, for instance, it is possible
for the gas density to vary significantly with depth, partic-
ularly if there is a transition from supercritical to gaseous
conditions. In many cases, however, we may assume that the
phase densities are constant and

Pc(Sw ) = �ρgz. (5)
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This situation leads to a nonequilibrium in dissolved con-
centration. From Eq. (3)

∂Pg

∂z
= −ρgg. (6)

From Eqs. (1) and (6), this leads to a concentration gradient:

∂C

∂z
= H

∂Pg

∂z
= −Hρgg. (7)

Hence there is an upwards diffusive flux of dissolved gas,
which then enters the free gaseous phase, leading to a down-
wards gas flow to maintain capillary-gravity equilibrium. The
net gas flux is zero in equilibrium: the upwards movement in
the aqueous phase is matched by downwards transport in the
continuous gas phase. We will show later that this flux is small
at the field scale: the apparent perpetual motion is driven by
thermal energy.

B. Equilibrium with trapped gas

If the gaseous phase is disconnected, this analysis no longer
holds, as there is no gas phase flow to offset the effects of
the upwards diffusive flux shown in Fig. 1. Normally it is
assumed that in vertical cross-section gas can be trapped over
an arbitrarily large distance. However, this is not correct at
sufficiently long timescales: instead a new position of equi-
librium is reached. This is not a constant concentration (and
hence capillary pressure) for two reasons. The more signifi-
cant is that the aqueous phase pressure increases with depth.
The second effect is that the dissolution of gas affects the
aqueous phase density, which leads to a gradient of gas solu-
bility with z. We employ a thermodynamic approach to predict
the equilibrium dissolved concentration: the probability of a
mole of gas to be at a height z is proportional to e−�E/RT

where �E = −�mgz is the potential energy penalty [14]. We
equate probability with concentration to find:

C = C∗e�mgz/RT , (8)

where C∗ is the concentration in equilibrium at the free water
level: from Eq. (2) C∗ = HP∗. R is the universal gas constant
and T is the absolute temperature. �m is change in mass from
replacing the volume occupied by one mole of the dissolved
gaseous species with brine. This can sound confusing, but is
conceptually the increase in mass if we were to replace one
mole of gas in solution with the same volume of brine. This is
normally calculated using the partial molar volume Vg which
is the volume occupied by one mole of dissolved gas. By
definition this has a mass mg, the molecular mass of the gas.
The same volume of brine has a mass Vgρw where ρw is the
brine density without any dissolved gas present. Hence we can
write

�m = Vgρw − mg. (9)

The gas pressure in equilibrium is therefore simply Pg = C/H
from Eq. (2). Then using Eqs. (8), (9), and Pw = P∗ − ρwgz
we can write

Pc = Pg − Pw = P∗[e(Vgρw−mg)gz/RT − 1] + ρwgz. (10)

Note that this is different from capillary-gravity equilibrium
with continuous gas, Eq. (5). This can be seen more clearly

FIG. 2. A schematic of the equilibrium arrangement of trapped
phases in equilibrium, Eq. (10), with a transition zone height z∗

given by Eq. (12). Rock is dark brown, gas is green, and brine is
white. At z = z∗ continuous gas is first present; below this the gas
is trapped. There is a capillary pressure gradient, Eq. (11), such that
at z = 0, Pc = 0 and it is no longer possible to retain trapped phases
if we assume that the rock is water-wet. We will see a transition in
saturation. It is hypothesized that larger multiple pore trapped ganglia
are seen near z = z∗ with a high capillary pressure—the menisci are
present in small throats, the restrictions between pores. Lower we
see smaller ganglia at a lower capillary pressure. Just above z = 0
sub-pore ganglia may be present, retained in roughness of the pore
space, or in patches where, locally, the contact angle is higher.

if we look at the capillary pressure gradient under the as-
sumption that |(Vgρw − mg)gz/RT | � 1 (for the examples we
consider the magnitude of this term is of order 10−4z or
lower):

∂Pc

∂z
= ρwg + P∗(Vgρw − mg)g

RT
. (11)

C. Pore-scale picture

A schematic of the pore-scale picture of equilibrium is
provided in Fig. 2. Imagine that at some height z∗ the gas is
first connected with an entry capillary pressure P∗

c . In equi-
librium, there will be a transition zone below the connected
gas containing trapped ganglia to z = 0 where the capillary
pressure is zero; we do not expect to see ganglia below this
level as it would require the gas to reside in the pore space
with a negative capillary pressure, which is difficult to achieve
if the rock is water-wet. There will be a trend in saturation,
from 0 at z = 0 to Sgr , the original residual saturation, just at
z∗, before the gas is connected. This saturation trend has not
been studied previously: it represents the amount of residual
trapping possible for a given imposed capillary pressure.

It is hypothesized that near z = z∗ large multiple-pore
ganglia will be seen, with menisci present in small throats
(the restrictions between pores) with a high local capillary
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pressure. Lower in the transition zone, smaller single-pore
ganglia with a lower capillary pressure will be observed. Near
z = 0 the capillary pressure is close to zero. Here trapped gas
can only be retained in small sub-pore ganglia, contained in
roughness, or in regions with locally a higher than average
contact angle. Such small ganglia have been observed in imag-
ing experiments [15–18]. This picture needs to be confirmed
directly at the pore scale since it assumes, contrary to the
situation in a bulk fluid, that higher capillary pressures are as-
sociated with larger ganglia, while smaller ganglia have lower
capillary pressures. Regardless of the pore-scale configuration
of fluid, trapped ganglia will be confined in equilibrium to
a narrow region below the connected gas. To recap, at the
mesoscale we will see a variation in saturation with depth
from Sg = Sgr at z = z∗ to Sg = 0 at z = 0.

The height of the transition zone z∗ is found from Eq. (11):

z∗ = P∗
c

ρwg + P∗(Vgρw − mg)g/RT
. (12)

In summary, trapped ganglia will be confined to a small
region below where the gas is connected in the pore space.
This means that capillary trapping cannot retain gas over
extensive vertical distances in the long term. While this may
appear to limit the effectiveness of capillary trapping, we do
need to assess the rate at which equilibrium is reached, which
is quantified in the next section.

III. DIFFUSIVE FLUXES AND TIMES
TO REACH EQUILIBRIUM

This section will assess the diffusive flux of dissolved
species to estimate the timescales to reach an equilibrium
distribution of phases, as described by Eq. (10).

The vertical flux, F , of dissolved material is found from
Fick’s first law:

F = −D
∂C

∂z
, (13)

where D is the diffusion coefficient; this is an effective value
in the porous medium which is smaller than that measured in
bulk solution. Let us imagine a situation where gas is capillary
trapped in a tall vertical column at an approximately constant
capillary pressure, while the brine is stagnant (or at least there
is no vertical flow of the aqueous phase), as indicated in Fig. 1.
In this case the gas pressure is the water pressure plus the
constant capillary pressure. Hence using Eq. (1):

∂C

∂z
= H

∂Pg

∂z
= −Hρwg, (14)

and from Eq. (13):

F = DHρwg. (15)

Assuming that the flux remains constant we can estimate
the timescale for ganglia deep in the formation to disappear
through Ostwald ripening. If initially the trapped saturation
is Sgr in a rock of porosity φ over a height h with a density
ρg and molecular mass mg, then the moles of free gas per
unit horizontal cross-sectional are hφSgrρg/mg. From Eq. (15),
the time T for the diffusive flux to remove the trapped gas

completely is

T = hφSgrρg

DHρwgmg
. (16)

The other situation we will consider is the timescale for
local equilibrium after a laboratory experiment. Here the
concentration gradients are caused by differences in local cap-
illary pressure in the trapped ganglia: the ganglia rearrange in
the pore space to make the capillary pressure locally constant.
We assume a representative capillary pressure P∗

c = 2σ/r
where σ is the interfacial tension between the gas and aqueous
phases while r is a typical throat radius. If we consider the
achievement of equilibrium over a length scale l then the
concentration gradients are of magnitude:

∂C

∂z
≈ HP∗

c

l
= 2Hσ

lr
, (17)

and using the same approach as above, we can estimate a
typical timescale for equilibrium over a length l as

t = l2rφSgrρg

2DHσmg
. (18)

This is likely to overestimate the equilibrium time since this
allows complete removal or movement of the trapped gas; in
reality only a fraction of the gas volume needs to move to
achieve equilibrium.

It is possible that at the pore scale, the rearrangement of
ganglia could lead to reconnection of the gas phase. In this
case, transport will be much faster to reach equilibrium; how-
ever, as the gas moves upwards and the saturation decreases
it will again disconnect reaching a new position of local equi-
librium, as seen experimentally and in modeling studies [11].
In the end, the time to reach equilibrium will be determined
principally by diffusive transport between trapped gas ganglia,
as outlined here.

IV. APPLICATION TO PRODUCTION AND STORAGE

We will now estimate typical transition zone heights in
equilibrium, containing trapped gas, Eq. (12), as well as the
diffusive fluxes and Ostwald ripening timescales, Eqs. (16)
and (18) for four examples: CO2 (for storage applications),
hydrogen (for storage and withdrawal), methane (as a cushion
gas, during natural gas production with an aquifer drive, or a
solution gas drive in an oilfield), and nitrogen (representing
trapped air near the water table, or its use as a cushion gas in
the storage of other gases).

The properties we assume are provided in Table I. Note that
we only present here approximate calculations and so we have
not attempted to make accurate corrections for temperature,
pressure, and salinity. The temperature and pressure condi-
tions are T = 50◦C (323 K) and P∗ = 10 MPa, respectively.
We assume that the initial trapped saturation Sgr = 0.3 and
the porosity φ = 0.2. We consider h = 100 m to represent
a significant zone of trapped gas as illustrated in Fig. 1. We
take l = 1 mm for pore-scale equilibrium in laboratory ex-
periments. To estimate the diffusion coefficients in a porous
medium, we multiply measurements made in bulk by the
porosity to account for the restricted transport in the pore
space. For Henry’s constants, we use values in pure water
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TABLE I. Data for the calculation of transition zone heights, Eq. (19), and timescales for equilibrium at the pore and field scales, Eqs. (18)
and (16), respectively, for carbon dioxide CO2, hydrogen H2, methane CH4, and nitrogen N2. Density data from [21,22], interfacial tensions
from [23–25], partial molar volumes from [26–28], diffusion data from [22,29], and Henry’s constants from [19]. φ = 0.2, Sgr = 0.3, T =
323K , P∗ = 107 Pa, ρw = 1050 kg.m−3, l = 10−3 m, h = 100 m, r = 2.4 × 10−5 m, R = 8.314 J.K−1.mol−1, and g = 9.81 m.s−2.

Property/Gas CO2 H2 CH4 N2

Density ρg [kg.m−3] 400 7.1 68 112
Interfacial tension with brine σ [Pa.s] 0.0349 0.07 0.057 0.0635
Molecular mass mg [kg.mol−1] 0.044 0.002 0.016 0.028
Partial molar volume Vg [m3.mol−1] 3.5 × 10−5 2.5 × 10−5 2.5 × 10−5 4 × 10−5

Diffusion coefficient D [m2.s−1] 7.2 × 10−10 1.8 × 10−9 6.4 × 10−10 7.0 × 10−10

Henry’s constant H [mol.m−3.Pa−1] 1.8 × 10−4 6.9 × 10−6 9.2 × 10−6 4.7 × 10−6

Transition zone height z∗ [m] 0.29 0.52 0.44 0.50
Timescale for pore-scale equilibrium t [s] 1.5 × 106 3 × 106 9 × 106 1.4 × 107

Timescale for field equilibrium t [s] 4 × 1013 2 × 1014 4 × 1014 7 × 1014

corrected for temperature [19], but do not account for the
salting-out effect, which lowers the solubility of gases in
a high salinity brine. For the equilibrium transition zone,
Eq. (12), as above, we take P∗

c = 2σ/r where r = 24 μm
based on Bentheimer sandstone [13,20]. We assume a brine
density ρw = 1, 050 kg.m−3.

In summary, to find the estimated values for the equilib-
rium transition zone thickness, Eq. (12), we use the expression
for capillary pressure to write:

z∗ = 2σ

rρwg
· 1

1 + P∗(Vg − mg/ρw )/RT
. (19)

The results presented in Table I lead to the following ob-
servations:

(1) In equilibrium, density variations with depth and Ost-
wald ripening lead to a transition zone height—the region
containing trapped gas ganglia in equilibrium—of less than
1 m in all cases. This means that trapped gas cannot be
retained indefinitely in a vertical column of arbitrary height.

(2) The timescales to reach equilibrium are, however, ex-
ceptionally long. For reference, 1 million years is 3 × 1013 s:
for the gases studied, equilibrium over around 100 m takes
several million years. While this is achievable on geological
timescales, the redistribution of trapped ganglia in gravita-
tional equilibrium is negligible on the timescales of interest
for storage and withdrawal: years to millennia. This means
that other effects, including dissolution and convective mix-
ing, reaction, mineralization, and bacterial degradation [30],
will be more significant than Ostwald ripening.

(3) In contrast, at the laboratory scale, Ostwald ripening
is faster with complete equilibrium achieved at the scale of
1 mm in around two to four weeks (for CO2 and hydrogen)
and up to one year (methane and nitrogen). This is likely
to be an over-estimate of the time required since it allows
sufficient transport for complete removal of the trapped phase.
Experiments that study hydrogen and CO2 trapping imaging
may capture a state in partial equilibrium, with rearrange-
ment of trapped ganglia due to Ostwald ripening potentially
observable at the porescale over days to weeks. For nitrogen

and methane, though, longer times are required to reach equi-
librium and the pore-scale configuration of trapped phases
observed in imaging experiments is unlikely to be signifi-
cantly affected by Ostwald ripening.

V. CONCLUSIONS

This paper has presented an analytical analysis of Ostwald
ripening with application to underground gas storage and
production. The equilibrium distribution of phases has been
derived, including an expression for the capillary pressure and
transition zone height for trapped gas ganglia. This is different
from the normal capillary-gravity equilibrium associated with
connected phases and arises from the redistribution of gas by
Ostwald ripening resulting in a vertical saturation profile of
the trapped phase below continuous gas. A pore-scale pic-
ture and explanation of the phenomenon was provided. The
transition zone is estimated to less than 1 m in a permeable
formation for all of the four gases studied: carbon dioxide,
hydrogen, methane, and nitrogen.

The timescales to reach equilibrium were estimated. In all
cases, millions of years would be required to establish equi-
librium. While this may be relevant for geological processes,
in the context of storage and production, with timescales of
years to millennia, the impact of diffusive fluxes on removing
a deep column of trapped gas is negligible. On the other hand,
at the scale of laboratory experiments, Ostwald ripening may
establish partial equilibrium for hydrogen and carbon dioxide
over days to order of a month.

Further work is required to study the redistribution dynam-
ics of trapped phases to test the pore-scale conceptualization
presented here. Imaging experiments could be performed to
observe changes in the configuration of trapped ganglia of hy-
drogen and carbon dioxide due to Ostwald ripening building
on previous work [6,9].
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