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Quantitativeness of phase-field simulations for directional solidification of faceted silicon

monograins in thin samples
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We report the results of a two-dimensional reference model for the formation of facets on the left and right side
of a silicon monograin that is solidified by pulling a thin sample in a constant temperature gradient. Anisotropy
functions of both the surface energy and the kinetic attachment coefficient are adapted from a recent model for
free growth of silicon micrometer-sized grains [Boukellal et al., J. Cryst. Growth 522, 37 (2019).]. More precise
estimates of the physical parameters entering these functions are obtained by reanalyzing available experimental
results. We show that the reference model leads to a differential equation for the shape of the solid-liquid
interface. The numerical solutions of this equation give a reference law A(V;) relating the facet length A to
the facet normal velocity V;. In parallel, phase-field simulations of the reference model are performed for two
growth orientations, [001] and [011]. Facet lengths A obtained from simulations at different facet velocities are
first extrapolated to the limit of vanishing interface width. This extrapolation is made possible by constructing a
master curve common to the whole range of V; values considered. The extrapolated A values are then compared
with the ones predicted by the A(V;) reference law. Both sets give comparable values, with an accuracy of a
few percent, which confirms that the phase-field model can give quantitative results for faceted solidification of

silicon.

DOI: 10.1103/PhysRevE.106.044802

I. INTRODUCTION

Over the past few decades, several generations of solar
cells have been developed to speed up fossil energy replace-
ment [1]. Nowadays, silicon-based solar cells are still widely
used [2,3], notably because of the remarkable electronic prop-
erties of silicon [4]. However, controlling sufficiently the
solidification of silicon to improve the photovoltaics prop-
erties at a reasonable cost remains an important economical
issue [3]. It is indeed well reckoned that the structural and
chemical defects of solidified silicon have a direct impact on
solar cell performances [3,5-7].

Crystalline silicon exhibits facets at the solid-liquid inter-
face, as is predicted by the Jackson criterion [8], and it is
consistently shown by experiments [9,10] and reproduced by
atomic-scale simulations [9,11-13]. In particular, it is well
known that silicon solidification shapes develop large {111}
facets because, as compared to the other orientations, kinetic
attachment effects slow down considerably the growth of
these compact atomic planes [14—17]. To include faceting in
growth models, two main points of view have been advanced
in the literature. The first one is to consider fully (or almost
fully) faceted shapes. In this case, fundamental questions arise
at the corner points where several facets meet. This point
of view has given rise to a number of fundamental studies
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[18-20] and to elegant solutions concerning the singularities
at corner points [21,22].

The second point of view is more adapted to partially
faceted interfaces like the ones usually observed for a solid
silicon germ in contact with its melt [10,17]. In this case,
facets only appear for a discrete set of orientations, namely the
eight (111) directions in the present case, and these facets are
separated by large rough portions of the interface. As shown
in [23], it is necessary that both anisotropy functions asso-
ciated with the surface energy y and the kinetic attachment
coefficient § present singularities in the (111) directions, in
order to account for the large facets observed in [10,17]. This
is the point of view that we will adopt here, based on the afore-
mentioned experimental, numerical, and analytical results, as
well as on our previous phase-field studies of equiaxed faceted
solidification in two [24] and three dimensions [23].

About two decades ago, the use of phase-field solidification
simulations was considerably boosted by the introduction of
the thin interface formalism that was proved to give quanti-
tative results for both pure elements [25] and binary alloys
[26,27]. Most of the phase-field studies were carried out for
materials exhibiting a rough solid-liquid interface. In such
situations, the kinetic attachment effects are negligible and
the anisotropy functions of surface energy consist essentially
in linear combinations of the spherical harmonics, taking
into account the symmetry of the material. However, when it
comes to performing quantitative simulations of solidification
of materials exhibiting a faceted solid-liquid interface like
silicon, kinetic attachment effects should be taken into ac-
count, and obtaining reasonable expressions for the anisotropy
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functions associated with y and 8 becomes a serious limiting
step. Different anisotropy functions have been proposed in
the literature, but they generally depend on adjustable nu-
merical parameters that have no direct physical counterparts
[28-30], so a quantitative comparison with experiment is
difficult. A review of such functions with a short descrip-
tion of their qualities and drawbacks was recently published
[31].

In a recent study [23], we proposed anisotropy func-
tions that were based on experimental results and symmetry
considerations. These anisotropies were used to simulate Si
solidification in conditions close to reference experiments
[10]. The good agreement found between numerics and ex-
periments validated to a large extent the proposed anisotropy
functions. Here, we recalibrate these functions by reanalyzing
available experimental data, and we use them to perform sim-
ulations of directional solidification of pure Si. The goal of
the present paper is to show that one can obtain a quantitative
phase-field model for this problem.

The paper is organized as follows. In Sec. II, a two-
dimensional (2D) reference model is defined to describe the
steady-state solidification of a Si monograin. The solid-liquid
interface is composed of a central rough segment matching
tangentially two facets that contact the domain side bound-
aries. The appropriate interface equation is discussed for the
rough and the faceted segments. In addition, the analytical
forms of the anisotropy functions are given for y and B.
Section IIT presents the bases of our phase-field model, and
the phase-field evolution equation is given. Based on avail-
able experimental data, anisotropy parameters are adjusted.
Implementation of the phase-field code is then presented, in
particular the criterion used to measure facet lengths and its
implications on the choice of the kinetic attachment amplitude
in the code. An extended list of the physical and numeri-
cal simulation parameters is also provided. The phase-field
results obtained for the steady-state growth shapes are pre-
sented and analyzed in Sec. IV. There, the emphasis is put
on convergence of the simulation results with decreasing in-
terface width. It is shown that converged values A of the
facet length can be obtained with the help of a master curve
that takes into account the influence of the normal facet ve-
locity V; on phase-field diffusion across the interface region
along a facet. The reference model is then treated analytically
in Sec. V, where a differential equation is obtained for the
rough segment of the interface. Solving this equation by a
finite-difference algorithm gives an exact correspondence be-
tween the facet length A and Vy. Direct comparison with the
phase-field converged values Ag(Vy) shows excellent agree-
ment, within a few percent. Finally, our main conclusions
are summarized in Sec. VI, and a few prospective points are
evoked.

II. REFERENCE 2D MODEL

We focus on the case of a Si monograin that is solidified by
pulling a thin sample at a velocity V toward the cold region of
a furnace. A constant temperature gradient G is imposed by
the furnace, and both G and the stationary growth velocity V
are directed along the vertical z axis as shown in Fig. 1(a). The
temperature gradient is assumed positive, so a planar interface
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FIG. 1. (a) Schematic representation of the 2D model discussed
in the text. The solid-liquid interface is represented by a straight line
of length A (faceted segment BF') that matches tangentially a curve
(rough segment FA) at point F'. The frame of reference is linked to
the T = T,, isotherm located at z = z,, (n = 0). A vertical mirror
symmetry is assumed at the solid apex (point A). (b) Experimental
in situ x-ray image showing the slanted interfacial region (central
lighter strip) in a thin silicon ingot (courtesy of Mangelinck-Noél and
Reinhart). The crucible width is about 6 mm. Silicon fills the crucible
completely in the direction perpendicular to the figure (300 um
thick) but it does not fill the complete crucible width, so vacuum
regions remain on the sides. Dotted lines parallel to the side facets
are added to guide the eye.

must remain stable independently of the pulling velocity. In
the experiments, facets are nevertheless observed on both
sides of the sample as a result of the Herring equation [32] that
governs the solid-liquid-vacuum triple junctions [Fig. 1(b)].
As shown in Fig. 2, we independently consider two simple
crystal orientations for which a first crystal axis, [001] (re-
spectively [011]), lies along the z axis and a second crystal
axis, [110] (respectively [011]), lies along the y axis perpen-
dicular to the sample. Our reference model is restricted to the
plane xz, that is, we consider two-dimensional (2D) systems
for both orientations. As illustrated in Fig. 2, this model is
only an approximation of a real 3D system. The approxima-
tion is definitely better for the [011] crystal orientation for
which a straight edge common to two {111} facets parallels
the y axis than for the [001] direction for which the apex is
common to four adjacent {111} facets, so invariance along y
is broken. Although the present 2D model would not perfectly
describe a bulk sample, we will still use it for two reasons.
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FIG. 2. (a) Octahedron representing the diamond crystal struc-
ture. (b) Cross-section in a (200) plane with a {001} crystal axis
in the growth direction. (c¢) Cross-section in a (200) plane with a
{011} crystal axis in the growth direction. The actual crystalline
directions taken for the numerical domain axes x, y, z are indicated
above (b) and (c). The corresponding values of the facet angle 6 are
given in Table 1.

First, we will see that it is possible to obtain an analytical
equation for the interface in 2D systems, the corresponding
equation being not yet completely known for 3D systems.
Second, the phase-field simulations we present here are still
too demanding (both in time and storage) to be performed in
fully 3D domains. In the following, we will nevertheless keep
3D notations for the crystal planes and directions because both
the experiments and the phase-field model we refer ourselves
to are 3D.

TABLE I. Values of the physical and numerical parameters used
in the phase-field simulations.

Physical parameter Symbol Value
capillary length dy 1.94 x 107* um
thermal diffusivity D 2.3 x 107 um?/s
specific heat at constant pressure Cp 1.032J/g/K
specific latent heat Iy 1650J/g
temperature gradient G 1.08 x 1073 K/um
pulling velocity \% (2.0 —22.0) um/s
kinetic coefficient Bin 24.7 x 107 s/um
facet angle for [001] cos by J2/3

facet angle for [011] cos Oy J1/3
Numerical parameter Expression Value

scale parameter Wo/dy 0.4 —2.0) x 10*
grid spacing h 1.0

cusp amplitude ) 2.5

cusp rounding parameter € 0.01
anisotropy domain o 35°
angular dispersion Aa 2.3°

facet end criterion Co V2

mean kinetic coefficient B/ B 1.762
Euler angles for [001] Ve, O, 0 7/4,0,0
Euler angles for [011] Ve, O, ¢ 0,7/4,0

A. Interface equations

In the literature on Si solidifying from its pure melt, it
has consistently been observed that only {111} facets appear
[14-17]. In the present case, the shape adopted by the solid-
liquid interface is schematically represented in Fig. 1(a). The
side facet has a length A and it lies precisely at a crystal-
lographic angle 6, about the z axis. This ideal facet ends
at point F, where it matches tangentially the rough part of
the interface. In the following, we will consider the case of
perfectly symmetric interfaces, so only half of the domain
width is represented with a mirror boundary condition on the
right side. In this 2D model, crystal anisotropy functions only
depend on the conical angle @ between the normal to interface
and the (111) direction. Due to the presence of {111} facets,
a singularity at o = 0 is thus expected for the surface free
energy,

y (@) = yoas(a), (D

yp being the average surface energy at 7,,, and a,(«) is the
anisotropy function. In the following, we assume that a, has a
cusp at @ = 0. As described in [23,24], this cusp causes a dis-

continuity of the surface stiffness ypla,(a) + d*ay(a)/do?]
for « = 0. In the present model, a similar discontinuity is
assumed for the kinetic attachment coefficient,

Ba) = Binbi(), 2

Bi11 being the physical value of the kinetic attachment co-
efficient for the {111} facets. The corresponding anisotropy
function by () = 0 when o £ 0 and b (0) = 1.

Solidification is governed by physical equations that in-
volve the nondimensional temperature field

Sp
u=-—([T —Ty), 3)
Iy
¢, being the specific heat at constant pressure, [y the specific
latent heat, and 7, the silicon melting temperature. We will
consider the case of a frozen temperature field 7(z) = T,, +
G(z — z), where z,, is the altitude of the isotherm T = T,,.
We place ourselves in the reference frame of the temperature
isotherm, where z,, is constant in time. At any point along
the rough part of the interface, thermodynamic equilibrium is
ensured by the Gibbs-Thomson equation,

dr(a)
i = ) 4
u R (4)
with R; the local interface radius of curvature, and
dr (@) = dolay(@) + d*as(a)/da’], (5)

where dy = ¢,¥0T,,/17 is the thermal capillary length. For the
faceted part of the interface, the Gibbs-Thomson equation can
no longer be used because u; varies with z along the facet.
Ben Amar and Pomeau (BAP) proposed to use an integral
equation instead [33]. This equation reads

s+
Aﬁ:/ urds

= —dolday/dalo+ — das/dalo-1— AB111Vs,  (6)

where st and s~ are the curvilinear coordinates of the facet
ends (@ — 0" and 0™, respectively). According to Fig. 1(a),
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the facet normal velocity V; is related to the pulling velocity
V through

Vf = Vsin Q_f. (7)

Equation (6) thus gives the average facet undercooling —ii as
the sum of a capillary term and a kinetic term.

B. Anisotropy function for the surface energy

Optical observations of a pure silicon crystal in contact
with its melt showed that both the equilibrium and slow so-
lidification shapes display an alternation of rough and faceted
segments [10]. A comparison with phase-field simulations
recently allowed us to propose an expression of the surface
energy anisotropy a, that was inspired by previous analyt-
ical [34,35] and numerical [23,24] studies. This anisotropy
function has cusps in the (111) directions, and it progres-
sively crosses over to a constant when the interface orientation
deviates from these directions. It keeps a constant value for
o > ap, where o is a parameter that is fixed to 35 deg here
[23]. For @ < «, it reads

y(a)
Yo

as(a) = =1+ 8| cosa| + 8| sin |, (8)
where §y = § tan «p. As a result, the surface energy y («) has
acusp at @ = 0 and it is maximum at ¢ = . For o > o, we
impose y () = y (ap), which ensures the continuity of both a;
and da,/do and prevents the introduction of a spurious cusp at
o = «y. For this anisotropy function, the BAP equation adopts
the more specific form

i = —2dodo/A — B111Vy. )

III. BASES OF THE PHASE-FIELD MODEL

To perform numerical simulations of the physical 2D
model described in the previous section, we use a phase-
field model [23] that we recently adapted from the original
thin-interface model [25,36]. This model introduced a charac-
teristic length W, that represents the width of the interfacial
region and a characteristic time tp for the relaxation of the
system to a minimum of the free energy. More details about
the present phase-field model can be found in the above ref-
erences. Our implementation makes use of the preconditioned
phase field,

¥ = +/2tanh ™' (), (10)

where ¢ is the original phase field that varies between +1 in
the solid phase and —1 in the liquid phase. The preconditioned
phase field varies linearly across the solid-liquid interface.
It was introduced by Glasner [37] to reduce the simulation
times. For the present simulations, we further increase the
code efficiency by using graphics processing unit (GPU) par-
allel programming [38].

A. Phase-field equation

Imposing a frozen temperature field reduces the model to
a single evolution equation for the phase field. Taking the
interface width W, and the relaxation time t, as the length

and time units, this equation reads
L 0y -
ax(f)— - =2lp — ag(1—¢"ul + VY — V20 (V9]

2 - .
U_—\/;Z)VA, (11)

where a; ~ 0.8839. As a function of the scale parameter £,
the characteristic length and time read Wy = £dy and tp =
ao(dg /D)& 3D being the Si thermal diffusivity, and ay =~
0.5539 [25]. Following [23] and [29], the anisotropy function
a, is taken as

+ 2a36as . %w +

a. (i) = as(i)as(i) + ax(i)], (12)
where

a (1) = bi(1i)(Bi11/Po), 13)

and By =~ 0.5539W,/D.

The three components of the unit vector # normal to
the solid-liquid interface are calculated along the numerical
domain axes x, y, and z. However, the anisotropy function
as(ny, np, n3) is expressed in the frame of the three cubic
crystal axes [100], [010], [001] that are, respectively, labeled
1, 2, and 3. Three Euler angles are used to obtain ny, ny, ns3
from ny, ny, n, by inverse rotations. Details of the present
formulation in terms of the anisotropy vector A were recently
given in the context of dendritic growth of metallic alloys
[39,40]. The first component of A is given by

)
2

s

N 2 da dag day
IVrlas| (nf — 1) — +nina— +nm3 ,
8n1 8112 8713

(14)

Ay

components A, and A3 being obtained by circular permuta-
tions of the indices (1,2,3). The same Euler angles are used to
obtain Ay, Ay, A; from Ay, A;, A3 by direct rotations.

Let us remark that our code is written in three dimensions,
but in this paper we will restrict the calculations to the xz plane
as in the reference problem of the previous section. To do this,
we use a numerical domain that is two mesh units thick, and
we impose mirror boundary conditions along y. Then n, = 0,
and ay, ai, and a, are functions of the conical angle « solely.

B. Experimental input for the anisotropy function parameters
1. Free energy

As mentioned above, the anisotropy function ay(«) of the
interfacial free energy given in Eq. (8) has a cusp at « = 0.
As suggested in [41], the numerical divergences produced by
the discontinuity of a, at the cusp can be avoided by replac-
ing | cos a| with /cos? & + €2 and | sin «| with /sin? o + €2.
This substitution slightly modifies the values of the anisotropy
function, as shown in detail in [23], but, except for ¢ =~ 0, the
differences are small. In practice, taking a value of €2 = 10™*
proved satisfactory. The cusp amplitude § can be obtained by
comparing the experimental equilibrium shapes of Ref. [10]
with the ones simulated by our phase-field code. It was noted
in [23] that certain shapes shown in [10] are slightly de-
formed, probably because of a small misalignment of the
crystal with the furnace vertical axis. This would explain why
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the (110) crystal equilibrium shape shown in their original
figure (numbered 4f in [10]) does not exactly reproduce the
angles expected for the diamond crystal structure. To correct
for this misalignment, we first slightly rotate this figure until
the angles between two adjacent facets become very close to
110°, as expected. We then repeat phase-field simulations of
the equilibrium shape for different values of the cusp ampli-
tude § and compare them with the rotated experimental shape.
The best agreement is found for § = 2.5.

2. Kinetic attachment coefficient

For (111) facets, the kinetic attachment coefficient S;;; is
known to be rather large [17]. The thin-interface phase-field
model does allow quantitative simulations of solidification for
materials with strong kinetic coefficients. However, this model
is primarily restricted to linear kinetic undercoolings of the
form BVy. Introducing nonlinear kinetics in a phase-field code
is in principle possible, but such attempts have resulted in a
much higher level of approximation so far [43]. To obtain an
estimate of 8111, the experimental data given in [17] need to
be replotted as a function of the local undercooling and fitted
to a linear curve. Doing so, one obtains the estimate B ~
24.7 x 1070 s/pum.

In the phase-field code, one also needs to avoid the strong
singularity of B(«) resulting from Eq. (2) because the sharp
discontinuity of by («) at « = 0 causes numerical divergences
in practice. The discontinuity is thus replaced in our code by
a smooth variation that has the form of a narrow Gaussian,

2
ak(a)zboexp[— (Aia) } (15)

In this expression, o represents the conical angle defined
previously, and A« is its dispersion. As detailed in the next
section, the Gaussian amplitude b is taken proportional to the
ratio By11/Bo in the code.

C. Implementation
1. Initial and boundary conditions

The initial condition is a flat interface located at the
isotherm 7' = T,,. Accordingly, the phase field is initially set
to ¥ (z) = (2w — 2)/Wo.

To reproduce 2D systems, we reduce the domain size to
two mesh points and impose mirror boundary conditions in the
y direction. On the left domain side (x = 0), the Herring equa-
tion must be satisfied by an appropriate boundary condition.
Phase-field models that coherently implement triple junction
equations have been described in [42]. In the present code, we
adopt the less accurate but simpler wetting condition already

used in [44],
(%) — 001 — @), (16)
ax x=0

where oy is a positive constant. This boundary condition only
modifies the phase field in the vicinity of the triple point,
where the solid-liquid interface contacts the domain boundary.
Far from this point, one has goz ~ 1, so Eq. (16) reduces to
a mirror boundary condition. In our simulations, the wetting
boundary condition (16) causes the liquid phase to partially

wet the lateral domain boundary on a thickness of the order of
the capillary length dy. Just beyond this thin liquid film, the
solid-liquid interface is almost a straight line with a slope that
is exactly the expected crystallographic angle 6, as observed
in the experiments [45]. We checked that o( can be varied
in a rather large domain without affecting the simulated in-
terface shape. For the present purpose, it is thus unnecessary
to determine a precise value of this parameter. To reduce the
computing time, one generally simulates only a half of the
domain width, so a mirror boundary condition is imposed on
the right domain side located at x = L. In addition, we pull
back the phase field along the z direction as needed to keep
the solidification front at a roughly constant altitude in the
numerical domain.

2. Facet length

Rounding the singularities of the interfacial free energy
and of the kinetic coefficient as discussed in the previous
section somehow changes the nature of the problem. In the 2D
reference model, singularities are present and straight ideal
facets exist. In the phase-field model, the interface is never
quite straight, although the anisotropy functions strongly vary
in the vicinity of o = 0. Ideal facets are now replaced with
slightly rounded pseudofacets for which locating the point
where the facet contacts the rough segment of the interface
depends on a prescribed criterion. To locate the facet end
point, we follow the interface points, starting from the facet
bottom. Using Eq. (15), we compute the value of the conical
angle o [see Fig. 1(a)] for each of the interface points and
we use linear interpolation to find precisely where this angle
starts to exceed the prescribed limit .. In practice, we take
Omax = €4 Aa, o our criterion depends on the specific values
chosen for ¢, and Ac.

3. Kinetic coefficient amplitude

In the thin-interface phase-field model, the Gibbs-
Thompson equation is necessarily valid at every interface
point [25]. However, since we want to compare our simula-
tions results with the reference 2D model for which an ideal
facet exists, it is preferable to adjust the amplitude by of
the kinetic coefficient used in the phase-field simulations to
conform more accurately to the BAP interface equation (9).
The first step is to compare the capillary term to the kinetic
one on the right-hand side of this equation. As we will see
in the next section, for a facet velocity of the order of V, =
10 um/s, the facet length is of the order of A = 1000 um.
As aresult, the capillary term >~ —7 x 107, while the kinetic
term ~ —2.5 x 107, In a first approximation, one can thus
neglect the capillary term for the pulling velocities used in the
simulations, so

u~ —ﬂanf. (17)

In the phase-field simulations, both « and 8 vary linearly along
the pseudofacet, their ratio being everywhere equal to the facet
velocity V. We must thus replace the previous equation with
the following integral equation:

s+
Al = —V_f/ Bds = —BVsA. (18)
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Integrating from the lowest to the highest facet end, that is,
from o« =0 to o = ¢, A, and using Eq. (15), one finally
obtains

- 2B111
B = bopo gy

(19)
In the present simulations we use ¢, = \/5, but o_ther values
are equally valid. For this choice, we must impose 8 >~ 43.5 x
107% s/um for the kinetic coefficient taken in the simulations.

4. Summary of the physical and numerical parameters

We already encountered a number of physical and numeri-
cal parameters. These need to be completed by a few ones that
are also used in the phase-field code. The value or the range
of values taken by each parameter is gathered in Table I. We
should emphasize that, as compared to our previous publica-
tion on Si solidification, several parameters have been updated
here.

IV. RESULTS OF THE PHASE-FIELD SIMULATIONS

A. Interface shape

Figure 3 shows the interface shapes obtained for simula-
tions performed at different pulling velocities V. All these
results are obtained for the same value of the scale parameter,
& = Wy/dp = 5000, that is, for a reasonably small interface
width Wy = 0.97 um. As expected, the increase of the ki-
netic term BV, results in the increase of the facet length A.
Regarding the numerical effort required, we observed that a
rather long physical time, up to 450 s, is necessary for the
facet length to reach a steady-state value at large pulling ve-
locities. This corresponds here to roughly 2 x 107 time steps.
In addition, to accommodate larger facets, the domain size,
N, x N; mesh points, must be increased with V. For the [001]
crystal orientation, the domain is enlarged from 800 x 1200 to
2000 x 2400 mesh points (776 x 1164 to 1940 x 2328 wm?)
for V > 20.0 um/s, and for the [011] direction, from 1000 x
1200 to 2400 x 2400 (970 x 1164 to 2328 x 2328 um?) for
V > 12.0 um/s. Altogether, the larger systems necessitate
about 10 days of running time with a single GPU Nvidia
GeForce GTX 1080. Let us recall that the system is 2D here
(two mesh points in the thickness). At the moment, 3D sim-
ulations of a comparable accuracy are thus out of reach this
way.

B. Dependence of the facet length A on the angular
dispersion A«

As discussed in Secs. IIIC2 and IIIC3, a criterion is
applied to accurately determine the length A of the pseud-
ofacet. Figure 4(a) shows the interface shapes obtained for
different values of the angular dispersion A« used to smooth
out the kinetic coefficient by using a Gaussian anisotropy
function a; [Eq. (15)] instead of a discontinuous one [Eq. (2)].
The obtained results show that only a limited range, A«x €
[0.02,0.06], is acceptable in practice. Using larger values
of Aa causes the code to diverge because then the whole
interface adopts a slow growth kinetics. Alternatively, using
smaller values causes the facet to disappear because A« then
falls beyond the numerical error due to the discretization of o
(of order h?> with h = 1 here). To determine the right pseud-
ofacet end, one compares the local interface conical angle «
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—_ ;=23 umss
= — V,=3.46 umis
=. — V=461 um/s
~ f V,=5.77 umis
= — V,=6.92um/s
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FIG. 3. Interface shapes obtained by phase-field simulations at
different pulling velocities for the two crystal orientations [001]
and [011]. Values of the facet normal velocity V; =V sinf, are
indicated.

0 500 2000

with apax = V2 Aa. Figure 4(b) illustrates this criterion for
the different values of Aw. The wetting condition imposed on
the left domain side (see Sec. III C 1) is necessary to obtain the
corresponding facet. It should somehow influence the location
of the facet left end. As discussed previously, a very narrow
(about 2 um) liquid groove is created near the domain bound-
ary [see Fig. 4(a)], and just beyond it the facet conical angle
o = 0 with a very good accuracy [Fig. 4(b)]. In practice, we
thus ignored the groove part and extended the facet down to
the left domain boundary. This introduced only minute errors
on the measure of A. In the following, we use the average
value Ax = 0.04 of the acceptable range found in this study.

C. Convergence with interface thickness

The next necessary step is to test the convergence of these
shapes, especially that of A, with £. The strong variations of
the anisotropy function a, along the interface suggest that the

044802-6



QUANTITATIVENESS OF PHASE-FIELD SIMULATIONS ...

PHYSICAL REVIEW E 106, 044802 (2022)

0 — 0
I (@) |
-200 --200
-400 Aat (rad) 7-400 ’E“
I —001] |
-600 0.02| 4-600 55
| — 0.04| | £
— 0.06 N
-800 1-800 N
-1000 --1000
-1200f, ., | . . A-1200
012345 0 200 400 600 800
X (um)
0.2
(b)
Ao (rad)
- 02
0.15 =
— 0.06
~~~
o]
E oy
3
0.05 !
O 1 | L | L | L | i | L 1l i L
0 50 100 150 200 250 300 350

X (m)

FIG. 4. Influence of the angular dispersion A« on the estimated
facet length A: crystal orientation [001] and facet growth velocity
V; = 5.7 um/s. (a) Interface shapes showing a pseudofacet (except
for Aa = 0.01) and horizontal blowup near x = 0 of the liquid
groove due to the applied wetting condition. (b) Conical angle «
calculated along the solid-liquid interface as a function of the spacial
coordinate x. The horizontal dashed lines correspond to the criterion
a = ~/2A«. The vertical dashed lines indicate the x coordinates of
the facet right ends.

convergence should strongly depend on the facet normal ve-
locity Vy =V cos 0. To see that, one considers both the facet
motion and the phase-field diffusion in the direction normal to
the facet. In both cases, one can define a characteristic time for
the whole interface, that is, for a distance d; = NW, (we will
take N = 10 in the following). The physical time necessary
for the facet to translate by d; is simply ¢ty = d;/Vy, that is,

d

To obtain the diffusion time, one first reduces the phase-
field evolution equation to its part relative to the phase-field
diffusion. The result of this operation appears more clearly
if one rewrites the evolution equation in terms of the usual

10000
e [001]
7500/
w5000~
25001
' | ' |
% 5 10

V. (um/s)

FIG. 5. Convergence scale parameter £, as a function of the facet
normal velocity V; for the two crystal orientations [001] and [011].
For a given V, converged results are expected for & values below the
curve.

phase-field variable ¢. One gets then

0
%~ (a/a,) V. Q1)
ot

The physical time necessary for the diffusion of ¢ over a
distance d is thus given by t; = N? Z;% 79. Using the previous
expressions of a,(0), a,(0), and 7y, one finally obtains

o[ asd; Bdoé'z}
l‘d—NI: D aS(O) .

For a given value of the scale parameter £, increasing the
pulling velocity (thus the facet velocity V;) will decrease
ty until it becomes smaller than 7. In this high velocity
regime, the diffusion of ¢ is too slow as compared to the
facet translation. The phase-field profile can no longer keep
a stationary shape in the whole interface, so the phase-field
simulations start to depart from the physical problem. This can
be cured by reducing #,, thus &, but the simulations become
much longer then (proportionally to &7>). In our previous
simulations of silicon-free growth, we did not encounter this
problem because the undercooling was kept very low, so tak-
ing £ = 10* was sufficient to obtain well-converged results
[23]. Conversely, a phase-field study of Ni dendritic growth
at large undercoolings and with large kinetic effects showed
similar effects to the ones mentioned here, as special efforts
proved necessary to simulate heat diffusion accurately at large
growth velocities [46].

A convergence scale parameter £ = &, can be defined by
the equality of the two times, t; = t;. This equality gives a
second-order equation in &, that is solved analytically. Fig-
ure 5 shows the evolution of &. with the facet velocity V. This
figure predicts that for simulations performed at & = 5000,
fully converged simulation results are only obtained for the
lowest pulling velocity considered here, V = 2.0 um/s, for
which &, > 5000. This analysis suggests that convergence of
the facet length A with & should strongly depend on the
facet velocity; as shown in Figs. 6(a), 6(b) and 6(c), this is
indeed the case. When V; increases, the convergence curves

(22)
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FIG. 6. Convergence of the facet length A when the scale param-
eter & tends to zero. Convergence curves for (a) Vy = 1.15 um/s,
(b) V; =3.46 um/s, and (c¢) V; =5.77 pm/s. (d) Master curve
merging the three previous series of data (marked by different sym-
bols): the continuous line is a polynomial fit to the whole set of data.

shift to lower & values because &, decreases and to higher A
values because the kinetic effects increase. It is thus possible
to rescale these curves simply by plotting A /A versus & /&,
where both A and &, depend on V.

In the present analysis, the values for Ao(Vy) cannot be
predicted. In practice, we choose them to ensure a good
vertical overlap between the rescaled curves obtained at dif-
ferent velocities V. As shown in Fig. 6(d), one does obtain
a master curve by fitting the rescaled data points obtained at
different velocities. This master curve can be used to extract
Ay, the value expected for the facet length in the physical
limit of vanishing interface width (¢ — 0). Knowing A for
a simulation performed at a given velocity V, one obtains
the abscissa &/£.(Vy). At this abscissa, the master curve
gives an ordinate A/Aq(Vy), from which one gets Ay(Vy).
This procedure is used to obtain converged estimates of the
facet length in the whole range of velocities explored. The
same procedure was followed for the [011] crystal direction
for which we obtained a very similar behavior. As shown
by the previous analysis, when the facet velocity increases,
the phase-field results obtained for a given scale parameter

1500
@)
[001] o
10001 . O o°
g
= Oo®
< Ce
500+ Q°
™)
O O raw
o @ extrapolated
[ ]
%5 10 15
Vf (uwm/s)
2000
[O11]
1500+ T ©
, o @
e Y
3 1000F $
< ™)
500 ®
[ ] O raw
- @ @ cxtrapolated
% 5 10 i5

V. (um/s)

FIG. 7. Facet lengths obtained by phase-field simulations as
functions of the facet normal velocity V, for the two crystal ori-
entations [001] and [011]. Open symbols represent raw data from
simulations at £ = 5000. Filled symbols are the values extrapolated
from the raw data by using the master curve obtained for the corre-
sponding crystal orientation [see Fig. 6(d)].

(§ = 5000 here) are expected to depart more and more from
those of the asymptotic physical model. Our simulation results
confirm this expectation, as one can see in Fig. 7 that the
facet length A obtained for £ = 5000 increases faster than the
converged value Ag. For the [001] orientation, this deviation
is systematically larger than for the [011] one.

V. COMPARISON WITH ANALYTICAL
INTERFACE SHAPES

In the present section, we aim at an analytical description
of the growth shapes in the reference model. To start with,
we introduce the length zp = CZPLG that connects the nondi-
mensional temperature field # with altitude z. Then, we form
a characteristic length £y = «/dyzo. Finally, for the interface
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points (x;, z;), we introduce their nondimensional coordinates

X

= %7 n= eo
The ideal facet being a straight line, we only consider the
function n(y) that gives the shape of the rough interface
segment. For this segment, one can write the field u;(x) in
two ways: using the frozen temperature gradient,

Zi—m £
wi(x) = = =100, (24)
20 20
and using the Gibbs-Thomson equation,
dr (o) dr(e) 7"
wi(x) = ———K(x) = T——; (25)
£o o (1+n?):

where 1’ = dn/dy and n” = d*n/d x*. Combining both ex-
pressions, one obtains the differential equation that gives the
rough interface shape,

lay(@) + d’a,(a)/da’ly" = n(1+ 17 (26)

This equation can be solved by a finite-difference integration
algorithm. The starting point is the apex of the interface,
located on the rightmost point of the domain for which x; =
L/€y. The interface altitude at this point, n, = n(x.), is the
input of the calculation. Due to the small positive curvature
at this point, n;, must be slightly negative. In addition, the
derivative is zero at this point, '(x.) = 0.

Integration propagates from this initial point by decreas-
ing x by a very small amount &, (typically h, = 10~*) and
using series expansions of 7 and n’ as functions of 4,. The
procedure is repeated until " reaches the value expected for
the facet, i.e., " = cot 6. This condition allows us to locate
the coordinates (xr, nr) of the contact point F with the facet.
The facet is a straight line of slope cot 0 starting at x = 0 and
ending at x = xp. Its length is thus

A = (xr/sinéy)lp. 27
The vertical distance from point F to the isotherm T = T,,, is
H = —T]Fe(). (28)

Since the temperature field u varies linearly with z, its
average value along the facet is obtained at the facet midpoint,

1/ Acosd;
uz__<& +H). (29)
20 2

Connection with the growth velocity is now made through the
BAP equation (9) from which one gets

1 /A 0 280d,
(A0 )

Bi1Vy = > (30)
This second-order equation in A can be solved analytically,
provided the distance H from point F' to the isotherm 7' = T,
is known. To estimate H, we solve numerically the differential
equation (26) that gives the interface shape. Typical values of
the two characteristic lengths are £y = 16.94 um and zp =
1.48 x 10% ;m. Numerical integrations of Eq. (26) are done
in a system of width L ~ 1940 um for different values of
ny = —1.0 x 107™. For the [001] crystal orientation, we im-
pose m = 16,17,18,...,25 and m = 10, 12, 14, ..., 24 for
[011]. For each m value, the facet highest point F' is located.
Its distance H to the T = T, isotherm is found to be almost

0
/é\ -500¢ — V;=0.72 um’/s
= — V;=2.55 um/s
—' — V;=4.13 um/s
g — V=567 um/s
$ -1000F V,=7.20 um/s
N V,=8.73 um/s
| [001] — V,= 10.25M|,l.m/s
— V,= 1177 umis
_1500* — V;=1329 um/s
C L | | |
0 500 1000 1500 2000
X (um)

N - [o11] e
— V_=12 um/s
1500
0 500 1000 1500 2000

X (um)

FIG. 8. Analytical interface shapes given by numerical solutions
of Eq. (26) for different values of n,. Crystal orientations [001] and
[011].

independent of 1y, and we obtain H =~ 18.63 um for the [001]
crystal orientation (H ~ 10.27 um for [011]).

The corresponding numerical solutions of Eq. (26) are
represented in Fig. 8 for the two crystal orientations consid-
ered. Knowing H and A, the facet growth velocity V; can be
obtained from Eq. (30). The n, values have been chosen to
roughly obtain V; values comparable to the ones used in the
phase-field simulations (see Fig. 3).

Alternatively, Eq. (30) is solved to obtain A, from the
knowledge of H and for arbitrary values of V;. The result-
ing curves for the [001] and [011] crystal orientations are
displayed in Fig. 9, together with the A( values obtained by
extrapolating the A phase-field data to & = 0. The agreement
is very satisfactory, deviations of less than 10% being system-
atically found. This gives good confidence that quantitative
simulations can be performed with our phase-field model,
provided that care is taken to adjust the numerical parameters
to the experimental ones and also to extrapolate the simulation
data to the limit of vanishing interface thickness.
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FIG. 9. Facet length as functions of facet velocity for the two
crystal orientations [001] and [011]. Symbols are the extrapolated
facet lengths predicted by the phase-field simulations. Lines are
deduced from the analytical model.

VI. SUMMARY AND DISCUSSION

In summary, we carried out a study that assessed the
potential of the phase-field model to tackle quantitatively
directional solidification of materials exhibiting faceted solid-
liquid interfaces. This was made possible by defining a simple
but realistic analytical model that describes the directional
solidification of a monograin and by solving this analytical
model. Simultaneously, we performed phase-field simulations
for the same physical problem. Finally, comparing the simu-
lation results to the analytical ones confirmed the phase-field
model’s quantitativeness.

Regarding the link with a real material (silicon here), we
updated the anisotropy functions both for the surface energy
and the kinetic attachment coefficient by reanalyzing recent

experimental data of the literature. The analytical expressions
of the anisotropy functions were directly taken from our pre-
vious study [23], where they were validated by comparisons
with experimental images for the equilibrium and the slow
growth of a single Si grain [10].

We introduced a simple 2D reference model that follows
the crystal orientations of real thin samples presenting a high
degree of invariance in the direction perpendicular to the sam-
ple plane [17]. The temperature field was assumed frozen, a
choice that was well justified for the moderate solidification
velocities concerned. For this model, the shape of the rough
segment of the solid-liquid interface was shown to be given by
an exact differential equation for which we found numerical
solutions.

In parallel, we introduced a phase-field equation to sim-
ulate the evolution of the solid-liquid interface in the 2D
reference model. We found it particularly important to con-
trol two independent steps in order to reach a good level
of accuracy in the simulations. The first step was to tune
the amplitude of the kinetic term to the criterion chosen to
measure the facet lengths. The second step was to obtain a
master curve that allows us to extrapolate facet lengths to the
limit of zero interface width.

Both steps being performed, we were able to compare the
results obtained by solving the analytical model to the ones
obtained by phase-field simulations. Direct comparisons were
made for two crystal orientations, [001] and [011]. In both
cases, the analytical and the simulation results agreed over the
whole range of pulling velocities, with an accuracy of a few
(less than 10) percent.

Albeit for its simplicity, the present reference model is
rather close to real experimental situations. We can thus
expect that comparable phase-field simulations can be per-
formed in various situations where additional features are
required to account for experimental specificities. One can
think, for instance, of thickness effects, nontrivial crystallo-
graphic orientations, grain boundaries, and so on. In addition,
it would also be desirable to determine the evolution of the
temperature field if one wants, for instance, to predict the
system behavior at higher pulling velocities.
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