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Large-scale kinetic roughening behavior of coffee-ring fronts
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We have studied the kinetic roughening behavior of the fronts of coffee-ring aggregates via extensive numer-
ical simulations of the off-lattice model considered for this context [Dias et al., Soft Matter 14, 1903 (2018)].
This model describes ballistic aggregation of patchy colloids and depends on a parameter rAB which controls
the affinity of the two patches, A and B. Suitable boundary conditions allow us to elucidate a discontinuous
pinning-depinning transition at rAB = 0, with the front displaying intrinsic anomalous scaling, but with unusual
exponent values α � 1.2, αloc � 0.5, β � 1, and z � 1.2. For 0 < rAB � 1, comparison with simulations of
standard off-lattice ballistic deposition indicates the occurrence of a morphological instability induced by the
patch structure. As a result, we find that the asymptotic morphological behavior is dominated by macroscopic
shapes. The intermediate time regime exhibits one-dimensional KPZ exponents for rAB > 0.01 and the system
suffers a strong crossover dominated by the rAB = 0 behavior for rAB � 0.01. A detailed analysis of correlation
functions shows that the aggregate fronts are always in the moving phase for 0 < rAB � 1 and that their kinetic
roughening behavior is intrinsically anomalous for rAB � 0.01.
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I. INTRODUCTION

Nonequilibrium phenomena may feature complex nontriv-
ial behaviors which often challenge intuition. These appear
in a myriad of fields, including Biology [1], Engineering [2],
Economy [3], and, in general, whenever some “equilibrium”
may be defined and somehow perturbed. In physics, nonequi-
librium is inherent to many different contexts, from fluid flow
in porous media [4], to the growth of thin films [5], or very
recently to driven-dissipative quantum systems [6], to name
just a few. Often it is closely related to the concepts of scaling
and universality classes, the latter being understood as the set
of systems which share a common scale-invariant limit. Both
scaling properties and universality exist under equilibrium
conditions too, of course, but it is out of equilibrium where
they exhibit a richer phenomenology [7].

The so-called coffee-ring effect is one of these nontrivial
nonequilibrium behaviors, which arises in the context of sta-
tistical physics and impacts a number of industrial processes
[8]. Let us consider a drop of a liquid with suspended particles
which dries up on a solid substrate. During the evaporation
process, pinning of the contact line of the drop to the substrate
causes the outward flow of liquid from the drop interior [9,10].
The suspended solid particles are then dragged by capillary
flow to the edges of the drop where they agglomerate in such
a way that, after evaporation, they give rise to a characteristic
ringlike stain. Thus, this familiar but complex effect results
from the concomitance of diverse physical-chemical factors
(capillarity, Marangoni flow) but also of geometrical ones.

In this context, Yunker et al. [11] showed that the structure
of the ringlike pattern (but, interestingly, not the contact-line
behavior of the capillary rates) could be sensitively altered by
changes in the shape of the suspended particles. In particular,
increasing the aspect ratio of the particles results into more
complex, not necessarily ringlike, patterns, reaching the entire
suppression of the coffee-ring effect for ellipsoidal particles
of large enough eccentricity ε. The physical reason for this
behavior, expected to hold even beyond the specific aqueous
colloidal suspensions studied in Refs. [11,12], is that elon-
gated particles are dragged to the drop edge only until they
reach the liquid-air interface, where they become subjected
to long-range strong capillary attractions [13,14]. As a result,
loosely packed particle clusters virtually arrested at the in-
terface form and hinder further flow of particles; a ringlike
pattern does not ensue in this case, but rather an homogeneous
stain is observed. Unlike eccentric particles, spherical ones
flow much more effectively to the drop edge, where they get
concentrated and leave a ring after evaporation. Still, adding
some eccentric particles to a suspension of spherical ones also
suppresses the coffee-ring effect, provided that the diameter of
the spheres is larger than the minor axis of the ellipsoids [11].
In a later work, Yunker et al. characterized the space-time evo-
lution of the front of the particle aggregate, by measuring its
height h and width or roughness w as functions of time [15].
Irrespective of the value of the eccentricity, the front width in-
creased in time following a power law w(t ) ∼ tβ , with β being
the so-called growth exponent characteristic of surface kinetic
roughening [16,17]. For spherical particles (ε = 1) β � 1/2
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was measured, consistent with a random deposition behavior
[16]. Increasing the eccentricity of the suspended particles
to ε = 1.2 changes the growth exponent to β � 1/3, char-
acteristic of the one-dimensional (1D) Kardar-Parisi-Zhang
(KPZ) universality class; further consistence with KPZ scal-
ing was confirmed by the roughness exponent α � 1/2 (see
Sec. III below for precise definitions) and by the skewness
and kurtosis of the distribution of height fluctuations, both
of which are observed to take values consistent with those
of the Tracy-Widom (TW) distribution exhibited by 1D-KPZ
processes [18,19]. Finally, for even more eccentric particles
(ε > 2.5), the dynamic evolution of the front yields larger
values α � 0.61, β � 0.68, which the authors interpreted as
consistent with the universality class of the KPZ equation with
quenched disorder (QKPZ); see Refs. [16,20–23] and Ap-
pendix A for key facts on the QKPZ equation.

The latter fact is surprising since sources of quenched dis-
order cannot be unambiguously identified in the experiment
[24,25]. Yunker et al. argued that highly eccentric particles
reaching the air-liquid interface at some sites become prefer-
ential locations for further deposition of particles by virtue of
the aforementioned strong capillary attractions, in detriment
of regions lacking particles. A nonhomogeneous growth yield-
ing QKPZ exponent values could be caused then by a colloidal
“Matthew effect” [15], in the sense that particle-rich regions
become richer and particle-depleted ones remain poorly pop-
ulated [26]. However, as eloquently demonstrated, e.g., by
the supplemental video 3 of the experiments in Ref. [15], the
colloidal Matthew effect implies a dynamical instability for
the front morphology in which quenched disorder plays no
role. This interpretation was tested by numerical simulations
[24] of the lattice growth model introduced in Ref. [15] to
describe the large ε experiments, which showed that the en-
suing instability indeed leads to large values of the scaling
exponents, compatible with those measured at large eccen-
tricities. More specifically, at large ε the Matthew effect leads
to anomalous kinetic roughening for the front [24,27–29]. In
particular, the critical exponent values may not be universal,
but rather depend on geometry and physical parameters.

The origin and features of QKPZ scaling for the coffee-ring
effect have attracted considerable interest. Oliveira and Aarão
Reis [30] used a lattice ballistic-deposition-like model [16]
based on the so-called RCA model [31], in which particles fall
towards the substrate by moving one position down vertically
and D positions horizontally. Thus, the parameter D mod-
els the aspect ratio of the suspended particles; in particular,
D = 0 corresponds to ballistic deposition. Oliveira and Aarão
Reis obtained β � 0.33 (i.e., the expected 1D-KPZ value) for
D = 0 and β � 0.68 (compatible with 1D-QKPZ) for D = 8.
While these extreme values agree with those measured in Ref.
[15], the continuous variation of β with D contrasts with the
experimental observations. Reference [30] also reports the
value of the dynamic exponent z (see Sec. III) characteriz-
ing the growth of the correlation length along the interface
[16,17]; specifically, z � 1.56 for D = 0, compatible with 1D-
KPZ behavior (z = 1.5), but z � 2.56 for D = 8, well above
the 1D-QKPZ prediction (z = 1). The authors concluded that
the β and z exponents computed for large D were caused
by the “columnar” front growth, with no need to invoke any
quenched disorder, in qualitative agreement with the analysis
performed in Ref. [24].

FIG. 1. Left panel: Single patchy colloidal particle with four
patches, as considered in the model of Ref. [32]. Right panel: Interac-
tion range around a patch, described by θ ; see Sec. II and Appendix B
for additional details.

An alternative theoretical approach to describe the kinetic
roughening behavior seen in the experiments of Ref. [15] was
later taken by Dias et al. [12,32,33], based on the deposi-
tion of “patchy” colloids with weak and strong bonds. More
specifically, an off-lattice model is considered in which circu-
lar particles with patches fall vertically onto a flat substrate.
To model the anisotropy of the experimental ellipsoidal col-
loids using circular disks, the latter are assumed to have two
patch pairs, namely A at the poles and B along the equator;
see Fig. 1. The falling particles eventually aggregate to the
substrate, or to already deposited particles, via patch-patch
interactions ruled by three binding probabilities, PAA, PAB,
and PBB, corresponding to the three possible patch-patch con-
figurations. Dias et al. found two different regimes depending
on rAB ≡ PAB/PAA, with PAB = PBB for simplicity. For large
rAB values 0.5 � rAB � 1 (i.e., small particle eccentricity),
scaling exponents are consistent [12,33] with 1D-KPZ behav-
ior (β = 1/3 and z = 3/2 [16,17]); for small 0.01 < rAB <

0.1 (i.e., large particle eccentricity), these simulations obtain
β � 0.63 and z � 1, which was ascribed to 1D-QKPZ scal-
ing (β = 0.63 and z = 1, [23]), crossover behavior being
obtained for intermediate 0.1 < rAB < 0.5. In general, the
average front velocity is nonzero for any value of rAB in the
simulations of Refs. [12,33], at variance with the QKPZ equa-
tion. Indeed, this continuum model is well-known to display a
pinning transition (see Appendix A) between a pinned phase,
in which the average front velocity is zero, and a moving
phase, in which it is nonzero. The transition is termed directed
percolation depinning (DPD), as it is induced by the emer-
gence of a directed percolation cluster of quenched disorder
sites where front motion is arrested [16,20,22,23]. The scaling
exponents measured in Refs. [12,33] for 0.01 � rAB � 0.1
are those of the QKPZ equation right at the transition point,
while the moving phase of the DPD transition features still
larger exponents αmp = 0.75 and βmp = 0.74 [34,35]. Hence,
the peculiar conclusion in Refs. [12,33] is that a pinning
transition takes place for each value of rAB in the finite interval
[0.01,0.1].

In this paper we perform a systematic study of the kinetic
roughening behavior of the fronts produced by the off-lattice
aggregation model of Dias et al. in the full rAB ∈ [0, 1] pa-
rameter range, in which we consider longer evolution times
and larger system sizes. Beyond the analysis of the surface
roughness performed in Refs. [33] and [12], here we com-
pute and analyze additional front correlation functions in real

044801-2



LARGE-SCALE KINETIC ROUGHENING BEHAVIOR OF … PHYSICAL REVIEW E 106, 044801 (2022)

and reciprocal space. Our results show that a discontinuous
pinning-depinning phase transition does exist at rAB = 0. The
rAB = 0 case (pinned front) exhibits unusual critical expo-
nents, while the long time dynamics for rAB > 0 (moving
front) is dominated by a morphological instability that induces
large scaling exponent values and fronts dominated by macro-
scopic shapes at large time scales and system sizes, as well
as intrinsic anomalous scaling for the smaller rAB. Besides,
QKPZ scaling is an effective behavior seen for intermediate
times and system sizes, and suitable values of rAB.

The paper is structured as follows: In Sec. II we present all
remaining details of the model; in Sec. III we describe all the
observables used in this paper. The results of our numerical
simulations are presented in Sec. IV, which is followed by a
discussion in Sec. V, and by a summary and our conclusions
in Sec. VI. Finally, four Appendices complete the paper; as
already noted, one of them provides background on the QKPZ
equation, while three additional ones are devoted to technical
issues.

II. MODEL

We consider the patchy colloids model developed in
Refs. [32,33]. As introduced in the previous section, two-
dimensional circular colloids of radius R fall down vertically
at a random horizontal position, either to get adsorbed onto a
one-dimensional planar substrate, or to bind to already present
colloids. Each colloid contains two types of patches, namely
two A-type patches at the poles and two B-type ones along the
equator; see Fig. 1. If a deposited colloidal particle falls on top
of a previous one, then it binds to it with a certain probability
that is assumed to be thermally activated and modeled by
three binding probabilities, PAA, PBB, and PAB, defined as
Arrhenius-like functions of temperature T ,

Pi ∝ e−E (i)
a /kBT , (1)

where kB is Boltzmann’s constant and E (i)
a holds for the acti-

vation energy which characterizes the strength of each bond
type (i = AA, AB, and BB). Following Ref. [33], we will
assume PAA = 1 without loss of generality and PAB = PBB for
simplicity, and define the sticking coefficient rAB = PAB/PAA.
The colloid-colloid interaction is limited to a region spanning
an angle θ = π/6 around each patch, as depicted in Fig. 1.
Binding only occurs if the interaction ranges of the adjacent
colloids overlap; in such a case, the newly aggregated col-
loidal particle reorients itself so that its patches get aligned
with those of the pre-existing particle to which it attaches.
Additional simulation details are given in Appendix B [36].
According to these definitions, low rAB values favor AA
interactions, and the resulting aggregate morphology resem-
bles that experimentally observed for ellipsoidal colloids; the
rAB = 0 limit corresponds to the situation for which only AA
unions are favorable and long 1D chains of particles form,
see below. On the contrary, rAB = 1 mimics the behavior
of circular (isotropic) particles, which is the condition for
the formation of a coffee-ring aggregate, properly speaking
[12]. Note, however, that, due to the existence of the finite
interaction range with angle θ and the related alignment step
in the attachment process, the rAB = 1 case is not identical to
the simple off-lattice ballistic deposition model, well known

to belong to the KPZ universality class [37]. This difference
will be seen below to play a relevant role.

In all cases, free boundary conditions (FBC) were chosen
along the substrate direction. The reason for such a choice,
instead of the common periodic boundary conditions (PBC)
[16], is the morphological evolution of the system for rAB = 0.
Indeed, the system grows indefinitely for rAB = 0 under PBC,
which conflicts with the expected behavior that the system
eventually reaches a steady state at finite time t , to be dis-
cussed below. For consistency, FBC were used for nonzero
rAB values as well. In Appendix C we provide a compari-
son between the results obtained for both types of boundary
conditions.

The uncertainties of all computed values have been
calculated following the jackknife procedure [38,39]; see Ap-
pendix C in Ref. [40] for additional details.

III. OBSERVABLES

A two-dimensional lattice with lateral length L is divided
into L columns with equal widths � = 2R = 1. At each col-
umn i, the front h(xi, t ) is defined as the y coordinate of
the highest particle in this column, even if only part of it is
there; hereafter, the front position will be denoted as h(x, t )
for simplicity. The mean front is computed then as

h(t ) = 1

L

L∑

i=1

h(xi, t ), (2)

which defines the overline symbol, (· · · ).
The front width, or front roughness w(L, t ), is defined as

the standard deviation of the front values,

w2(L, t ) = 〈[h(x, t ) − h(t )]2〉, (3)

where 〈(· · · )〉 denotes average over different realizations of
the noise. Under the simplest kinetic roughening conditions,
the roughness w(L, t ) is expected to satisfy the Family-Vicsek
(FV) scaling relation [16,17]

w(L, t ) = tβ f (t/Lz ), (4)

where β and z are the growth and dynamic exponents, respec-
tively, and the scaling function has two asymptotic limits. For
t 	 Lz one has f (y) ∼ const, thus w ∼ tβ in such a limit.
However, for t 
 Lz, it is f (y) ∼ y−β , so that w = const ≡
wsat, with wsat being the value the roughness saturates into
at steady state, which in turn scales with the lateral size of
the system as wsat ∼ Lα; here, α is the so-called roughness
exponent. Note that α, β, and z are related by α = βz [16,17].

According to Eq. (3), the growth exponent β character-
izes the time-dependent dynamics of the roughening process.
However, the α exponent is related with the fractal dimension
of the front [16]. Finally, the dynamic exponent z quantifies
the power-law increase of the lateral correlation length along
the front [7,16],

ξ (t ) ∼ t1/z. (5)

Additional insights about the dynamic evolution will be
provided by the height-difference correlation function C2(r, t ),
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defined as

C2(r, t ) = 1

L

∑

x

〈[h(x + r, t ) − h(x, t )]2〉

= 2〈h(t )2〉 − 2

L

∑

x

〈h(r + x, t )h(x, t )〉, (6)

where the sum is over all x values. Under FV kinetic roughen-
ing conditions,

C2(r, t ) = r2αgFV[r/ξ (t )], (7)

where gFV(u) ∼ u−2α for u 
 1 and gFV(u) ∼ const for u 	
1 [16,17]. In particular, C2(r, t ) saturates (i.e., becomes r-
independent) as C2(r, t ) ∼ ξ 2α (t ) for r 
 ξ (t ). This behavior
is analogous to what is expected for the so-called local
roughness, defined like the global roughness, Eq. (4), but
only within a local box of size r < L [16,17]. Moreover, the
height-difference correlation function allows one to describe
the spatiotemporal evolution of the front and to evaluate the
correlation length ξ (t ). Indeed, one may write

C2(ξa(t ), t ) = aC2,p, (8)

where a is a constant taken arbitrarily as a = 0.9 in our case;
the precise value of a does not modify the scaling relation
[40]. In this work, we define the correlation length at a given
time t as the distance along the front at which the C2 function
takes 90% of its plateau-value, with the plateau-value being
estimated as C2,p = C2(r) for 0.7L < r < 0.9L.

There are cases in which the FV scaling Ansatz for the
correlation function, Eq. (7), needs to be generalized into
[27–29]

C2(r, t ) = r2αg[r/ξ (t )], (9)

where g(u) ∼ u−2α for
u 
 1 and g(u) ∼ u−2(α−αloc ) for u 	 1. Now αloc is a
so-called local roughness exponent which characterizes
the front fluctuations measured at distances smaller than
the system size L. Under FV scaling, the two roughness
exponents are equal [16,17], α = αloc, so that g(u) = gFV(u)
and Eq. (9) coincides with Eq. (7). However, there are cases
in which αloc �= α, so that front fluctuations at small and large
distances are characterized by two independent roughness
exponents. If αloc < 1, then these systems are said to display
intrinsic anomalous kinetic roughening [27–29].

Anomalous scaling may be originated by different causes
[29] and can be also characterized efficiently [27] through the
front structure factor S(q, t ), defined as

S(q, t ) = 〈|F[δh(x, t )]|2〉, (10)

where F denotes the space Fourier transform of the front
fluctuations δh(x, t ) = h(x, t ) − h(t ) and q is the magnitude
of an one-dimensional wave vector. In terms of the structure
factor, the scaling relation reads

S(q, t ) = q−(2α+1)s(qt1/z ), (11)

where s(u) ∼ u2α+1 for u 	 1 and s(u) ∼ u2(α−αloc ) for u 
 1.
Under Family-Vicsek scaling α = αloc and the scaling func-
tion reads s(u) ∼ const for u 
 1. Otherwise, the system
exhibits intrinsic anomalous scaling if the structure factor
scales as in Eq. (11); in particular, this implies that, for

FIG. 2. Morphologies of the colloidal aggregates calculated for
values of rAB (approximately, inverse colloid eccentricities) as indi-
cated on each panel. Single colloidal particles appear as bullets. All
the snapshots were computed for L = 256 for times ranging from the
initial ones to final times for which the points of the morphologies fill
the plots.

q 
 1/t1/z, the structure factor scales with the wave-vector
magnitude as S(q, t ) ∼ q−(2αloc+1).

IV. RESULTS

A. Aggregate morphology

The morphology of the colloidal aggregates changes with
rAB, as shown in Fig. 2 for rAB = 1, 0.1, 0.01, and 0. The
overall appearance is quite similar for the highest rAB val-
ues, featuring a tangled mess of branches oriented along
random directions. In particular, the snapshots for rAB = 1
and rAB = 0.1 qualitatively resemble the experimental evi-
dence of closely packed agglomeration of nearly spherical
(i.e., ε � 1.0–1.5) colloids [12]. These model morphologies
also recall those of the simple off-lattice ballistic deposi-
tion model, whose kinetic roughening fronts are well known
instances of KPZ scaling behavior [16,37]. The density of sec-
ondary branches, starting from pre-existing ones and not from
the substrate, decreases as rAB (and thence the AB binding
probability) does, again in agreement with the experimental
observation that loosely packed aggregates form when the
colloids are highly elongated. In the limiting rAB = 0 case,
secondary branches are completely suppressed, and the front
grows only along some directions, defined by the first de-
posited particles.
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FIG. 3. Front velocity as a function of rAB and for different lat-
eral sizes, namely L = 128, 256, and 2048. The error bars are smaller
than the symbol size in all cases. All units are arbitrary.

B. Front velocity

For all rAB, the average front grows linearly over time as

〈h(t )〉 = vt + a0, (12)

where v is the front velocity and a0 is a parameter which
depends on rAB. Figure 3 plots the front velocity as a func-
tion of rAB for systems with different lateral sizes L. Two
distinct regimes are apparent in this plot. For 0 < rAB � 0.1,
the front velocity remains approximately rAB-independent,
whereas it increases with this parameter for rAB � 0.1. At any
rate, v �= 0 for all these parameter values, hence the front is
always in a moving phase. Incidentally, note that the front
velocity does not depend significantly on L, except for very
low rAB, for which v increases slightly with L.

The rAB = 0 case deserves a more detailed analysis [36].
By definition, only AA bonds form in this case. This means
that secondary branches do not form and branches grow
only along relatively few directions. As a result, just a few
branches dominate the remaining ones and eventually reach
the system edge, arresting the average growth of the front;
Fig. 4 shows an example of such a situation. Therefore, for
the rAB = 0 case the system becomes pinned at steady state,
being characterized by a zero average velocity, v = 0, for long
enough times. This fact has been confirmed by computing the
average front 〈h(t )〉 for rAB = 0 as a function of time, shown
in Fig. 5. For L = 128, the front grows linearly with t for
short times, consistent with Eq. (12), but the front velocity de-
creases monotonically for t � 1000 to vanish asymptotically.
The same trend is apparent for larger lateral sizes, but the
linear growth regime extends to longer times as L increases; in
particular, the expected plateau for L = 2048 is not observed
because it requires computation times which are beyond our
capabilities.

The increase of the velocity with the lattice size means
(apart from pathological behaviors) that the velocity will reach
a non zero asymptotic value for rAB > 0. Hence, the picture
that emerges from this analysis is a discontinuity of the front
velocity v suggesting a first order (discontinuous) transition:
v is different from zero if rAB > 0 and equal to zero if

FIG. 4. System with L = 128 and rAB = 0 for t = 700. Two
branches have reached the boundary so that no further front growth
is possible and the system freezes into the steady state. All units are
arbitrary.

rAB = 0. The apparent change of the behavior of the velocity
for rAB � 0.1 (the flattening of its slope) can be interpreted
as a crossover effect and not as the effect of a new phase
transition.

Beyond aggregate morphologies and front velocity, the
behavior of the front fluctuations, i.e., the kinetic roughening
properties, turns out to also differ for rAB = 0 and for rAB > 0.
Hence, we report the results obtained in both cases in the next
sections. Unless otherwise stated, all calculations were carried
out for L = 2048 and times t � 20 000–130 000. For compar-
ison, in Ref. [12] simulations were performed for system sizes
L � 512 and times t � 4 000.

C. Front roughness

Figure 6 plots the squared front roughness w2(t ) calculated
for several values of rAB. This figure shows that the front
roughness increases with time in all cases. Moreover, note
that the system sizes employed guarantee that the interface

FIG. 5. Mean front 〈h(t )〉 as a function of time for rAB = 0. The
slopes of the curves are decreasing to zero as time increases. All units
are arbitrary.

044801-5



B. G. BARREALES et al. PHYSICAL REVIEW E 106, 044801 (2022)

FIG. 6. Squared front roughness vs time for values of rAB as
indicated in the legend. Error bars are smaller than the symbol size.
All units are arbitrary.

does not saturate into steady state for any value of rAB. Given
the crossover behavior that is discussed below, this allows us
to assess the most relevant mechanisms that control the large-
scale behavior of the system. For a qualitative analysis, curves
in Fig. 6 have been fitted to the FV scaling law (3) within
two distinct time intervals, namely intermediate times and
long times; very short times have been ignored. The results,
reported in Table I, exhibit two distinct regimes depending on
time; the rationale to consider intermediate times is to match
with the results reported previously in the literature:

(1) One observes a power-like trend for t � 1000 (inter-
mediate times) and rAB � 0.3, which is consistent with the
β = 1/3 exponent for 1D-KPZ. However, for rAB = 0.01 and
0.001 the growth exponent value seems consistent with the
β � 0.63 QKPZ value. The rAB = 0.1 case seems to be a
crossover. See additional results in Table I. Note that, for
rAB � 0.01, the w2-curves overlap the rAB = 0 curve at short
times (see Fig. 6).

(2) For longer times, the curvatures increase regardless of
rAB, suggesting very high asymptotic values for β. As an ex-
ample, β � 0.76 for rAB = 0.01 and t � 3000. See additional
results in Table I. As an additional reference, we have run
simulations of the simple off-lattice ballistic deposition (BD)
model, see Appendix D. The BD data are included in Fig. 6
and feature the expected KPZ scaling for all simulated times.

In particular, the difference with the rAB = 1 case becomes
apparent for t � 3000.

(3) For rAB = 0, the value of β ≈ 1 is essentially time-
independent.

D. Height-difference correlation function

We have computed the correlation function C2(r, t ) for
several times and rAB values in the [0,1] interval; the re-
sults are shown in Fig. 7. The C2(r, t ) function exhibits a
relatively complex behavior, some of whose characteristics
follow:

As a general trend (noticeably, except for rAB = 0), the
power law C2(r, t ) ∼ r2αloc holds for all rAB at short dis-
tances relative to the correlation length ξ , while a plateau is
reached at larger distances. However, for long enough times
and rAB �= 0, a second power law can be measured in the
region of large r featuring an αloc exponent larger than that
found at short distances; this effect is highlighted by straight
lines with different slopes in Fig. 7. As examples, the C2(r, t )
curve for rAB = 1 exhibits αloc = 0.41 for r � 100; the value
of αloc increases for larger r to reach 0.73 for the longest
time reached. For rAB = 0.01, one gets αloc values as high as
0.85 at large distances. The existence of two different scaling
behaviors for small and large distances at long times does not
take place in off-lattice BD, for which C2(r, t ) features a single
roughness exponent αloc = α = 1/2 for all values of r and t ;
see Fig. 19 in Appendix D.

For very small rAB, as 0.0001 (see Fig. 7, bottom left),
the C2(r, t ) curves show a different behavior in between short
and large distances for very long times. More details about
the potential origin of this unusual behavior will be given in
Sec. IV G below.

For each 0 � rAB � 0.01, the C2(r, t ) curves shift steadily
upwards and do not overlap for increasing times, until the
second power-law regime eventually appears; from then on,
the curves approximately overlap for small r. This behavior
is indicative of anomalous kinetic roughening [27–29]. For
rAB � 0.1, such a vertical shift of the curves over time is not
apparent (see Fig. 7, rAB = 1 case). This could be understood
accepting that, for short times and large rAB, the system is in
the KPZ universality class, which does not exhibit anomalous
scaling. A more detailed discussion about the anomalous scal-
ing will be reported in Sec. IV F below.

TABLE I. Growth exponents β for different values of rAB computed for intermediate and long times.

rAB Intermediate times β Long times β

1 [40 : 800] 0.349(7) [3 000 : 20 000] 0.62(4)
0.5 [100 : 1 000] 0.352(2) [5 000 : 20 000] 0.76(4)
0.3 [60 : 1 000] 0.353(5) [6 000 : 20 000] 0.81(3)
0.1 [100 : 1 000] 0.462(6) [15 000 : 30 000] 0.80(5)a

0.01 [350 : 2 000] 0.603(7) [5 000 : 70 000] 0.76(3)
0.001 [500 : 2 000] 0.594(10) [2 500 : 40 000] 0.73(2)
0.0001 [60 : 900] 0.920(2) [2 000 : 120 000] 0.632(11)
0 [200 : 30 000] 0.978(2) [70 000 : 130 000] 0.87(6)

aFor rAB = 0.1 there exists another time interval between those shown, namely [1 000 : 15 000], with β = 0.62(2).
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FIG. 7. Front correlation function C2(r, t ) vs r for various rAB and times. Solid lines correspond to fits to the power law r2αloc within
different r intervals. All units are arbitrary.

E. Correlation length

In Sec. III we described the method to calculate the cor-
relation length ξ (t ) from the height-difference correlation
function. This approach can be applied only if each C2(r, t )
curve grows with r until the correlation length is surpassed
and the correlation function becomes constant. As ξ (t ) in-
creases with time, the method can no longer be used when
it becomes comparable to the system size. Moreover, as we
already mentioned, at long times the C2(r, t ) curves do not
exhibit standard behavior in this system. Consequently, the
method described in Sec. III to compute ξ (t ) is applicable
only within the range of intermediate times.

Figure 8 shows the correlation length computed from
Eq. (8) with a = 0.9, ξ0.9(t ), as a function of time for different
values of rAB. The data may be rationalized by fitting the ξ (t )
curves to Eq. (5), which allows one to compute the dynamic
exponent z for each rAB. Our quantitative results, displayed
in Table II, are compatible within error estimates with the
KPZ universality class (zKPZ = 3/2) for rAB � 0.1, and with
the shared z ≈ 1 value of the QKPZ and moving DPD phase
universality classes, for 0 < rAB � 0.01. To our knowledge no
previous reports are available on the value of the z exponent
for the model of patchy colloids.

The global roughness exponent α can also be computed
by plotting the plateau of the height-difference correlation

function, C2,p(t ), versus the correlation length ξ0.9(t ) [40], as
shown in Fig. 9. The α values calculated by fitting such a
plot to Eq. (9) are shown in Table II as well. For rAB � 0.3
the estimates of the roughness exponent are again in agree-
ment with the 1D-KPZ universality class (αKPZ = 1/2). For
0 < rAB � 0.1, the roughness exponent value is compatible

FIG. 8. Correlation length vs time for several values of rAB, as
indicated in the legend. All units are arbitrary.
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TABLE II. Critical exponents z and α for several values of rAB.

rAB Intermediate times z α α/z

1 [10:1 000] 1.44(6) 0.50(2) 0.35(2)
0.5 [100:1 000] 1.20(11) 0.45(3) 0.37(4)
0.3 [20:1 000] 1.46(5) 0.54(2) 0.37(2)
0.1 [30:2 000] 1.47(4) 0.721(16) 0.489(18)
0.01 [200:1 500] 1.22(5) 0.73(3) 0.60(3)
0.001 [2 000:5 000] 1.11(15) 0.77(7) 0.69(11)
0.0001 [3 000:10 000] 1.07(22) 0.71(14) 0.66(19)
0 [1 400:20 000] 1.18(8) 1.18(7) 1.00(9)

with the 1D-DPD universality class in the moving phase.
For rAB = 0, both the roughness and the dynamic exponents
deviate from the previous values and are larger than one.

Since β = α/z, one may compare the ratio α/z from Ta-
ble II with the β values from Table I, computed directly from
the front roughness. The ratios α/z are compatible with the
growth exponent measured at intermediate times, except for
rAB = 0.001 and rAB = 0.0001, for which which α/z values
are closer to the β obtained at long times. This suggests that,
for rAB > 0.001, the asymptotic regime has not been reached
yet, and the growth regimes shown in Fig. 6 are still interme-
diate times.

F. Intrinsic anomalous scaling

The fact that the height-difference correlation function
C2(r, t ) curves shift steadily upwards with increasing time
is an indication of anomalous kinetic roughening behavior
[27–29]. As we mentioned in Sec. IV D, this behavior is
observed for rAB � 0.01.

In a system ruled by the FV scaling Ansatz, the scaling
function gFV(u) appearing in Eq. (7) does not depend on
u for u 	 1, e.g., the KPZ equation [16,41]. As discussed
in the previous sections, we obtain KPZ scaling exponents
at intermediate times for large rAB, and we have inquired
what type of scaling Ansatz—whether FV, as expected for the
KPZ equation, or an anomalous one—occurs in this regime.

FIG. 9. Plateau correlation value vs correlation length for values
of rAB as indicated in the legend. All units are arbitrary.

An example of this type of analysis is shown in Fig. 10,
which displays the intermediate-time behavior of the scaled
front height-difference correlation function (C2(r, t )/r2α ver-
sus r/t1/z) and structure factor (S(q, t ) versus q, inset) for
rAB = 1. This behavior is largely consistent with a FV Ansatz,
i.e., scaling is not anomalous for intermediate times.

On the contrary, data computed for rAB � 0.01 fit to a
scaling function g(u) ∼ u−2(α−αloc ), as in Eq. (9) with αloc �= α,
which, combined with αloc < 1, implies intrinsic anomalous
scaling [27]. As a representative example, Fig. 11 shows a data
collapse consistent with Eq. (9), obtained using C2(r, t ) data
for t = 100, 200, 500, 1000, 2000, and rAB = 0.01; within
the time range covered by the plot, our data are compati-
ble with z = 1.22(5) and α = 0.73(3), as discussed above.
Further, by fitting the t = 1000 curve to u−2α′

for u 	 1,
with α′ = α − αloc, we obtain α′ = 0.364(4) and therefore
αloc = 0.366(4) �= α.

The occurrence of intrinsic anomalous scaling can be
further verified from the behavior of the front structure fac-
tor [27], presented in the inset of Fig. 11 for rAB = 0.01.
The S(q, t ) curves show again a systematic shift upwards
with increasing time, unambiguously attributable to intrinsic
anomalous scaling [27]. As mentioned in Sec. III above, in
such a case the structure factor scales with the wave vector

FIG. 10. Data collapse for intermediate times of C2(r, t ) using
KPZ exponents z = 1.5 and α = 0.5 for rAB = 1. Solid line cor-
respond to the power law g(x) ∼ x−2α for x > 1 with x = r/t1/z,
Eq. (9). Inset: Structure factor for the same data. Solid line corre-
sponds to q−(2α+1). All units are arbitrary.
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FIG. 11. Data collapse of C2(r, t ) using the computed exponents
z = 1.22 and α = 0.73 for rAB = 0.01. Solid lines correspond to the
power laws g(x) ∼ x−2α′

(fitting to the t = 1000 curve for x < 0.1)
and g(x) ∼ x−2α , with x = r/t1/z. Inset: Structure factor for the same
data. Solid line corresponds to q−(2αloc+1) where αloc = α − α′ =
0.366(4) as obtained from the analysis of the data collapse for
C2(r, t ). All units are arbitrary.

as S(q, t ) ∼ q−(2αloc+1) at large q, which depends on the local
roughness exponent, see Eq. (11). The straight line in the inset
of Fig. 11 corresponds to the αloc value obtained from the
collapse of C2(r, t ), as expected, so that our interpretation of
the data in terms of intrinsic anomalous scaling is consistent.

We have also observed intrinsic anomalous scaling for
rAB = 0, which we consider next as a particularly interesting
case. Indeed, visual inspection of the uncollapsed C2(r, t )
data in the fourth panel of Fig. 7 is suggestive of nonneg-
ligible anomalous scaling. The set of computed exponents
[z = 1.18(8) and α = 1.18(7)] indeed yields a consistent data
collapse, as specifically shown in Fig. 12. By fitting the scal-
ing function for t = 20 000 we obtain α′ = 0.743(9), resulting
into αloc = 0.437(9) �= α. As a final consistency check, the
inset of Fig. 12 shows the front structure factor S(q, t ) for
rAB = 0. The straight line in this inset corresponds to the
q−(2αloc+1) behavior expected in this case, where the value of
αloc computed from the height-difference correlation function
has been used.

G. Macroscopic shapes for rAB �= 0

Previously, we noted that the height-difference correlation
function behavior for rAB �= 0 becomes more complex at very
long times. As shown in Fig. 7, we can identify two different
slopes, each for small and large r, in the log-log plot of C2(r, t )
versus r. Hence, one might calculate two local roughness
exponents αloc for the corresponding ranges of distances. Fur-
thermore, the exponent β measured from the front roughness
increases its value at long times (see Table I).

An explanation for these changes can be found in the time
evolution of the colloidal aggregates. At early times, the fronts
are morphologically isotropic for all rAB, as can be observed
in Fig. 2, and the aggregate fronts fluctuate at distances much
smaller than the system size. However, for longer times the
aggregate “splits” into a few components of lateral sizes com-

FIG. 12. Data collapse of C2(r, t ) using the computed exponents
z = 1.18 and α = 1.18 for rAB = 0. Solid lines correspond to the
power laws g(x) ∼ x−2α′

(fitting to the t = 20 000 data for x < 0.03)
and g(x) ∼ x−2α , with x = r/t1/z. Inset: Structure factor for the same
data. The solid line corresponds to q−(2αloc+1) where αloc = α − α′ =
0.437(9), as obtained from the analysis of the data collapse for
C2(r, t ). All units are arbitrary.

parable to L, and the front displays macroscopic shapes. Some
representative examples are shown in Fig. 13. Note, e.g., the
development of large “facets” for rAB = 0.01.

We have observed that remarkable jumps of the front
heights appear at those times at which the aforementioned sec-
ond regime of the C2(r, t ) curves appears. This effect is shown
in Fig. 14, where we have represented the time evolution of
h(x, t ) for the same conditions (i.e., rAB values) as in Fig. 13.
From this figure, one observes that the front displays small
fluctuations at short times (t � 1000), none of which stands
out from the average. At longer times, the mentioned jumps
appear, resulting again into macroscopic shapes. This effect
becomes stronger as rAB decreases, and becomes evident only
for sufficiently large values of L.

H. Front structure for rAB = 0

We have already pointed out that our model’s behavior
changes quite substantially when rAB = 0. Recall also that
the front velocity becomes zero for sufficiently long times for
this parameter condition. Nevertheless, prior to macroscopic
pinning, the kinetic roughening of the front turns out to share
many features with that of an unstable generalization of on-
lattice ballistic deposition [42].

Indeed, for rAB = 0 the front velocity eventually becomes
zero due to the preferential growth of a few branches which
span the full lateral system size, a behavior which is unlike
that found at long times for rAB > 0. Nevertheless, the pe-
culiar form of the particle aggregate for rAB = 0 leads to a
front which features very large values of the front derivative,
or slope, at many of its locations, similar to what was seen
for very small but nonzero rAB values. An example of this is
shown in Fig. 15.

Quantitatively, a very similar behavior to our rAB = 0 case
has been reported for a growth model that generalizes on-
lattice ballistic deposition [42]. Specifically, while in standard
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FIG. 13. Morphologies of the colloidal aggregates at the final
time, namely t = 20 000, 70 000, and 120 000, for rAB = 1, 0.01, and
0.0001, respectively. Each color shows the last hundred thousand par-
ticles to join the system. Colors are arbitrary and their sole purpose
is to show the different groups of 105 particles, to see the shape of
the aggregate front. All units are arbitrary.

BD particles are deposited vertically at random positions, in
Ref. [42] particles follow straight trajectories with a random
inclination with respect to the x axis, whose angle is chosen
from an uniform distribution. Such a modification of BD is
known to lead to a morphological instability [37,43] inducing
the formation of large columns. Indeed, in the simulation of
Ref. [42] the front was found to feature large values of the
slope �h at many places, to the extent that the probability dis-
tribution function P(�h) for the slope values decreased slowly
as a power law of the form P(�h) ∼ 1/(�h)γ , with a value
for the γ exponent between 1.6 and 2; for very large �h, the
distribution falls off much faster. This behavior was argued to
lead to intrinsic anomalous scaling [42,44]. Remarkably, the
scaling exponents measured in Ref. [42] for this unstable BD
model, namely, α � 1.25, αloc � 0.54, β � 1, and z � 1.25,
are quite close to those we presently obtain for the patchy
colloid model for rAB = 0 prior to pinning, namely, α � 1.18,
αloc � 0.45, β � 0.98, and z � 1.18. In view of this, we have

FIG. 14. Temporal evolution of the height front h(x, t ) for rAB =
1, 0.01, and 0.0001, top to bottom. The aggregates are the same as
those shown in Fig. 13. All units are arbitrary.

FIG. 15. Sample front morphology obtained at t = 130 000 for
rAB = 0. The main panel shows the front height h(x, t ) as points
connected by a dashed line. Note the very different scales employed
for the two axes. The corresponding particle aggregate is shown in
the inset. All units are arbitrary.
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FIG. 16. Slope histogram for the fronts obtained at t = 130 000
for rAB = 0. For comparison, the solid line corresponds to P(�h) ∝
1/(�h)2. All units are arbitrary.

estimated the slope of the P(�h) histogram obtained herein
for rAB = 0; the results, shown in Fig. 16 are not so far from
those reported in Ref. [42]. The arguments employed in this
reference can be similarly employed here to explain the intrin-
sic anomalous scaling for rAB = 0. Quantitative differences
with the unstable BD model [42] are probably induced by the
deviations of our slope histogram from the P(�h) function
obtained for the latter, especially at the largest �h values.
As a conclusion, we believe that this result may be indicative
of a morphological instability analogous to that of oblique-
incidence BD, to be responsible for the intrinsic anomalous
scaling of the fronts of the colloidal aggregates formed for
rAB = 0.

V. DISCUSSION

In this paper, we have revisited the model of “patchy”
colloids for the coffee-ring effect developed by Dias et al.
[12,32,33]. For such a purpose, we have extended the numer-
ical simulations to longer times in larger systems. We have
also used more realistic boundary conditions and an extended
characterization in terms of correlation functions computed
in the real and reciprocal spaces. This results into a wider
overlook of the problem, from which new conclusions may
be stated.

Let us consider first the set of scaling exponents for each
condition, i.e., rAB value. In general, the results reported
herein are in fair agreement with those by Dias et al. for
comparable simulation times and sizes. Deviations appear for
longer times, though. In particular, the α and β exponent
values which were ascribed earlier to the QKPZ universal-
ity class are now seen to be crossover values limited to the
intermediate-time evolution in a restricted range of rAB values.

Taking into account our full set of results including very
small rAB � 0 and long times, the overall behavior seems
already clear in Fig. 6. We can classify the behavior in terms
of large or small rAB, with the boundary being approximately
at rAB = 0.01. For each value of this parameter, we have to
distinguish between intermediate and long times. Thus, for
large 1 � rAB > 0.01 and intermediate times, exponent values

are KPZ for rAB = 1 and gradually increase (going through
QKPZ-like values) for decreasing rAB. However, at longer
times β and α both increase substantially, even for the rAB = 1
case, which hence differs from simple off-lattice BD.

At this, recall that, for models with time-dependent (rather
than quenched) noise like for these patchy colloids, β > 1/2
is usually taken as an indication of some morphological insta-
bility, since β = 1/2 corresponds to purely random deposition
of particles [16,37]. Crossover in time from, e.g., KPZ-like
scaling behavior into a regime featuring much larger, ef-
fective exponent values is known in other growth systems
with time-dependent noise. An important example is that of
diffusion-limited growth systems; see, e.g., Ref. [45] and
other therein.

For instance, the fronts of bacterial colonies growing in a
parameter region expected to correspond to an Eden-like (i.e.,
KPZ-like) [37] behavior have been recently seen in experi-
ments and models [46] to change with time from a compact
regime with relatively small fluctuations into a long time
regime dominated by a branched morphology with very large
slopes. Along this process, the growth exponent increases
from β � 0.47 at early times to β � 0.93 at long times [46],
not unlike the type of change we presently obtain for, e.g.,
rAB � 0.1. The reason for this behavior is the existence of
a morphological instability in such type of diffusion-limited
systems [45,47], whereby front protrusions grow faster that
front depressions due to their differential exposure to diffusive
fluxes. This instability can be triggered along the time evolu-
tion of the system, changing the scaling behavior as in Ref.
[46]. In the model of patchy colloids, transport is not limited
by diffusion. However, the model has an unstable mecha-
nism built in, namely the finite interaction range and colloid
alignment step, as suggested by the comparison between the
rAB = 1 case with off-lattice BD. This mechanism is operative
for all rAB values and may account for the scaling behavior
and macroscopic front shapes (which are not unlike mor-
phologies seen for diffusion-limited systems) that ensue at
long times. Qualitatively this agrees with the experiments,
in the sense that the morphological instability implied by
the colloidal Matthew effect occurs as soon as the colloidal
particles are anisotropic with ε �= 1. Indeed, the supplemen-
tal video 3 of the experiments in Ref. [15] could hardly be
told apart from a diffusion-limited aggregation process, see,
e.g., the animation provided with the supplemental material
of Ref. [48], corresponding to Fig. 6 of that reference. We
would expect this unstable behavior to persist even in po-
tential generalizations of the present model to more realistic
conditions for colloidal aggregation systems, such as, e.g., the
case of cluster-cluster aggregation; see, e.g., Refs. [37,49] and
references therein.

For small 0 � rAB � 0.01, the intermediate times (recall
Fig. 6) seem dominated by the scaling obtained for rAB = 0,
that features the largest value of β seen in our simulations.
Note that the rAB = 0 behavior is quite similar to that of
unstable BD [42]. The long time behavior for small rAB > 0
features smaller (but still large) values of β, which are not
far from those seen for large rAB and long times. Such β

values ensue together with front morphologies which are also
dominated by large slopes and macroscopic shapes, again
reminiscent of morphologically unstable behavior possibly
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related with the finite interaction range and colloid attach-
ment rule.

Another important point is the existence of the pinning-
depinning transition and its features. In their numerical
simulations, Dias et al. [12,33] found a nonzero front veloc-
ity for all 0 < rAB � 1, while at rAB = 0 they argued that
the aggregate interface is not well defined. Their reported
KPZ-QKPZ crossover at intermediate rAB values could be
caused by the balance of two competing mechanisms. Indeed,
reducing rAB hinders binding to B patches. This favors the
growth of A-A chains and increases the availability of B sites,
which compensates for the reduction by the low rAB value. As
a result, Dias et al. argue that the pinning transition does not
occur at a single critical rAB,c, but within a finite range of rAB

values.
This behavior contrasts with that of the QKPZ equation,

for which the depinning transition takes place at a point value
of the control parameter, and not for a full interval of val-
ues, while the average front velocity remains zero right at
depinning. In contrast, the use of free boundary conditions in
our simulations has allowed us to elucidate a discontinuous
pinning transition right at rAB = 0, while QKPZ scaling ex-
ponents are here seen to be effective values. Incidentally, we
also note that the occurrence of macroscopic shapes at long
times does not depend on the choice of boundary conditions.

VI. SUMMARY AND CONCLUSIONS

The kinetic roughening behavior of the coffee-ring aggre-
gates proposed in Ref. [12] has been simulated extending their
times, sizes and values of rAB. As a result, we have first char-
acterized a discontinuous pinning-depinning phase transition
at rAB = 0. Particularly, there is a discontinuity in the velocity
as rAB → 0+, with v(rAB → 0+) �= v(rAB) = 0. The choice
of proper boundary conditions was found to be of paramount
importance for rAB = 0, as only the use of free boundary
conditions allows one to elucidate the phase transition.

We confirm the standard KPZ kinetic roughening behav-
ior reported elsewhere for large rAB values and intermediate
times. Besides, simulations at large values of rAB feature a
crossover from 1D-KPZ exponents for intermediate times to
large values of the scaling exponents for longer times. How-
ever, simulations for smaller values of rAB show a strong
crossover dominated, at intermediate times, by the rAB = 0
behavior.

The intermediate (time) dynamics is different depending
on the 0 < rAB � 1 value. For 0 < rAB � 0.01, the system
dynamics is similar to that for rAB = 0, the similarity ex-
tending to longer times as rAB decreases. For these values of
rAB (including rAB = 0), we observe intrinsic anomalous scal-
ing [27–29]—a generalization of the simpler Family-Vicsek
dynamic scaling Ansatz [16,17] satisfied, e.g., by the KPZ
equation—a conclusion which is impossible to reach on the
basis of the behavior of the global roughness only. For rAB >

0.01, on the contrary, the intermediate-time behavior is com-
patible with that of 1D-KPZ, and there is no evidence for
intrinsic anomalous scaling. Within this range, exponents are
compatible with those of QKPZ, as reported elsewhere.

For long times, large lattice sizes and all 0 < rAB � 1 we
have found that the system dynamics is dominated by the ap-

pearance of macroscopic shapes, whose geometry and growth
properties influence the corresponding scaling exponents. Ac-
tually, in view of our findings, the critical behavior described
by Dias et al. [12] (in particular the 1D-QKPZ exponents for
their smaller values of rAB) is an effective behavior influenced
by the final macroscopic shapes.

Our simulations expand previous numerical work on this
model through the study of correlation functions. This has
allowed us to elucidate the occurrence of intrinsic anomalous
scaling for all times for small rAB, as well as the existence
of different scaling behaviors at small and large distances for
long times, correlated with the development of macroscopic
shapes. Let us note that anomalous scaling is well known to
occur for many experimental systems and continuum and dis-
crete models in which morphological instabilities take place
[29], including also cases with faceted interfaces [28]. This
fact, combined with the behavior of the scaling exponents
and long time front shapes, reinforces our interpretation on
the occurrence of a morphological instability dominating the
large-scale behavior of the patchy colloid model. Compar-
ing with the experiments of Yunker et al. [11,15], this was
probably to be expected: indeed, the colloidal Matthew ef-
fect is a clear morphological instability in which quenched
disorder plays no role [24,25], and whose relevance to the
system behavior increases with the colloid eccentricity. This
is precisely the same behavior which the model reproduces for
a decreasing rAB.
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APPENDIX A: SOME PROPERTIES OF THE
QUENCHED KPZ EQUATION

At this point, we briefly review some key facts on the
QKPZ equation; this continuum model reads [20,21]

∂t h = F + ν∇2h + λ

2
(∇h)2 + η(r, h),

〈η(r, h)η(r′, h′)〉 = N δ(r − r′)δ(h − h′), (A1)
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where h(r, t ) is the front position above point r on a d-
dimensional substrate, F is a constant external driving force,
η(r, h) is uncorrelated, zero-average, Gaussian quenched
(time-independent) disorder with amplitude N > 0, and ν >

0, λ are parameters. This model has a very rich dynamical
behavior that has been fully elucidated recently in experiments
of reactive fronts in disordered media [50], where up to three
different universality classes are identified associated with
Eq. (A1). First of all, a pinning-depinning transition exists
at a nonzero critical value of the driving force F = Fc, such
that the interface is pinned, i.e. the average velocity is zero,
or moving (nonzero average velocity) for F � Fc or F > Fc,
respectively [16]. The front described by Eq. (A1) only dis-
plays the exponent values β � 0.63 and z = 1 (associated in
Ref. [15] with the experiments using ellipsoidal colloids of
a high eccentricity) exactly at depinning when F = Fc and
λ > 0 [23]. For F 
 Fc and λ > 0, the scaling exponents are
those of the standard KPZ universality class [22,23]. Finally,
for λ < 0, Eq. (A1) also describes a pinning transition, but for
a very different class (so-called, negative QKPZ) of faceted
interfaces [50–52]. For comparison, the scaling behavior of
the KPZ equation [obtained by replacing the disorder η(r, h)
in Eq. (A1) by similarly uncorrelated, time-dependent noise
η(r, t )] depends neither on the value of F nor on the sign of λ

[16,17].

APPENDIX B: SIMULATION DETAILS

We study the front propagation in a one-dimensional sub-
strate of size L growing in the perpendicular direction. At
t = 0 the system is empty. At every time step, a particle with
radius R falls at a random x position, where it may either bind
the substrate or interact with a pre-existing, stationary particle.
In particular, if there is a particle in the (x − �, x + �) range,
where � is the particle diameter or the width of the columns,
the new one interacts with it, or with the highest one of them
if there is more than one. For simplicity, R = 0.5 and � = 1
have been chosen without loss of generality.

When two particles interact, bonding may or may not oc-
cur; a schematic of the binding probabilities for our model is

shown below. Binding needs first that the interaction ranges
of both interacting particles overlap. This range is quantified
by the angle θ = π/6 around each of the four patches, so that
the probability that the interaction ranges of the falling and
stationary particles overlap is 4/9. Second, binding depends
on the facing patches, the options being AA, AB, BA, and
BB. If the pair of facing patches is AA, then the bond is
always created, since P(AA) = 1. In all other cases, the bond
is created with a probability rAB which is a system parameter:
P(AB) = P(BA) = P(BB) = rAB. When the falling particle
binds, its patches line up with those of the pre-existing particle
to which it becomes attached. Time increases by one unit each
time a new particle falls, whether there is binding or not.

FIG. 17. Mean front height (left panel) and squared roughness (right panel) as functions of time for values of p = rAB as given in each
legend, using FBC or PBC as indicated. For some sets of data, FBC data hide total or partially PBC results. All units are arbitrary.
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TABLE III. Parameter values for our numerical simulations.

L rAB tmax runs

128 1 100×103 200
0.5 100×103 200
0.4 100×103 200
0.3 100×103 200
0.2 100×103 200
0.1 100×103 200

0.01 100×103 200
0.001 100×103 200
0.0001 100×103 200

0 200×103 200
512 1 30×103 200

0.5 42×103 200
0.4 46×103 200
0.3 50×103 200
0.2 57×103 200
0.1 82×103 200

0.01 100×103 200
0.001 110×103 200
0.0001 300×103 200

0 400×103 200
2048 1 20×103 40

0.5 20×103 40
0.4 20×103 40
0.3 20×103 40
0.2 20×103 40
0.1 30×103 40
0.01 70×103 40
0.001 100×103 40
0.0001 120×103 40

0 130×103 40
BD 20×103 420

Parameter conditions for the entire set of runs reported
herein are collected in Table III.

APPENDIX C: FREE VERSUS PERIODIC
BOUNDARY CONDITIONS

To check the influence of the boundary conditions on the
overall dynamic behavior of the system, we have computed
a number of quantities for several values of rAB in the same
conditions (L = 2048 and 20 runs) using FBC and PBC.
The mean front and the squared roughness as functions of
time are shown in the left and right panels of Fig. 17, re-
spectively. The front evolution is virtually identical for PBC
and FBC, within error bars. The roughness curves do show
some differences at long times, probably due to the larger
front fluctuations at saturation in these conditions. In any case,
results reported in the main text are well below such time
intervals, so that no effect of the boundary conditions is to
be expected in our results.

FIG. 18. Morphologies of the colloidal aggregates for off-lattice
ballistic deposition and patchy colloids model rAB = 1 case. The size
of the simulations is L = 2048 but we show only the range [0:255]
for easier view. Times ranging from the initial ones to final times
for which the points of the morphologies fill the plots. All units are
arbitrary.

APPENDIX D: OFF-LATTICE BALLISTIC DEPOSITION

As noted in Sec. II, one might naturally expect the model
of Refs. [12,33] to behave as simple off-lattice ballistic
deposition [37] in the limiting rAB = 1 case, as the difference
is lost between the A and B poles. However, the finite interac-
tion zone and the alignment of the particles after attachment
both persist, which do not occur in the off-lattice ballistic
deposition model. We have already seen in Fig. 6 that this
difference suffices to change the behavior of the front rough-
ness of the patchy colloid model for rAB = 1 with respect
to that of off-lattice BD at long times. In this Appendix we
collect further results from numerical simulations that we have
performed of off-lattice BD, that can readily be contrasted
with those discussed in the main text for the model of patchy
colloidal particles.

Figure 18 shows colloids aggregates for off-lattice ballistic
deposition and for patchy colloids model in the case rAB = 1,

FIG. 19. Front correlation function C2(r, t ) vs r for off-lattice
BD. Solid line corresponds to fit to the power law r2αloc for t =
20 000 and r < 200. All units are arbitrary.
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at the beginning of two runs. We can appreciate subtle differ-
ences, such as that in the case of rAB = 1 there are allowed
directions that create perpendicular branches and the system
is less dense.

As mentioned in Sec. IV D, the height correlation function
for off-lattice BD (see Fig. 19) shows a standard scaling
behavior which contrasts with those shown in Fig. 7 for the
patchy colloids model. Consistent with this, the morphologies
at long times, t = 20 000, for off-lattice BD show a height
front smoother compared to rAB = 1 case, as can be seen
in Fig. 20 and in Fig. 13. For completeness, the scaling
exponents computed for the off-lattice BD model are z =
1.41(2) and α = 0.469(7), consistent with those reported else-
where [37].

FIG. 20. Morphology of a colloidal aggregate at the final time,
t = 20 000, for off-lattice BD. Each color shows the last hundred
thousand particles to join the system. All units are arbitrary.
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