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Scale-dependent error growth in Navier-Stokes simulations
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We estimate the maximal Lyapunov exponent at different resolutions and Reynolds numbers in large eddy
simulations (LES) and direct numerical simulations of sinusoidally driven Navier-Stokes equations in three
dimensions. Independent of the Reynolds number when nondimensionalized by Kolmogorov units, the LES
Lyapunov exponent diverges as an inverse power of the effective grid spacing showing that the fine scale
structures exhibit much faster error growth rates than the larger ones. Effectively, i.e., ignoring the cutoff of
this phenomenon at the Kolmogorov scale, this behavior introduces an upper bound to the prediction horizon
that can be achieved by improving the precision of initial conditions through refining of the measurement grid.
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I. INTRODUCTION

A defining feature of deterministic chaos is that in-
finitesimal errors in the initial conditions grow, on average,
exponentially fast in time, the rate being called the maximal
Lyapunov exponent λ of the system. This is a challenge to
predictions and often attributed to the difficulties in weather
forecasting since the initial condition which one plugs into
some model equations will represent the reality only up to
some inaccuracy and even if the model were perfect, the initial
error ε0 would grow approximately as ε(t ) ≈ ε0eλt . At latest
when the distance between this forecast trajectory and the
unknown “true” trajectory of the system reaches the order of
magnitude of the attractor size (or, more pragmatically, the
standard deviation of the quantity to be forecast), this forecast
has lost its usefulness, and the prediction horizon is reached.
This exponential error growth is already quite unfavorable
if one wants to extend the prediction horizon: For a linear
extension δt of the latter, the initial inaccuracy has to be
reduced exponentially by a factor of e−λδt .

Since the 1950s, several authors [1–8] have argued that
the practical situation in forecasting hydrodynamic systems is
likely to be much worse when a range of spatial and temporal
scales are at present as in the case of turbulent flows [9,10].
The basic idea is that for a multiscale hydrodynamic system,
refining the initial conditions would necessarily translate to
the inclusion of small-scale motions into the model, which,
in turn, have shorter characteristic temporal scales, such as
the eddy turnover time [11], thus, resulting in faster-growing
errors. Although Refs. [1–8] differ in many aspects, such as
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the systems and models that they consider, their common
conclusion is that the predictability in hydrodynamic systems
is much more strongly limited than by the simple exponen-
tial divergence of trajectories as a result of the described
phenomenon, which hereafter we refer to as scale-dependent
error growth.

Evidence of scale-dependent error growth has also been
reported in the models of atmosphere: In Ref. [12], fast growth
of errors at small scales was found in the Global Forecast
System of the National Centers for Environmental Prediction,
and more recently in Ref. [13] for ensemble forecasts of the
European Centre for Medium-Range Weather Forecasts. In
Ref. [14], it was argued that the results of Ref. [12] were
compatible with the power-law divergence of the finite-size
Lyapunov exponent in the vanishing amplitude of the initial
error. Altogether, these results point to a significant role of
scale-dependent error growth for weather forecasts.

The above-cited papers on scale-dependent error growth
consider forecast scenarios in which one is interested in pre-
dicting large-scale motions in the system which are assumed
to be measured with high accuracy and asks “How long will
it take for the uncertainties in unresolved length scales to
contaminate those of interest?” This question differs funda-
mentally from that of the standard exponential divergence
of infinitesimal errors as it is concerned with finite-size de-
viations. Motivated by this, Aurell et al. [6] introduced the
concept of finite-size Lyapunov exponents and applied it to a
shell-model turbulence cascade. By computing the error dou-
bling times for perturbations of a finite-size E and averaging
over the system’s attractor, they concluded that the rate λF (E )
of error growth can be well described by a power law λF (E ) ∝
E−β with β > 0. Later, Boffetta and Musacchio [8] presented
numerical evidence for this kind of error growth behavior
in the direct numerical simulations (DNS) of homogeneous
isotropic turbulence.

In this paper, we present simulation results which demon-
strate that the scale-dependent error growth is already relevant
for the growth rate of infinitesimal perturbations in hydrody-
namic models with varying resolutions. In order to understand
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TABLE I. Properties of the simulation domains. In all LES simulations the Smagorinsky constant was set to CS = 0.1. min nLES and
max nLES corresponds to the smallest and the largest numbers of grid points used in the LES at the corresponding Re. kmax = 2π (nDNS/2 + 1)/Li

is the largest resolved wave number in each direction.

Re Rerms ReT min nLES max nLES nDNS kmaxη

10,000 460.41 ± 45.80 30.07 ± 4.41 24 80 216 4.07
20,000 696.53 ± 57.34 38.45 ± 4.16 24 96 240 3.39
30,000 866.35 ± 78.90 41.60 ± 3.41 24 112 288 3.41
40,000 1,006.55 ± 72.88 45.14 ± 4.15 24 128 320 3.39
80,000 1,412.58 ± 94.68 54.19 ± 6.30 24 144 432 3.58

how inclusion of smaller scales affects the rate of error
growth, we perform large eddy simulations (LES) at differ-
ent resolutions, wherein the motions at length scales smaller
than the grid spacing are explicitly filtered out. In these, we
estimate the maximal Lyapunov exponents and compare to
those we find in the fully resolved DNS. Our results confirm
that increasing the spatial resolution of LES indeed results
in faster-growing errors. Moreover, when normalized by the
Kolmogorov length and timescales, the rates of error growth
at different Reynolds numbers and resolutions collapse on
a single curve that can be fit by a power law. Finally, we
consider a forecast scenario where the error on the initial
state’s measurement is proportional to the grid spacing of LES
and show that scale-dependent error growth yields an upper
limit for the maximal prediction horizon that can be achieved
through LES.

II. COMPUTATIONAL SETUP

Let us denote the three-dimensional Cartesian coordinates
by (x1, x2, x3) and the partial derivatives with respect to time t
and xi as ∂t and ∂i, respectively. Adopting also the summation
convention over the repeated indices, the filtered Navier-
Stokes equations read

∂t u j = −ui∂iu j − ∂ j p + 2∂i(Re−1 + νT )Si j + f j, (1)

where u j are the velocity field components subjected
to the incompressibility ∂ ju j = 0 and periodic bound-
ary conditions u j |xi+Li = u j |xi , Re is the Reynolds num-
ber, Si j = (∂iu j + ∂ jui )/2 is the rate-of-strain tensor, f j =
(4 Re)−1 sin(2πx2/L2)δ1 j is a sinusoidal body force, and νT

is the so-called “eddy viscosity” that aims to account for the
transfer of energy to the length scales below a resolution. We
implement the Smagorinsky model [15],

νT = (CS
)2
√

Si jSi j, (2)

where CS is the Smagorinsky constant and 
 is the length
scale below which the motion is not resolved. Note that
the full Navier-Stokes equations corresponding to the three-
dimensional Kolmogorov flow [16] are recovered in (1) if
νT = 0.

We simulate (1) using DNSBOX [17,18] which discretizes
the velocity field ui using Fourier series in all three directions,
compute the nonlinear terms in (1) pseudospectrally [19], and
time step the equations using a semi-implicit second-order
predictor-corrector scheme. All of our simulations are carried
out in a cubic domain with the edge length Li = 4, yielding the
laminar solution of (1) when νT = 0 as u j = sin(πx2/2)δ1 j .

The laminar solution with a unit peak amplitude at x2 = 1
sets our length and velocity scales, thus, the timescale as their
ratio.

Table I shows a summary of our simulation domains.
For the DNS domains, we determine our resolutions nDNS

such that the grid spacing Li/nDNS is on the order of the
Kolmogorov length scale η = (Re3ε)−1/4, where ε is the
rate of turbulence dissipation. We estimate this as ε =
Re−1〈∂ j ũi∂ j ũi〉 where ũi’s are the fluctuating velocity com-
ponents with means along the homogeneous directions x1

and x3 subtracted and the angle brackets indicate the average
over simulation domain. Besides the Re based on the laminar
solution, in Table I we also report Rerms = 〈ũ〉rmsLiRe and
ReT = 〈ũ〉rmslT Re where 〈ũ〉rms is the root mean square of
the fluctuating velocity and lT = √

15/(ε Re)〈ũ〉rmsRe is the
Taylor microscale [11]. Our final estimates of η, Rerms and
ReT come from their averages over 10 fluid states in each
DNS domain and the reported uncertainties are one standard
deviation. We started our simulations with a variable time
step that keeps the Courant-Friedrichs-Lewy number approx-
imately equal to 0.25, once a state on the attractor is reached,
we fix our time step to 
t = 0.04 in the DNS and 
t = 0.02
in the LES domains.

Let u(t ) be the fluid state at time t , let �t denote the
time-t map induced by the dynamics transforming u(t ) as
u(t ) = �t [u(0)], and let ‖ · ‖ indicate the L2 norm ‖u‖ =
(L1L2L3)−1

∫∫∫
uiuid3x. We estimate the maximal Lyapunov

exponents via Benettin algorithm [20] through the following
steps. Starting from an initial state u(0) on the attractor, we
add a random perturbation δu(0) with ‖δu(0)‖ = σ‖u(0)‖,
where σ is a small positive real number to this state and simu-
late u(t ) and u(t ) + δu(t ) in parallel. At each τ , we rescale
δu(nτ ) such that its norm is set as ‖δu(nτ )‖ = σ‖u(nτ )‖
where n = 1, 2, . . . After some transient time ttrans = ntτ , we
estimate the maximal Lyapunov exponent as

λ ≈ 1

Nτ

nt +N∑
n=nt

ln
‖�τ [u(nτ ) + δu(nτ )] − �τ [u(nτ )]‖

‖δu(nτ )‖ . (3)

For our numerical results to follow, we used σ = 10−4, ttrans =
400, and τ = 20 in DNS and σ = 10−4, ttrans = 400, and τ =
5 in LES. We confirmed that our results are insensitive to these
parameter choices by partially reproducing them using σ one
order of magnitude up and down; and 
t at half and double
its value.
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(a)

(b)

FIG. 1. (a) Maximal Lyapunov exponent estimated in LES at
different resolutions. Fully resolved DNS Lyapunov exponents are
indicated by horizontal lines. (b) Same as (a), scaled by Kolmogorov
length and timescales. Legends in (a) and (b) apply to both panels.

III. RESULTS

Figure 1(a) shows the numerical estimates of the largest
Lyapunov exponent obtained in DNS at five different Res
as straight lines, and the resolution-dependent exponents ob-
tained in the LES at the same set of Res against 1/
. Shown
values are obtained by averaging over the estimates of the
final 1000 time units in each simulation and the widths of
error bars and shaded regions in Fig. 1 correspond to two
standard deviations. We observe that as the LES resolution

is increased, so does the Lyapunov exponent with a clear
trend towards the corresponding exponent from DNS. Note
that the decrease in Lyapunov exponents as Re is increased is
due to our nondimensionalization of the system through the
sinusoidal laminar solution of the Kolmogorov flow. When
we rescale the Lyapunov exponents, which are measured in
inverse time units, by the Kolmogorov time τη = (Re ε)−1/2

and plot them against the LES grid spacing 
 normalized
by the the Kolmogorov length η, we obtain the data collapse
shown in Fig. 1(b). Hence, the Reynolds-number dependence
is fully accounted for by the Reynolds-number dependence of
the Kolmororov time and length scale. The larger uncertainties
in Fig. 1(b) with respect to those in Fig. 1(a) are due to the
standard deviations of our estimates of η and τ , which we
compute as an ensemble average over turbulent DNS states.

Figure 2(a) shows the shell-averaged energy spectra of
turbulence obtained as an ensemble average over 10 states.
Following Ref. [21], we replotted these spectra in Fig. 2(b)
in Kolmogorov units to show that they collapse at large wave
numbers (small scales). As we compute the Lyapunov expo-
nent, we expect the perturbations δu to align with the most
unstable direction of the system, i.e., the leading Lyapunov
vector. Taking these as an approximation to the leading Lya-
punov vector, we plotted their energy spectra in Fig. 2(c).
Similar to the flow states, when we rescale these spectra by
(η Re)2 and plot against the wave numbers premultiplied by
η, we observe that they similarly collapse onto a single curve.
These suggest that the scaling of the Lyapunov exponents
with Kolmogorov time τη can be attributed to the small-scale
universality of turbulence [22]. As shown in Figs. 2(e) and
2(f), we observe a similar collapse of the energy spectra for
Lyapunov vectors when we compare domains whose reso-
lutions match one another in Kolmogorov units. We chose
the Re and resolutions for Figs. 2(e) and 2(f) by noting that
η|Re=20 000/η|Re=40 000 ≈ 1.3 is also approximately equal to
the ratio of number of grid points, i.e., 32/24 ≈ 80/64 ≈
128/96 ≈ 1.3. In other words, the energy spectra of Lyapunov
vectors in two LES simulations at different Res are nearly
identical when we use the same LES resolution in units of
η.

Having obtained the scaling of the LES Lyapunov expo-
nents in Kolmogorov units, we replot our data as a function
of the grid spacing 
 along with a power law fit in Figs. 3(a)
and 3(b) in linear and log-log scales, respectively. In Fig. 3
and the rest of this article, all lengths and times are given in
Kolmogorov units. The largest Lyapunpov exponent obtained
by the LES of different spatial resolutions 
 as a function of
the latter is well described by a power law,

λ(
) = α
−ρ, (4)

where α ≈ 0.18 and ρ ≈ 0.32. This is the central result: The
smaller are the spatial scales that the perturbation fields δu can
contain, the faster are their growth rates. This is also reflected
in Fig. 2(f) where it can be seen that increasing the resolution
of the LES results in more and more energy in the small scales
of the Lyapunov vectors’ energy spectra. Note also that as
the LES resolution is increased, the spectra of the Lyapunov
vectors in Fig. 2(f) better approximates those obtained in the
DNS which are shown in Fig. 2(d).
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a) Shell-averaged energy spectra of turbulence in DNS. (b) Same as (a), in Kolmogorov units. (c) Shell-averaged energy spectra
of the Lyapunov vectors in thr DNS. (d) Same as (c), in Kolmogorov units. (e) Shell-averaged energy spectra of the Lyapunov vectors in the
LES at Re = 20 000 and Re = 40 000 for a select subset of the cutoff resolutions. (f) Same as (e), in Kolmogorov units.

In the limit 
 → 0, (4) with ρ > 0 yields λ → ∞. Of
course, this limit is an unphysical one since (4) is only valid
for 
 
 η. Nevertheless by examining it, we can derive an
upper bound for the prediction horizon that can be achieved by

the LES. Let us imagine a forecast scenario where the initial
state of the fluid is determined using a measurement grid with
spacing 
 and modeled with an LES of the same resolution.
In such a setup, it is reasonable to assume that the initial errors
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(a)

(b)

FIG. 3. (a) Maximal Lyapunov exponents in the LES as a func-
tion of grid spacing in Kolmogorov units along with the best-fit
power law. (b) Log-log plot of the same data.

of our measurement will be proportional to 
, i.e., ε0 = γ
,
where γ accounts for all the other factors that contribute
to the initial error, for instance, temporal resolution, which
we assume to remain unchanged. Exponential growth of this
initial error for some time t with the Lyapunov exponent (4)
yields

ε(t ) = γ
eα
−ρ t , (5)

FIG. 4. Prediction horizon (4) as a function of grid spacing plot-
ted for γ = {1–4} and εth = 1000.

which we can solve for the prediction horizon tpred to reach a
maximum tolerable εth as

tpred = 
ρ

α
[ln εth − ln(γ
)]. (6)

This is the standard expression for the prediction horizon
with 
ρ/α and γ
 taking the role of the Lyapunov time
and the initial error, respectively. Note that when 
 → 0
we get tpred = 0 due to the vanishing of the Lyapunov time,
which already tells us decreasing the grid spacing 
 might not
necessarily translate to an extended prediction horizon. Under
which condition this is the case is given by the derivative,

dtpred

d

= 
ρ−1

α

[
ρ ln

εth

γ

− 1

]
, (7)

which is negative when εth/(γ
) < e1/ρ and the equality
gives the point of diminishing returns because if dtpred/d
 >

0, then reducing 
 results in a shorter prediction horizon.
Consequently, the optimal resolution is given by the 0 of (7)
as


∗ = εth

e1/ργ
. (8)

Plugging it into (4), we get the maximal prediction horizon,

t∗
pred = ε

ρ
th

eαργ ρ
. (9)

We illustrate (4) in Fig. 4 where we plotted it as a function
of 
 for εth = 1000 (arbitrary) and γ = 1–4 along with t∗
indicating the maximal prediction horizon as a function of γ .
In light of our results, t∗ given by (9) is the longest prediction
horizon that is achievable through LES, if the magnitude of
initial uncertainties is proportional to the LES grid spacing 


and 
 
 η, i.e., the LES grid is much coarser than the Kol-
mogorov length. This can be straightforwardly generalized to
initial errors that scale differently with the grid spacing, i.e.,
ε0 = γ
μ with μ > 0. Following steps analogous to (5)–(7),
we get the derivative of prediction horizon with respect to the
grid spacing for this case as

dtpred(μ)

d

= 
ρ−1

α

[
ρ ln

εth

γ

− μ

]
, (10)
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which is negative as long as εth/(γ
) < eμ/ρ . Thus, in princi-
ple, the prediction horizon can be extended by ensuring this
condition if μ > 1 is technologically possible. Conversely,
if reducing the grid spacing results in a slower-than-linear
improvement (μ < 1) of the initial condition’s precision, then
the point of diminishing returns is reached earlier.

IV. CONCLUSION

In view of weather forecasting, this might have severe
implications for the limits of predictions. Numerical weather
prediction models and atmospheric general circulation mod-
els contain the Navier-Stokes equations in some form as the
core for modeling atmospheric transport [23,24] among the
so-called primitive equations. For better resolution of small
scale atmospheric processes with the ultimate goal to model
convection and clouds, the grid spacing in weather models
has been reduced according to compute power availability and
is currently down to, e.g., 2.2 km in the high-resolution DWD

model for Germany [25]. It is well known by practitioners that
high-resolution models lose their predictability on their small
scales much faster than coarser models do on their respective
scales, and consequently, high resolution models are used for
short term forecasts only (e.g., DWD limits the forecast runs
of ICON-D2 to 27 h). Our finding of an optimal resolution
for maximizing the prediction horizon sets this empirics into
a broader context and shows that the forecast horizon cannot
be extended by simply improving resolution alone.

Scaling of the maximal Lyapunov exponents of a turbu-
lent flow with the Kolmogorov timescale was conjectured
in Ref. [26], assumed in the subsequent literature [6] and
recently contested in homogeneous isotropic turbulence sim-
ulations [8,27,28]. Although our results are in agreement with
the conjecture, thus, at odds with the results of Refs. [8,27,28],
we cannot rule out subtle variations or finite-Re effects on this
scaling based on the present results. We would like to note,
however, two important differences between the cited studies
and the present one. First, the resolution of simulations we
perform are roughly twice the ones in Refs. [8,27,28]. We
chose to perform the DNS at resolutions much higher than
the traditional turbulence literature following the findings of
Refs. [22,29] which emphasized importance of resolving the
Kolmogorov scale for observing the small-scale universality

in simulations. The other potential explanation of the apparent
discrepancy is Refs. [8,27,28] use of Machiels [30] forcing
which is a positive feedback on the large scales. Although
irrelevant for small scales, such a forcing term could make the
large scales artificially unstable and result in an unexpected
behavior of the Lyapunov exponents. Another recent paper
[31] computing Lyapunov exponents in the LES and the DNS
of homogeneous isotropic turbulence reported a DNS estimate
λτη ≈ 0.122, which is within the error bars of our results in
Fig. 1, suggesting a universal behavior of the maximal Lya-
punov exponent. Altogether, we believe that further research
is necessary for settling the question whether the maximal
Lyapunov exponent in turbulence indeed scales with the Kol-
mogorov time.

To summarize, we studied the rate of error growth in the
LES and the DNS of sinusoidally forced Navier-Stokes equa-
tions in three dimensions at different Reynolds numbers and
LES resolutions. We found that independent of the Reynolds
number in the turbulent regime, the largest Lyapunov expo-
nent is a fixed multiple of the inverse Kolmogorov time in
the DNS, and the LES exponents at different Res collapse
onto a single curve that can be approximated by a power
law when nondimensionalized using Kolmogorov units. Us-
ing this power law as a phenomenological model of the
scale-dependent error growth, we showed that in a forecast
scenario where initial errors are proportional to the resolution
cutoff, the scale-dependent error growth introduces an upper
limit to the achievable prediction horizon. Although the ex-
act functional dependence and the numerical values of the
LES Lyapunov exponents are likely to depend on the studied
models, we expect the scale-dependent error growth to be a
common feature of turbulence since it appears to be related
to the small scales at which turbulent flows exhibit universal-
ity [22]. We, thus, believe that scale-dependent error growth
should be taken into consideration in forecast scenarios where
hydrodynamic transport is modeled.
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