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Emergence of zero modes in disordered solids under periodic tiling

R. Cameron Dennis ,1 Varda F. Hagh ,1,2 and Eric I. Corwin 1

1Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
2James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA

(Received 20 January 2022; accepted 22 September 2022; published 18 October 2022)

In computational models of particle packings with periodic boundary conditions, it is assumed that the packing
is attached to exact copies of itself in all possible directions. The periodicity of the boundary then requires that all
of the particles’ images move together. An infinitely repeated structure, on the other hand, does not necessarily
have this constraint. As a consequence, a jammed packing (or a rigid elastic network) under periodic boundary
conditions may have a corresponding infinitely repeated lattice representation that is not rigid or indeed may not
even be at a local energy minimum. In this manuscript, we prove this claim and discuss ways in which periodic
boundary conditions succeed in capturing the physics of repeated structures and where they fall short.
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I. INTRODUCTION

Periodic boundary conditions are a mainstay in the theoret-
ical and computational study of condensed matter systems as
they ameliorate or eliminate many finite-size effects, allowing
one to infer bulk behavior from small systems. In simulations
of physical systems “periodic boundaries” treat the system
under study as a unit cell interacting with exact copies of
itself in every direction. It is easy to take periodic boundary
conditions for granted and think of them as capturing all of the
physics of a repeated tiling with infinite independent copies
of the original system. But this misses a crucial distinction:
a system with periodic boundary conditions requires that all
of the particle images in a repeated tiling move in concert,
whereas infinitely repeated structures have no such constraint.
This distinction between free and periodic boundary condi-
tions is important because it has a profound impact on one
of the most fundamental properties of networks and packings:
rigidity.

In this paper, we provide a set of mathematical arguments
and proofs, as well as numerical results, that demonstrate how
the rigidity criterion for first-order rigid systems [1] with peri-
odic boundaries changes when the system is repeated in space.
In particular, in a marginally rigid system (i.e., a system near
the rigidity transition point), duplicating the system and con-
sidering two attached copies as the new unit cell introduces
new floppy modes that can break the rigidity of the entire
system. This implies that by tiling space with such systems,
one cannot produce an infinitely large system that retains its
rigidity.

For a finite-sized packing (or network), it is natural to
ask how many constraining contacts (or bonds) are needed
for rigidity. The Maxwell-Calladine rule provides an answer
[2–4]:

F − S = Nd − Nc, (1)

where F is the total number of floppy modes (or zero modes),
N is the number of particles (or nodes), d is the spatial dimen-
sion (making Nd the total number of degrees of freedom),
Nc is the number of constraining contacts (or bonds), and S
is the number of redundant constraints, which is equal to the
number of states of self-stress. States of self-stress include all
the possible ways a system can support contact forces while
being at mechanical equilibrium. For a physical system to
be rigid [1,5–7], it must only have trivial rigid motions as
floppy modes. For instance, a d dimensional finite system is
considered rigid if it only has F = d + d (d − 1)/2 floppy
modes, including d translations and d (d − 1)/2 rotations.
For infinitely large systems, the only trivial rigid motions
are the translations. Thereby, a d dimensional packing (or
network) that is under periodic boundary conditions or is in-
finitely repeated in space can only have d floppy modes when
rigid.

Note that the Maxwell-Calladine constraint counting rule
is not a suitable proxy for measuring rigidity in all types of
physical systems. For instance, in second-order rigid systems,
such as underconstrained networks that rigidify under ten-
sion, Eq. (1) cannot be used to describe the rigidity [1,8–11].
Another example where this constraint counting method fails
is in systems with shear degrees of freedom or special symme-
tries (such as square or Kagome lattices), where the alignment
of states of self-stress can lead to internal floppy modes that
are not included in the Maxwell-Calladine count [12,13].
However, for all the systems studied in this paper, includ-
ing jammed packings of soft particles and elastic networks,
Eq. (1) is a sufficient proxy for measuring rigidity.

Suppose we have a first-order rigid system with periodic
boundaries, d floppy modes, and S states of self-stress. Note
that first-order rigidity in systems with periodic boundary
conditions implies that the number of constraints is greater
than or equal to the number of degrees of freedom. By dupli-
cating the unit cell and attaching the copy to the cell across
one of the boundaries (as demonstrated in Eq. (1)), both the
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number of particles and the number of constraints double in
size. How does this impact the number of floppy modes and
states of self-stress? One might naively assume that both F
and S should also double to satisfy Eq. (1). However, this
would imply that the new system has 2d floppy modes and
thus is nonrigid. Does this mean that rigid systems do not
remain rigid under duplication? This is not a generally true
statement, because many crystalline structures (such as trian-
gular lattices) are rigid under infinite tiling. In the following
sections, we show that changes in the number of floppy modes
and states of self-stress when a periodic rigid structure under-
goes duplication (or more generally tiling) are nontrivial and
depend on multiple factors, including the initial number of
states of self-stress in the unit cell.

To show the impact of repeating a physical system on its
rigidity and how it compares to the rigidity under periodic
boundaries, we first examine the mathematical structure of
periodic boundary conditions in jammed packings of soft
athermal particles and their underlying spring networks. Note
that in jammed packings of soft particles, there are almost
always prestress forces present in the system, while networks
can be either stressed or unstressed. In addition, states of
self-stress in such systems are system spanning, meaning that
they involve all of the contact bonds. In the absence of any
prestress, the rigidity of a system can be fully captured by
its rigidity matrix R, which is the matrix of first derivatives
of constraints h (overlaps in soft particle packings and bond
lengths in spring networks) with respect to degrees of free-
dom, Rα,i = ∂hα

∂xi
. R is a Nc×Nd dimensional matrix (with Nc

being the number of constraints), where each row α represents
a pair of interacting particles (or connected nodes) and every
d consecutive column corresponds to a particle. The rigidity
matrix relates changes in degrees of freedom δX to changes
in the constraints � via RδX = �. It is trivial to show that
the right null space of R represents floppy modes in the
system that correspond to motions that do not change the
constraints [2–4]. In the presence of prestress forces, however,
one must compute the null space of the Hessian matrix (that
includes a negative definite prestress term) to find the floppy
modes [2–4]. The Hessian H is the second derivative of energy
function with respect to all degrees of freedom, Hαβ

i j = ∂2U
∂xα

i ∂xβ
j

.

When the prestress forces are small and the system is mechan-
ically stable, the nullity of the rigidity matrix can still show the
number of floppy modes in the system.

Following the more statistical findings of Goodrich et al.
[14,15], who show that infinitely tiled two-dimensional (2D)
disk packings can lead to anomalously low-frequency modes,
we demonstrate that infinitely tiled jammed packings of soft
spheres in any dimension can have not only anomalously low-
frequency modes but also new zero or even negative modes
when they are sufficiently close to critical jamming, i.e., with
fewer than d states of self-stress. With this goal in mind, we
prove the following theorems and arguments (presented here
in simplified terms):

TI: An unstressed jammed sphere packing with periodic
boundary conditions and fewer than d states of self-stress will
not remain jammed after tiling space.

TII: When there are S < d states of self-stress in an un-
stressed jammed packing or spring network, duplicating the

system across any boundary will introduce at least d − S new
zero modes to the system.

AI: Tilings of amorphous overjammed packings of soft
spheres (with prestresses), even with d or more states of self-
stress, typically have unjamming motions.

AII: Unstressed networks with d or more states of self-
stress typically do have a rigid infinite lattice representation,
but we show that there exist special counter-examples which
do not.

TIII: The bulk elastic properties of an infinitely repeated
packing are fully captured by periodic boundary conditions.

II. THEOREM I

For unstressed jammed packings (or unstressed spring net-
works) with S < d states of self-stress, the corresponding
packing (or network) that is duplicated across boundary x will
not be rigid under the assumption that both the original and
duplicated systems have periodic boundary conditions.

Proof. We proceed with a proof by contradiction. Imagine
a jammed packing with no prestresses. F = d trivial floppy
modes, and S < d states of self-stress. Assume that the du-
plicated system is jammed and therefore has F ′ = d trivial
floppy modes and S′ states of self-stress. These trivial floppy
modes are simply the modes that correspond to translating
each particle by the same amount in the same direction. From
the Maxwell-Calladine constraint counting rule in Eq. (1),

Nd − Nc = F − S (2)

and 2Nd − 2Nc = F ′ − S′, (3)

where Nd is the total number of degrees of freedom and Nc is
the number of contacts in the original packing. Duplicating a
packing across one of the boundaries will indeed double both
the number of particles and the number of contacts. We can
therefore state that F ′ − S′ = 2(F − S). If we substitute our
assumption that F = F ′ = d and solve for S′, then

S′ = 2S − d. (4)

Now if we have only one state of self-stress in the original
system, we can simply replicate it to find a state of self-stress
in the duplicated system [16] (as shown in Fig. 1). If applying
a set of stresses to the contact bonds of the original packing
leads to force balance, then replicating those stresses to a du-
plicated packing must also lead to force balance. This means
that we can automatically find S states of self-stress for the
duplicated system. Note that orthogonality of these S states of
self-stress is preserved in the doubling procedure. However, it
is possible to find additional states of self-stress for the dupli-
cated packing which are not captured by this trivial doubling.
Therefore, S′ � S. Substituting this result into Eq. (4) gives

2S − d � S (5)

S � d. (6)

We assumed at the beginning of this proof that the original
and duplicated packings are jammed and that S < d. We have
thus reached a contradiction. Any jammed packing or spring
network with S < d states of self-stress, when duplicated
across any boundary, must display an unjamming motion in
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FIG. 1. A packing of spheres that has been duplicated. The
red lines display a state of self-stress. The thickness of each line
represents the magnitude of the stress on the corresponding bond.
Replicating the state of self-stress for the original system gives a state
of self-stress for the duplicated system.

the form of an internal floppy mode. One example of such an
emergent floppy mode is shown in Fig. 2.

III. THEOREM II

For an unstressed jammed packing (or spring network)
with S < d states of self-stress, duplicating the packing (or
network) across boundary x produces at least d − S emergent
floppy modes in the system.

Definitions. To understand the following proof, we must
first define the rigidity matrix for a spring network or packing.
As discussed in the introduction, the rigidity matrix relates
the forces applied to the particles with the resulting stresses
on the contacts. Consider the displacement vector of particle i
to be given by �xi and the unstressed bond between particles
i and j be given by the normalized vector �ni j . From this,
we can define the stress of the bond (i.e., the lengthening or
shortening of said bond) to be given by the dot product

�ni j · (�x j − �xi ). (7)

If we let the first index of our rigidity matrix be the bond
between particles i and j and let the second index be the

FIG. 2. A circle packing with S = 1 states of self-stress that
has been duplicated across one of the boundaries. Since S < d, the
duplication introduces a new floppy mode represented by the red
arrows. Notice that these arrows are antisymmetric: a particle and
its replica have equal and opposite displacement vectors.

degree of freedom kγ , then

nγ
i j

(
xγ

j − xγ
i

) = R〈i j〉(kγ )x
γ

k , (8)

where k denotes the particle index and γ denotes the dimen-
sion index. For this relationship to be correct, we define

R〈i j〉(kγ ) ≡ (δ jk − δik )nγ

i j, (9)

where δ is the Kronecker delta function.
Proof. To prove this stronger theorem, we first need to

understand how the singular values of the rigidity matrix in
a duplicated system compare to the singular values of the
rigidity matrix in the original system. To achieve this, we
introduce the following lemma.

IV. LEMMA I

The rigidity matrix of any unstressed jammed packing (or
network) under periodic boundary conditions can be written
as

R =
(

Rc Rp

0 Rb2 + Rb1

)
where (0 Rb2 + Rb1) corresponds to the contacts crossing
boundary x. We denote the singular values of this matrix to be
{σi}. We introduce a new matrix called the doubled Hessian
compliment matrix,

RDHC ≡
(

Rc Rp

0 Rb2 − Rb1

)
,

and denote the singular values of the matrix to be {εi}. Under
these definitions, duplicating the packing across boundary x
results in a system where the rigidity matrix has singular
values {σi, εi}.

Proof. Consider b contact bonds that cross boundary x, with
p particles involved in making these boundary contacts. We
separate the rigidity matrix R into columns that do not involve
these p boundary particles and columns that do. We further
separate R into rows that do not involve these b contacts and
rows that do. This gives

R =
(

Rc Rp

0 Rb2 + Rb1

)
, (10)

where Rc (which has shape (Nc − b)×(Nd − p)) represents
the contacts that are formed between nonboundary particles,
Rp ((Nc − b)×p) represents contacts that involve the p bound-
ary particles but do not cross the boundary themselves, Rb1

(b×p) are the rows that involve boundary contacts where the
rightmost vectors in each row are zero, and Rb2 (b×p) are the
rows of the boundary contacts where the leftmost vectors in
each row are zero. The reordering of columns of the rigidity
matrix corresponds simply to reindexing the particles and
the reordering of rows of the rigidity matrix corresponds to
reindexing the bonds. This 0 block comes from our definition
of nonboundary particles having no boundary contacts.

Replicating the system across boundary x results in a new
system with rigidity matrix RD that can be written as

RD =

⎛
⎜⎝

Rc Rp 0 0
0 Rb2 0 Rb1

0 0 Rc Rp

0 Rb1 0 Rb2

⎞
⎟⎠. (11)
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If we separate this matrix into four 2×2 blocks, we notice
that the top left and bottom right blocks simply describe the
interaction of each replica with itself. When the configura-
tion is duplicated across boundary b1, the bonds that cross
this boundary in the original packing do not cross it in the
duplicated packing. Therefore, these diagonal blocks are the
same as R except that we remove the Rb1 term. In contrast,
the off-diagonal 2×2 blocks of RD only contain the Rb1

term.
If we consider �u = (�u1

�u2

)
and �v = (�v1

�v2

)
to be left and right

singular vectors (respectively) for R with corresponding sin-
gular value σ such that �uT R�v = σ, then we can demonstrate

that 1√
2

(�u
�u
) = 1√

2

(�u1

�u2

�u1

�u2

)
and 1√

2

(�v
�v
) = 1√

2

(�v1

�v2

�v1

�v2

)
are left and right

singular vectors for RD with singular value σ. Note that
these vectors maintain their orthonormality condition. Shown
explicitly,

1

2
(�uT �uT )RD

(
�v
�v
)

= 1

2
(�uT �uT )

⎛
⎜⎝

Rc Rp 0 0
0 Rb2 0 Rb1

0 0 Rc Rp

0 Rb1 0 Rb2

⎞
⎟⎠

⎛
⎜⎝

�v1

�v2

�v1

�v2

⎞
⎟⎠

= 1

2
(�uT �uT )

⎛
⎜⎜⎝

(
Rc Rp

0 Rb2 + Rb1

)(
�v1

�v2

)
(

Rc Rp

0 Rb2 + Rb1

)(
�v1

�v2

)
⎞
⎟⎟⎠

= 1

2
(�uT �uT )

(
R�v
R�v

)

= σ.

This means {σi} are also singular values for RD. This is not
surprising because a particle and its replica have the same
displacement vectors in the eigenvectors that correspond to
these singular values. Therefore, these are the modes that cor-
respond to the particles moving in concert with their replicas.
One can see that the new internal floppy mode in Fig. 2 has
the antisymmetry predicted by the above analysis. In a similar
fashion, consider �x and �w to be the left and right singular
vectors for RDHC with singular value ε. We can now show
that 1√

2

( �x
−�x

)
and 1√

2

( �w
−�w

)
are left and right singular vectors for

RD with singular value ε. Again, note that these vectors are
orthonormal and consider

1

2
(�xT − �xT )RD

(
�w

−�w
)

= 1

2
(�xT − �xT )

(
RDHC �w

−RDHC �w
)

= �xT RDHC �w
= ε.

This means that {εi} are also singular values for RD. To com-
plete the proof, notice that

1

2
(�uT �uT )

(
�xT

−�xT

)
= 0

and

1

2
(�vT �vT )

(
�wT

−�wT

)
= 0.

Since RD has precisely twice as many singular values as R
and since the above orthogonality condition holds, all of the
singular values for RD must be given by {σi, εi}.

Now we can use this information to prove the theorem.
From the rank-nullity theorem, we know that for a system with
d trivial floppy motions,

rank(R) = Nd − d.

On the other hand, the maximum rank that the RDHC matrix
can have is the minimum of its number of rows and columns,
max(rank(RDHC)) = min(Nd, Nc). We later show how the
rank of the RDHC can be computed in Lemma II. Replacing
Nc with Nd − d + S gives

max[rank(RDHC)] = min(Nd, Nd − d + S).

For a system with S < d states of self-stress, max(rank
(RDHC)) is Nd − d + S. Thus, rank(RDHC) � Nd − d + S.
This means that

rank(R) + rank(RDHC) � 2Nd − 2d + S.

We know from Lemma I that R and RDHC capture all of the
behavior of RD in first-order rigid systems. Because the sets of
right singular vectors for R and RDHC make up all of the right
singular vectors for RD, we know that rank(RD) = rank(R) +
rank(RDHC). This gives

rank(RD) � 2Nd − 2d + S,

which implies

nullity(RD) � 2d − S. (12)

For the duplicated system to be fully rigid and jammed,
nullity(RD) must be equal to d . However, Eq. (12) shows
that there are at least d − S new zero modes appearing in the
system. This proves the result that for a jammed packing or
spring network with S < d states of self-stress, duplicating the
packing across boundary x produces at least d − S emergent
floppy modes in the system.

So far, we have proven that unstressed amorphous systems
with fewer than d states of self-stress are not rigid upon repli-
cation. But what can we say about systems that are far from
criticality and have more than d states of self-stress? In the
following, we first consider jammed packings of soft athermal
spheres with prestress forces and show that the presence of
prestress increases the probability of unjamming when the
system is repeated infinitely. We then consider the case of
unstressed systems and provide an argument for why these
systems typically do remain jammed under tiling.

V. ARGUMENT I

Nearly all amorphous systems with fixed boundaries and
nonzero prestress will destabilize under a sufficient number
of replications.

Definitions. It can be shown that jammed packings of soft
particles with more than d states of self-stress typically are
marginally stable [17] and thereby represent saddle points on
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FIG. 3. The Hessian can be split into pieces correspond-
ing to the interactions with neighboring copies of the unit
cell. There are (3d + 1)/2 independent Hessian pieces which are
shown in the center of their corresponding cells. Blue is used to
represent those particles that do not interact with neighboring repli-
cas, whereas the other colors represent interactions with neighboring
replicas. The dark greens, for example, are those particles that in-
teract with particles in the cell labeled H2. The magenta particle is
the only particle that interacts with particles in the cell labeled HT

3 .

Notice that the orange and brown particles would be in contact for an
unreplicated system. Therefore, we label the neighboring cells with
HT

4 and H4 to account for this symmetry.

the energy landscape of the tiled system. We can show this by
considering the Hessian in the momentum space H (�q) found
through Bloch’s theorem [18]. For simplicity in calculations,
we consider the interaction of a packing with its neighboring
replicas. Each unit cell has 3d − 1 neighboring cells in a
tiling. We consider the interaction between a unit cell and its
neighbor i as Hi. If we let the interaction between the unit
cell and itself be H0, then the original Hessian, H (�0), can be
written as

H (�0) = H0 +
3d −1∑
i=1

Hi. (13)

This can be simplified further. If Hj is the Hessian com-
ponent with respect to the neighboring copy j, and Hk is the
Hessian component with respect to the opposite neighboring
copy k, then Hk = HT

j as shown in Fig. 3. This means that the
Hessian only needs to be split into (3d + 1)/2 parts and

H (�0) = H0 +
(3d −1)/2∑

i=1

(
Hi + HT

i

)
. (14)

In general, from Bloch’s theorem, we can conclude that

H (�q) = H0 +
(3d −1)/2∑

i=1

[(
Hi + HT

i

)
cos(�q · �ri )

× (
Hi − HT

i

)
sin(�q · �ri )

]
, (15)

FIG. 4. Top left: An overjammed amorphous packing of 64 har-
monic soft spheres at packing fraction φ = 0.90 with 30 states of
self-stress. Top right: The eigenvalues in the first branch of the
momentum-space Hessian for this overconstrained packing. The blue
and green colors represent the negative eigenvalues that correspond
to perturbations that lower the energy. Bottom left: A shear stabilized
packing of 64 harmonic soft spheres at φ = 0.90 and 26 states
of self-stress. Bottom right: The corresponding contour plot of the
first branch eigenvalues of the shear stabilized system’s Hessian in
momentum space.

where �ri is the d dimensional vector corresponding to the
position of cell i. The eigenvalue associated with the inter-
nal floppy mode shown in Fig. 2 corresponds to the lowest
eigenvalue of H (�q = (π, 0)).

Argument. We can determine whether a tiled packing re-
mains jammed upon replication by looking at the eigenvalues
of the first branch (lowest band of the momentum-space
Hessian). For a packing that remains jammed when tiled,
all of these eigenvalues should be greater than zero except
for the trivial zero modes that come from H (�0). Looking at
a small jammed packing with N = 64 particles and S = 30
states of self-stress in 2D, we can see that the eigenvalues in
the first branch are negative for certain values of momentum
(see Fig. 4). A negative eigenvalue means there is a direction
in which the particles can be perturbed that lowers the energy
of the tiled system. This implies that the tiled packing, while in
force balance, is not jammed. Shear stabilized packings also
may have negative modes in their first branch. An example
is shown in the lower panel of Fig. 4 with a shear stabilized
packing of N = 64 soft harmonic particles and S = 26 states
of self-stress. These examples demonstrate that the tiling of an
overjammed packing might unjam when the number of tiles
goes to infinity.

The above argument concerns jammed packings of soft
spheres with nonzero prestresses. However, it turns out that in
unstressed systems such as jammed packings of hard spheres
or elastic networks with zero prestress, duplicating the system
is unlikely to break its stability when there are more than
d states of self-stress. Remember that in such systems, the
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rigidity can be explored using the null space of the rigidity
matrix.

VI. ARGUMENT II

For typical unstressed systems with S � d states of self-
stress, the corresponding system that is duplicated across
boundary x will typically be rigid and the system will typically
remain rigid when tiled.

Reasoning. Let the singular value decomposition of R be
given by R = (Uc

Ub

)T
�

(Vc

Vp

)
, where Ub represents the b rows of

the left unitary singular vector matrix which correspond to
boundary bonds across boundary x and Vp represent the p rows
of the right unitary singular vector matrix which correspond
to particles that do not have boundary bonds. Let X and W be
left and right unitary singular vector matrices for RDHC such
that RDHC = X�DHCW T . Further, consider α and β to be the
change of the basis matrices such that

W =
(

Vc

Vp

)
α

and X =
(

Uc

Ub

)
β.

Now consider

�DHC = X T RDHCW

= βT

(
Uc

Ub

)T

RDHC

(
Vc

Vp

)
α

= βT

(
Uc

Ub

)T [
R −

(
0 0
0 2Rb1

)](
Vc

Vp

)
α

= βT

[
� −

(
Uc

Ub

)T (
0

2Rb1Vp

)]
α

= βT
(
� − 2U T

b Rb1Vp
)
α.

Now we know that the rank of �DHC is the same as the rank
of RDHC and that α and β must be full rank because they are
changes of the basis matrices, so we have

rank(RDHC) = rank
(
� − 2U T

b Rb1Vp
)
.

This result shows us that the rank of RDHC comes from per-
turbing the rectangular matrix with a typically dense matrix.
This means that given an amorphous packing, it is extremely
likely for the rank of RDHC to be Nd. If the original system is
jammed and rank(RDHC) = Nd, then

rank(RD) = rank(R) + rank(RDHC) = Nd − d.

From the rank-nullity theorem, we know that the duplicated
system only has d floppy modes. This argument for dupli-
cated systems can be applied repeatedly to show that typical
unstressed systems with S � d states of self-stress will remain
rigid when tiled.

Discussion. While we have explained why most amor-
phous, unstressed systems with d or more states of self-stress
are typically jammed upon replication, it is worth noting
that this does indeed hinge on a statistical argument. It is
possible to create nonamorphous packings of hard spheres
which are not jammed upon replication. In Fig. 5, we create

FIG. 5. Top left: A jammed packing of hard spheres with more
than d states of self-stress based on a triangular lattice with a vertical
line of particles that only have three contacts each. Bottom left: The
corresponding duplicated packing which is not jammed. There is
a floppy mode in which the red and blue particles move in oppo-
site directions. Top right: Another jammed packing of hard spheres
with significantly more than d states of self-stress. This packing
is jammed when duplicated once in either direction. Bottom right:
The packing from above but replicated in a 2×2 arrangement. This
packing is not jammed as the red and blue regions are free to move
in opposition, creating a new floppy mode.

two packings based on the triangular lattice. These packings
were proven to be jammed by using a linear programming
algorithm [19–21]. However, when these packings are tiled,
one finds that novel floppy modes are introduced.

VII. THEOREM III

The elastic moduli for a jammed packing are the same as
the corresponding packing that is duplicated across boundary
x up to a trivial scaling factor. This means that the stiffness
matrix is extensive when tiling the space.

Definitions. The elastic properties of a packing can be
understood from the stiffness matrix C, where

�σ = C�ε (16)

for the stress �σ and the strain �ε. We can find this relationship
for the original packing by considering the extended Hessian
[22]. We define the extended Hessian as being the second
derivative of the energy function with respect to not only
the positional degrees of freedom but the strain degrees of
freedom as well. Let H be the extended Hessian such that

H ≡
(

Hxx Hxε

HT
xε Hεε

)
, (17)

where Hxx is the second derivatives of the energy with respect
to the positions, Hεε is the second derivatives with respect to
strain, and Hxε is the mixed second derivatives. One can then
perform a Taylor expansion of the energy function to arrive at
Hooke’s law for the extended Hessian,

H

(
�x
�ε
)

=
(− �F

�σ
)

, (18)
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where �F represents the interparticle forces. If we want to find
the stress-strain relationship as in Eq. (16), we need to ensure
that through the process of applying a strain, the force balance
is never lost. This is equivalent to minimizing the energy of a
packing after each affine strain step. Therefore, when applying
a strain, we also need to apply a nonaffine perturbation �xna so
that

H

(
�xna

�ε
)

=
(�0

�σ
)

. (19)

Equivalently, we need to solve the following system of equa-
tions: (

Hxx�xna + Hxε�ε
HT

xε�xna + Hεε�ε
)

=
(�0

�σ
)

. (20)

If we solve the first system of equations for �xna and substitute
the solution into the second system of equations, we find that

C = Hεε − HT
xε(Hxx )−1Hxε, (21)

where (Hxx )−1 is the Moore-Penrose pseudoinverse [23] for
the singular matrix Hxx.

Proof. Now that we have an expression for the stiffness
matrix of the original packing, we need to find the stiffness
matrix for the duplicated packing CD. If we let a system and
its duplicate be A and B, respectively, we can express the
positional second derivatives of the duplicated system HDxx

as

HDxx =
(

HA HB

HB HA

)
. (22)

The extended Hessian for the duplicated system is therefore

HD =
⎛
⎝HA HB Hxε

HB HA Hxε

HT
xε HT

xε 2Hεε

⎞
⎠. (23)

If we let �x1 be the nonaffine motion of the original system and
�x2 be the nonaffine motion of the duplicated system, then⎛

⎝ HA�x1 + HB�x2 + Hxε�ε
HB�x1 + HA�x2 + Hxε�ε
HT

xε(�x1 + �x2) + 2Hεε�ε

⎞
⎠ =

⎛
⎝�0

�0
�σ

⎞
⎠. (24)

Adding the first two equations gives

(HA + HB)(�x1 + �x2) + 2Hxε�ε = �0. (25)

We can solve for �x1 + �x2 by using the fact that Hxx = HA +
HB. We see that

(�x1 + �x2) = −2H−1
xx Hxε�ε. (26)

Making this substitution into the third equation reveals that

�σ = 2
[
Hεε − HT

xε(Hxx )−1Hxε
]
�ε (27)

or

CD = 2C. (28)

We can repeat this argument indefinitely, which means that the
stiffness matrix is extensive when we tile space with a jammed
packing.

VIII. CONCLUSIONS

Periodic boundary conditions are extensively used in the
computational modeling of physical systems as they reduce
the impact of finite size effects. However, one needs to be
cognizant of the limitations and pitfalls of the implemen-
tation of these boundary conditions. We have demonstrated
that in unstressed jammed packings of soft athermal particles
(or spring networks) when periodic boundary conditions are
implemented as a tiling, the resulting tiling does not remain
jammed or rigid if the original system has fewer than d states
of self-stress. We further develop this idea to show that when
there are S < d states of self-stress in a jammed packing (or
spring network), duplicating the system across any boundary
will introduce at least d − S new zero modes. While these
proofs are only valid in the absence of prestresses, the pres-
ence of prestresses can make the effect even more dire. When
there are prestresses, we show that, in general, amorphous
jammed packings of soft spheres typically have unjamming
motions even when S � d. We then argue that it is the over-
constrained, unstressed systems (such as spring networks with
zero prestress or jammed packings of hard spheres) that are
interesting as they typically have an infinite lattice representa-
tion that remains rigid when S � d , although there are atypical
counterexamples that we present in this paper. We conclude
the manuscript with a proof that the bulk elastic properties of
an infinitely repeated packing are fully captured by periodic
boundary conditions. Through these proofs and arguments,
this work comprehensively outlines the advantages and pit-
falls of utilizing periodic boundary conditions when studying
rigidity.
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