
PHYSICAL REVIEW E 106, 044706 (2022)

Fluctuation-induced dynamics of nematic topological defects
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Topological defects are increasingly being identified in various biological systems, where their characteristic
flow fields and stress patterns are associated with continuous active stress generation by biological entities.
Here, using numerical simulations of continuum fluctuating nematohydrodynamics, we show that even in the
absence of any specific form of active stresses associated with self-propulsion, mesoscopic fluctuations in either
orientational alignment or hydrodynamics can independently result in flow patterns around topological defects
that resemble the ones observed in active systems. Our simulations further show the possibility of extensile- and
contractile-like motion of fluctuation-induced positive half-integer topological defects. Remarkably, isotropic
stress fields also reproduce the experimentally measured stress patterns around topological defects in epithelia.
Our findings further reveal that extensile- or contractile-like flow and stress patterns around fluctuation-induced
defects are governed by passive elastic stresses and flow-aligning behavior of the nematics.
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I. INTRODUCTION

There is growing evidence of the emergence of liquid
crystalline features in biological systems (see [1] for a recent
review). Significant among others is the nematic orienta-
tional order, manifest in the form of collective alignment
along particular axes [2], which is observed in subcellular
filaments [3–6], bacterial biofilms [7–9], and cell monolay-
ers [10,11]. Due to the head-tail symmetry of the nematic
particles, the lowest energy defects are of topological charge
±1/2, meaning that as one traces a loop around the defect,
the particles rotate by ±π . Topological defects in nematics
have recently been found to be at the core of many biological
functions, e.g., cell extrusion in mammalian epithelia [10],
neural mound formation [12], and limb origination in the
simple animal Hydra [6] (see [1,13,14] for recent reviews of
physical and biological significance of topological defects).

What sets these biological nematics apart from their pas-
sive counterparts is the presence of activity: each constituent
element of living matter is capable of producing work and
injecting energy locally by means of active stress genera-
tion [15]. While the existence of quasi long-range order has
also been proven for active nematics [16,17], the dynamical
properties of defects are expected to be different from the
passive case since as a consequence of activity the +1/2
defects with polar symmetry can self-propel and move along
their axis of symmetry [18]. These comet-shaped +1/2 de-
fects are characterized by a head region where the director
field predominantly bends and a tail region where splay is
dominant [19,20]. For an extensile active stress, which ex-
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tends along the elongation direction of active particles, the
resulting motion of +1/2 defects is along the head, while
the opposite holds for contractile active stresses [18]. This
persistent movement, in the direction of both the head and
the tail of the +1/2 defect, has been observed in various
biological systems, e.g., contractile in fibroblasts [11] and
extensile in epithelial monolayers [10]. Recently, it has even
been shown that perturbing the adhesion between cells can
result in a switch between extensile and contractile behaviors
in epithelial cell layers [21]. While the emergence of extensile
or contractile behavior of topological defects has been widely
associated to the activity of these systems, here we show
that fluctuations can lead to similar patterns of flows around
topological defects and result in both extensile and contractile
defect behavior.

In passive nematics, fluctuations are known to drive the
Berezinskii-Kosterlitz-Thouless (BKT) transition, in which
spontaneously generated topological defects unbind to break
the quasi-long-range order [22]. This has been analytically
shown for a two-dimensional (2D) passive, dry nematic, by
renormalization group analyses [23]. Computational studies
have shown the BKT transition for 2D passive nematics with a
lattice model with finite size scaling [24], and for a dry, freely
moving, particle-based model for various length to width ra-
tios [25,26]. A similar BKT-type transition was also reported
in a discrete model of active nematics [27].

Drawing analogies with the BKT transition in passive ne-
matics, it has been shown that in overdamped active nematics,
where hydrodynamic flows are dominated and suppressed
by frictional screening, self-propulsion of +1/2 topological
defects can lead to the defect pair unbinding, destroying
any (quasi-) long-range orientational order [28]. Introducing
fluctuating forces coupled to the nematic alignment field, it
was lately shown that such specific fluctuations can result
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in an effective extensile stresses in passive nematics [29].
More recently, combining discrete, vertex-based, simulations
of model cellular layers with analytical treatment of linearized
nematohydrodynamics equations, it has been argued that any
fluctuations can result in the appearance of “active” extensile
or contractile nematics, depending on the flow-aligning be-
havior of the particles [30]. Similarly, cell shape fluctuations
in a cell-based, phase-field model of cell monolayer have been
shown to affect self-propulsive features of topological de-
fects [31]. Notwithstanding these recent works, the dynamics
and flow features of topological defects in the presence of fluc-
tuations remain poorly understood. Moreover, it is not clear
how different sources of fluctuations in hydrodynamic flows
and in particle alignment affect the creation, annihilation,
and motion of topological defects and whether fluctuations
alone can explain experimental observations of contractile-
and extensile-like defect motions in cellular layers.

Using a numerical implementation of hydrodynamic and
orientational fluctuations in a hybrid lattice Boltzmann sim-
ulation, we investigate the effects of fluctuations on a
continuum nematohydrodynamics representation of nematic
liquid crystals. It is important to emphasize that we do not
study temperature as of the thermal fluctuations associated
with the Brownian motion of the molecules, but rather meso-
scopic fluctuations of the mechanical traits of the cells at the
scale of the cell. Therefore, in studying fluctuations we are in-
terested in (1) the diffusive fluctuation of the nematic director
of the cells that can, for example, be caused by fluctuations
in cell shape and cell alignment and (2) fluctuations in the
forces those cells exert on their neighbors and the underlying
substrate.

II. MODEL

We employ a 2D continuum nematohydrodynamic
model [18,32,33]. The nematic tensor order parameter, Q,
and the velocity field �v, evolve according to Beris-Edwards
equations, and generalized incompressible Navier-Stokes
equations, respectively:

∂t Q + �v · �∇Q − S = �H + ξQ, (1)

ρ(∂t �v + �v · �∇�v) = �∇ · � + ∇ · ξu, �∇ · �v = 0, (2)

where H is the molecular field, describing the relaxation
towards minimum of the free energy that includes Landau–de
Gennes bulk free energy plus the Frank elastic free energy.
The rotational diffusivity, �, controls the relaxation.
S is the corotation term, which captures the particle
response to the gradient of flow and is a function of the
flow-aligning parameter, ξ . In the momentum equation ρ

is the density and � is a general stress term that includes
pressure, viscous, and elastic stresses, defined as �

pressure
i j =

−pδi j , �viscous
i j = 2ηEi j , where η is the dynamic viscosity

and Ei j is the rate of strain tensor, and �elastic
i j = 2ξ (Qi j+

δi j/2)(QlkHkl ) − ξHik (Qk j + δk j/2) − ξ (Qik + δik/2)Hk j−
∂iQkl

δF
δ∂ j Qlk

+ QikHk j − HikQk j . The effect of elastic stress
on the momentum conservation, known as backflow [34],
has been numerically and experimentally shown to be
relevant to ±1/2 defect annihilation dynamics in passive

TABLE I. Simulation parameters with name, symbol, value (or
range), and dimension where length = L, mass = M, and time = T .

Parameter Symbol Value Dimension (2D)

Flow alignment ξ [−1, 1] 1
Rotational diffusivity � 0.05 T/M
Solvent viscosity η 40/6 M/T
Density ρ 40 M/L2

Bulk free energy strength A 1 M/T 2

Frank elastic constant K 0.05 ML2/T 2

Numerical integration time τLB 1 T
Activity ζ 0 M/T 2

Initial noise in alignment n0 0.05 1
Velocity fluctuation kBT u [0, 0.05] ML2/T 2

Director fluctuation kBT Q [0, 0.05] ML2/T 2

Director angle fluctuation kBT θ [0, 0.05] ML2/T 2

Square domain length LD 256 L

nematics [35,36] (see Appendix A for detailed description
of the governing equations and Table I for the simulation
parameters).

Fluctuations in the order parameter and the momentum
equations are described, respectively, as〈

ξ
Q
i j (�x, t )ξQ

kl (�x′, t ′)
〉 = 2kBT Q�Ji jklδ(�x − �x′)δ(t − t ′), (3)〈

ξ u
i j (�x, t )ξ u

kl (�x′, t ′)
〉 = 2kBT uηJi jklδ(�x − �x′)δ(t − t ′), (4)

with zero mean. Here the operator Ji jkl = δikδ jl + δilδ jk −
2
d δi jδlk , with d the dimension of space, renders its tensor
operand symmetric and traceless [37]. We follow [38] for
implementation of momentum conserving mesoscopic fluctu-
ation at the lattice level and thus the fluctuations in velocity
field are absorbed under a stress term (see Appendix B for
details of the implementation). With this formulation the am-
plitudes of fluctuations in both order parameter and velocity
field are expressed in units of kBT , they can be tuned inde-
pendently, and more importantly setting T Q = T u will result
in mesoscale fluctuations that satisfy fluctuation-dissipation
relations [39–42]. By setting T Q �= T u the fluctuations in the
momentum equation are not correlated with the orientational
fluctuations and in this study we first vary them independently
to show that either form can result in experimentally-observed
flow and stress patterns around topological defects. To
facilitate comparison with experiments, dimensionless orien-
tational and hydrodynamic fluctuation strengths, Q̂kBT and
ûkBT , are defined, respectively. To this end, inspired by the
experimental characterization of the effective temperature in
confined fibroblast cells [11], we define dimensionless fluc-
tuation strength in units of the elastic constant, K : Q̂kBT =
kBT Q/K and ûkBT = kBT u/K .

III. FLUCTUATION-INDUCED DEFECT KINEMATICS

We begin by assessing the impact of orientational and
hydrodynamic fluctuations on the spatiotemporal patterns of
nematic director field. Fluctuations result in the nucleation of
pairs of ±1/2 topological defects. Remarkably, the nucleated
pairs of defects in the presence of both hydrodynamic and
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(a)

(b)

FIG. 1. Fluctuation-induced defect kinematics. Left and right
columns compare the defect motion between the systems with
hydrodynamic fluctuations (ûkBT = 0.3, ξ = 1) and orientational
fluctuations (Q̂kBT = 0.15, ξ = 1), respectively, chosen for the same
topological defect density. (a) Trajectories of +1/2 defects (red) and
−1/2 defects (blue) from creation time to annihilation. (b) Log-log
plot of the mean-square-displacement (MSD) of defects vs time.
The black line denotes slope equal to 1. Averaged over 10 realiza-
tions. The MSDs and times are nondimensionalized by the square
of the characteristic coherence length scale LQ = √

K/A and by
the characteristic passive relaxation time of nematics τQ = 1/(A�),
respectively.

orientational fluctuations show a qualitatively similar behav-
ior to active extensile systems: after the nucleation, the +1/2
defect breaks away from the −1/2 counterpart, moving along
its comet head through the system, until it is annihilated by
another −1/2 defect (see supplemental movies [43] for dy-
namics of fluctuation-induced defect motion). This persistent
motion of the +1/2 defect is best evident in the temporal
trajectory plots and the mean-square-displacement measure-
ments of defects motion (Fig. 1). Fluctuations lead to the
emergence of distinct speeds for +1/2 and −1/2 topological
defects: at short times +1/2 defects move faster than their
−1/2 counterparts, while at longer times the motion of both
defects becomes dominated by interactions with other defects
and thus shows diffusive movement. Such diffusive behav-
ior for both defect types is in contrast with the propulsive
+1/2 and diffusive −1/2 defect motions as observed in dense
colonies of motile bacteria [44]. However, the defect motion
observed here for both orientational and hydrodynamic fluc-
tuations is consistent with experimental characterization of
the mean-squared displacements of ±1/2 topological defects
in the human bronchial cells [45], where both defect types
showed diffusive behavior at long times, and suggests that
the defect motions in such epithelial layers could be simply
dominated by hydrodynamic fluctuations.

(a)

(b)

FIG. 2. Fluctuation-induced defect flows and isotropic stresses.
Left and right columns compare the averaged flows and isotropic
stresses between the systems with hydrodynamic fluctuations
(ûkBT = 0.3, ξ = 1) and orientational fluctuations (Q̂kBT = 0.15, ξ =
1), respectively. (a) Averaged velocity field around +1/2 defects.
(b) Averaged isotropic stress fields around +1/2 defects, normalized
by the bulk free energy strength A.

IV. FLUCTUATION-INDUCED DEFECT FLOWS
AND ISOTROPIC STRESSES

We next asked how the averaged flow fields of fluctuation-
induced topological defects compare with the flow fields that
have been extensively measured in experiments for different
cell layers [10,11,45] and with the theoretical predictions from
active nematics [46,47]. Interestingly, averaged flow fields
around the +1/2 defects for both the orientational and hy-
drodynamic fluctuations show the typical flow jet at the defect
center, pointing towards the head, accompanied by a vortex
pair around the defect’s axis of symmetry (Fig. 2), which is
the expected flow field for motile +1/2 defects in extensile
active nematics [18,44,47] and is observed in experiments
on epithelial cell layers [10,45] and neural progenitor stem
cells [12].

The scales of the velocities of fluctuation-induced defects
are also comparable to the ones obtained from simulations
with activity. To clearly show this, we have conducted simu-
lations with activity (and in the absence of any fluctuations)
and compare the scale of the averaged velocity that is ob-
tained around the defects to that from the simulations in
the present work (no activity and only with fluctuations).
The same velocity scales are obtained in both cases, fur-
ther reinforcing the idea that fluctuation-induced features
of the defects can reflect those obtained from the activ-
ity (Fig. 3). Moreover, using estimates of the strain rates
of ∼O(10−2 h−1) from experiments [10], and the corre-
lation length of ∼O(100 μm) [21], and comparing them
with the characteristic strain rates ∼O(10−4) and correlation
lengths ∼O(101) in simulation units, the velocities obtained
in simulation units can be mapped to ∼O(μm/h) in the
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ukBT θkBT

FIG. 3. Fluctuation-induced versus activity-induced defect
flows. Comparison of velocity pattern and magnitude between
(left) simulations with no fluctuations and active stress ζ = 0.045,
(middle) simulations with no active stress and with hydrodynamic
fluctuations ûkBT = 0.3, and (right) simulations with no active
stress and with orientational fluctuations θ̂kBT = 0.15. The colorbar
shows the magnitude of the velocity normalized by the characteristic
passive relaxation velocity of nematics vQ = �

√
AK . The parameters

for activity and fluctuation strengths are chosen such that they result
in the same defect density.

physical units, which are comparable to the averaged ve-
locities around topological defects that are observed in the
experiments [10,21].

In addition to the characteristic flow pattern, experiments
and active nematic theories have measured the isotropic
stresses [σiso = 1

2 Tr(�)] around the defects to characterize
the tensile and compressive forces around defect structures.
In active nematics, an extensile defect has a region of neg-
ative isotropic stress (compression) at the head, and positive
isotropic stress (tension) at the tail, inverted for a contractile
defect [18]. This stress pattern has been linked to functional
behavior in governing cell death and extrusion in epithe-
lia [10]. Remarkably, in addition to the flow field around +1/2
defects, for both orientational and hydrodynamic fluctuations,
the corresponding isotropic stress patterns around the defects
demonstrate the compression at the head and the tension at
the tail region (Fig. 2), demonstrating that the topological
defects formed due to mesoscopic fluctuations can exhibit
such experimentally observed patterns.

V. FLUCTUATION-INDUCED EXTENSILITY
OF +1/2 DEFECTS

Our numerical results clearly show a tendency for the
emergence of active extensile-like features around +1/2 de-
fects, but it is not clear what determines such defect features.
To answer this question, we next investigated the impacts
of the flow-aligning parameter and passive elastic stresses
on the fluctuation-induced topological defect features, since
in passive nematics the former characterizes the orientation
response to flow gradients [48], and the latter couples the ori-
entation field to the flow [35]. Starting with the flow-aligning
parameter, we observed disappearance of any coherent flow
around defects for ξ = 0. Moreover, the direction of flow
around the +1/2 defect switches sign for negative values of
the flow-aligning parameter, resembling contractile-like flows
observed for monolayers of mouse fibroblasts [11] and epithe-
lial cells with weakened cell-cell adhesion [21]. To quantify
the extensile- or contractile-like flow features around +1/2
defects we define the extensility parameter, E , based on the

FIG. 4. Fluctuation-induced extensility of +1/2 defects. (a) The
dependence of the extensility, E , on the flow-aligning parameter ξ for
hydrodynamic fluctuations with ûkBT = kBT u/K = 0.3 (purple line),
for orientational fluctuations with Q̂kBT = kBT Q/K = 0.15 (orange
line), and for systems without backflow (black dotted line); (b–d)
the dependence of the extensility on (b) strength of the orientational
fluctuation of the director angle, θ̂kBT , (c) nematic order param-
eter fluctuation strength, Q̂kBT , and (d) hydrodynamic fluctuation
strength, ûkBT , at ξ = 1. Averaged over 20 realizations.

averaged flow field around the defects, 〈�ud〉 = (〈ud
x 〉, 〈ud

y 〉), as

E :=
〈
ud

y

〉
〈|�ud |〉 , (5)

where we rotate all defects such that their comet-shaped head
points in the +y direction. The extensility parameter goes
from E = −1 for a purely contractile defect over E = 0 for
no movement or isotropic movement to E = 1 for a fully
extensile defect. For both sources of fluctuations, the results
show that the flow-aligning parameter, ξ , plays a significant
role in determining the extensility of the defects [Fig. 4(a)].
Moreover, there is a saturation value of extensility, E , which,
for both types of fluctuations, coincides with the crossover
from flow tumbling to flow-aligning behavior that is expected
at |ξ | >

3q+4
9q , where using approximation of the nematic
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order magnitude with its equilibrium value q ∼ qeq = 1.0
leads to |ξ | � 7/9 [49]. Therefore, orientation response of
nematic particles to flow gradients is integral to contractile-
or extensile-like behavior of +1/2 defects.

Not only is flow alignment necessary for the establishment
of extensile- or contractile-like flows around fluctuation-
induced defects, the back coupling of the orientation to flow
field through passive elastic stresses is also required. This is
evident from the results of simulations, where passive elastic
stresses are turned off [Fig. 4(a); black solid line]. It is impor-
tant to note that for both cases of ξ = 0.0 and �elastic = 0.0
fluctuations both in orientation field and in hydrodynamics
lead to defect formation, but the resulting defects do not show
extensile- or contractile-like flow and stress features. Addi-
tionally, we numerically confirmed that the directed motion
of the +1/2 defects is governed only by the contribution of
the flow-aligning parameter, ξ , to the passive stress and not
by the ξ -dependent corotation term in the Q equation.

Next, we quantify the impact of the strength of fluctua-
tions on the defect behavior. In addition to fluctuations in the
nematic order parameter, we have further examined different
implementation of the fluctuations only in the angle of the
director, controlled by a dimensionless fluctuation strength
θ̂kBT = θkBT /K (see Appendix C for details of the imple-
mentation). As evident from Figs. 4(b), 4(c), and 4(d) the
extensility parameter increases from zero after the strengths
of fluctuations passes above a certain threshold. This is true
for all types of the fluctuations and occurs at the point where
fluctuation-induced topological defects are first nucleated.

VI. FLUCTUATION-INDUCED DEFECT FLOWS
IN PASSIVE NEMATICS

Finally, to establish the governing role of the passive elastic
stresses, we conduct simulations in which the noise is intro-
duced only in the initial condition such that the initial director
field contains topological defects. We then evolve this system,
without any active stress and without any fluctuations, and
follow the flow and stress patterns around defects as they
annihilate in pairs with time until an ordered state is estab-
lished. The averaged flow patterns around positive topological
defects in this completely passive nematics are in agree-
ment with both experimental observations and active nematic
theories, as well as our simulation results with continuous
fluctuations (Fig. 5).

Furthermore, in agreement with these results, simula-
tions with T Q = T u reveal similar averaged flow patterns
around +1/2 defects (Fig. 5), even when there is no
out-of-equilibrium, persistent, directed motion because the
fluctuation-dissipation theorem (FDT) is satisfied. This indi-
cates that the extensile-like flows are set by passive elastic
stresses. We further verify these T Q = T u findings through
mesoscopic simulations of passive nematohydrodynamics
with inherent fluctuations via the multiparticle collision dy-
namics (MPCD) method [50,51] (see Appendix D for the
details of the algorithm). MPCD results of annihilating defect
pairs further corroborate the flow patterns around +1/2 de-
fects (Fig. 5). Although the average flow fields around defects
exhibit similar extensile-like patterns, for both MPCD and
T Q = T u simulations, the defects are short-lived and lack per-

FIG. 5. Fluctuation-induced defect flows in passive nematics.
Average flow field around +1/2 defects in passive nematics for
three different scenarios: (left) results from passive nematics in the
continuum model, when the system is initialized with defects and
the flow around the defects is averaged during the defect life time;
(middle) results from fluctuations in the continuum model satisfying
fluctuation-dissipation theorem with T u = T Q; (right) results from
passive nematics initialized with defects but simulated with nematic
MPCD. The flow pattern is robust across passive nematics, and once
defects are present the characteristic extensile-like flow is set by
passive elastic stresses.

sistent directed motion, in contrast to fluctuations that break
detailed balance [Figs. 1(a) and 1(b)]. Therefore, the mech-
anism of extensile- or contractile-like +1/2 defect behavior
can be understood as follows: orientational or hydrodynamic
fluctuations continuously create pairs of ±1/2 topological de-
fects; once created, passive elastic stresses generate flow fields
around +1/2 defects that for positive (negative) values of
flow-aligning parameter, ξ , show extensile-like (contractile-
like) flow and stress features.

Our results show that the fluctuation-induced extensile- and
contractile-like defects crucially depend on the sign and mag-
nitude of the flow-aligning parameter through its contribution
to the passive elastic stresses. The value of the flow-aligning
parameter depends on the size, aspect ratio, magnitude of the
order, and also interactions between the nematogens. Indeed,
the few attempts to extract the flow-aligning parameters, for
the wing epithelium of Drosophila [52] and for mouse fi-
broblast cells [53], have shown that it can have a range of
values and even become negative. Therefore it would not
be surprising if different experimental systems show distinct
behaviors associated with flow-tumbling or flow-aligning be-
havior. However, to our knowledge, the role of this parameter
has been only marginally explored in most theoretical works
and experiments.

The emergence of fluctuation-induced extensile- and
contractile-like defects questions whether systems previously
described as active nematics must necessarily include ac-
tive stresses associated with self-propulsion. The fluctuating
forces that cells exert on their surroundings have been
extensively documented [54–56] and are associated to var-
ious sources including, but not limited to, traction force
fluctuations exerted by focal adhesion [57–59], association
or dissociation of stress fibers [60], and oscillations in
Rho proteins [61,62]. Importantly, these fluctuating forces
are persistent and quite regular, justifying continual addi-
tion of hydrodynamic fluctuations in our model. Similarly,
fluctuations in cell shape and cell alignment have been
documented [63–65]. Comparing the mesoscopic fluctua-
tion strengths used in this study to those estimated from
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experiments, we find that the minimum fluctuations needed
to nucleate defects are consistently smaller than exper-
imentally estimated ones. Force fluctuations are widely
documented [54], showing the amplitude of the fluctuations to
reach values as high as 50% [57] in mouse embryo fibroblasts
and even 10-fold change in keratinocytes [59]. Orientational
fluctuations have not been characterized as widely, although
fluctuating junction lengths [55] or cell area fluctuations of up
to 20% [64] imply large shape changes. However, [11] esti-
mated the effective temperature of 0.1 < Teff/K < 0.2 from
topological defect orientations in confined fibroblast cells,
which is comparable to the values estimated from orienta-
tional fluctuations in our model. In this regard, it is also
important to note that the activity level can change across
different cell types and even in the same tissue at different
stages. For example, previous studies on fibroblasts [11], have
suggested that activity contribution to the defect dynamics is
small and as such we conjecture that those systems could be
more strongly affected by fluctuations. Similarly, the activity
levels are strongly reduced as the cells within a confluent
tissue approach a glassy state, where again activity levels are
significantly reduced and fluctuations can play a dominant
role [66,67]. Future studies should focus on effective ways
for discerning the active stress-induced from mesoscopic
fluctuation-induced effects in the experiments on biological
matter. We finally note that our result with FDT preserving
simulations in itself is very interesting and calls for extended
studies of the role of mesoscale fluctuations in nematics, along
the lines of the studies establishing the role of mesoscale
fluctuations in capillary waves [68], phase separation [40], and
droplet spreading [69,70], that will be a focus of our future
papers. It would, for example, be interesting to reexamine
topological transition in passive nematic in the presence of
hydrodynamics and passive elastic stresses.

ACKNOWLEDGMENTS

A.D. acknowledges funding from the Novo Nordisk Foun-
dation (Grant No. NNF18SA0035142 and NERD Grant No.
NNF21OC0068687), Villum Fonden Grant No. 29476, and
the European Union via the ERC-Starting Grant PhysCoMeT.
A.A. acknowledges support from the European Union’s Hori-
zon 2020 research and innovation program under the Marie
Sklodowska-Curie Grant No. 847523 (INTERACTIONS).

APPENDIX A: NEMATOHYDRONAMICS EQUATIONS

We employ a 2D continuum nematohydrodynamic
model [18,32], which we solve with the hybrid lattice Boltz-
mann method [71].

The orientation of the particles is described by the di-
rector �n = −�n and the order parameter is constructed Q =
2q (�n�n − I/2) where q is the strength of ordering and I is
the identity tensor. Q is then a symmetric, traceless tensor.
The order parameter evolves according to the Beris-Edwards
equation [72]:

∂t Q + �v · �∇Q − S = �H, (A1)

where H is the molecular field and � is the rotational diffusiv-
ity. S is the corotation term, by which the particles respond to

the gradient of flow:

S = (ξE + �) · (Q + I/2) + (Q + I/2) · (ξE − �)

− 2ξ (Q + I/2)(Q : �∇u), (A2)

where E = 1/2(∂i�v j + ∂ j �vi ) is the strain rate and � =
1/2(∂i�v j − ∂ j �vi ) is the vorticity tensor. The flow alignment
parameter, ξ , controls the alignment of the nematic director
with the fluid flow, specifically tuning the relative importance
of strain rate and vorticity in affecting the alignment of the
director.

The molecular field, H, is the negative symmetric traceless
part of the derivative of the free energy, F :

H = −δF
δQ

+ I
2

Tr

(
δF
δQ

)
, (A3)

and the free energy is defined via Landau–de Gennes expan-
sion plus an Oseen-Frank elastic term:

F = A

(
1 − 1

2
Tr(Q2)

)2

+ K

2
( �∇Q)2, (A4)

where A controls the depth of the double-well potential in the
Landau–de Gennes free energy and therefore sets the energy
scale of equilibrium alignment of the nematogens. K is the
Frank elastic constant used under the common one constant
approximation, taking into account only divergence in Q, and
thus penalizing any deformations.

The velocity field, �v, evolves according to the incompress-
ible Navier-Stokes equations:

ρ(∂t �v + �v · �∇�v) = �∇ · �, �∇ · �v = 0, (A5)

where ρ is the density and � is a generalized stress term. In
general, the stress can be written as a sum of pressure, viscose,
elastic, and active terms [18]:

�viscous
i j = 2ηEi j, (A6)

�
pressure
i j = −pδi j, (A7)

�elastic
i j = 2ξ (Qi j + δi j/2)(QlkHkl )

− ξHik (Qk j + δk j/2) − ξ (Qik + δik/2)Hk j

− ∂iQkl
δF

δ∂ jQlk
+ QikHk j − HikQk j, (A8)

�active
i j = −ζQi j, (A9)

where η is the viscosity and p is the pressure.
The activity of the particles is accounted for by the active

stress term [Eq. (A9)] [2,18]. The activity parameter, ζ , can
take positive or negative values which result in an extensile or
contractile nematic, respectively [15]. Unless otherwise stated
the activity is set to zero in the simulations.

The system is initialized in the nematic state with a director
angle, θ0. We then add an initial noise on the orientation field,
θ , at every lattice site in the following manner:

θ (t = 0) = θ0 + n0 U [−π/2, π/2], (A10)

with n0 = 0.05 and U the uniform distribution.
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APPENDIX B: HYDRODYNAMIC FLUCTUATIONS

As first noted in [38], noise can be introduced at the level
of the Boltzmann equation as

fi(�r + �ci, t + 1) = fi(�r, t ) + 1

τLB

(
f eq
i (�r, t ) − fi(�r, t )

) + ηi,

where ηi are correlated noises whose form must be set by the
fluctuation-dissipation relation. We consider here the D2Q9
model with a single relaxation time and have set the unit time
step to unity. Our choice for the direction vectors is

�c1 = (0, 0), �c2 = (1, 0), �c3 = (−1, 0),

�c4 = (0, 1), �c5 = (0,−1), �c6 = (1, 1),

�c7 = (−1,−1), �c8 = (−1, 1), �c9 = (1,−1),

together with the corresponding weights

w =
(

4

9
,

1

9
,

1

9
,

1

9
,

1

9
,

1

36
,

1

36
,

1

36
,

1

36

)
.

This defines our model unambiguously and reflects exactly the
conventions used in the 2D code.

As shown in [38,73], the fluctuation-dissipation relation is
diagonal in moment space defined by

mi =
∑

j

√
μρwi ei j f j, ξi =

∑
j

√
μρwi ei jη j,

where μ = kBT/c2
s , and cs = 1/

√
3 is the speed of sound.

There are many possible choices for the definition of the trans-
formation matrix, ei j , and we follow [73]. With our convention
we get

�e1 =
(

2

3
,

1

3
,

1

3
,

1

3
,

1

3
,

1

6
,

1

6
,

1

6
,

1

6

)
,

�e2 =
(

0,
1√
3
,− 1√

3
, 0, 0,

1

2
√

3
,− 1

2
√

3
,− 1

2
√

3
,

1

2
√

3

)
,

�e3 =
(

0, 0, 0,
1√
3
,− 1√

3
,

1

2
√

3
,− 1

2
√

3
,

1

2
√

3
,− 1

2
√

3

)
,

�e4 =
(

−2

3
,

1

6
,

1

6
,

1

6
,

1

6
,

1

3
,

1

3
,

1

3
,

1

3

)
,

�e5 =
(

0,
1

2
,

1

2
,−1

2
,−1

2
, 0, 0, 0, 0

)
,

�e6 =
(

0, 0, 0, 0, 0,
1

2
,

1

2
,−1

2
,−1

2

)
,

�e7 =
(

0,− 1√
6
,

1√
6
, 0, 0,

1√
6
,− 1√

6
,− 1√

6
,

1√
6

)
,

�e8 =
(

0, 0, 0,− 1√
6
,

1√
6
,

1√
6
,− 1√

6
,

1√
6
,− 1√

6

)
,

�e9 =
(

1

3
,−1

3
,−1

3
,−1

3
,−1

3
,

1

3
,

1

3
,

1

3
,

1

3

)
.

Note that this basis is denoted �̂ei in [73] and can be easily
constructed from the vectors �ci. Another useful reference for
the definition of the weight and basis in the D2Q9 model
is [74]. The basis is chosen to be orthogonal

∑
k eike jk = δi j

and such that the conserved moments are given by

m1 = ρ =
∑

i

fi, m2 = ρux =
∑

i

cix fi,

m3 = ρuy =
∑

i

ciy fi.

In particular we have e1i = √
wi, e2i = √

wicix/cs, and e3i =√
wiciy/cs.
In moment space the noises ξi are uncorrelated and satisfy

the following fluctuation-dissipation relation

〈ξiξ j〉 = δi j
2τLB − 1

τ 2
LB

,

and ξi = 0 for i = 1, 2, 3. The vanishing of the first three
moments is simply dictated by density and momentum con-
servation. Putting everything together, we finally obtain

ηi =
√

2τLB − 1

τ 2
LB

3kBT ρwi

9∑
j=4

ei jξ j .

One can check that conservation of particles and momentum
is satisfied: ∑

i

ηi =
∑

i

cixηi =
∑

i

ciyηi = 0.

APPENDIX C: ALTERNATIVE IMPLEMENTATION
OF ORIENTATIONAL FLUCTUATIONS

As an alternative way of implementing orientational fluc-
tuations we add fluctuations only in the angle of the director.
To this end, at every time step we add rotational noise to the
order parameter. This is done by calculating the angle of the
director, θ , from Q and then adding a scaled random θr at
every lattice site, l:

θl (t + 1) = θl (t ) + U [−π/2, π/2]
√

�θkBT . (C1)

We then recover the order parameter from the angle, θ , and the
order S. This method conserves symmetry and tracelessness
of the order parameter and results in an angle change at that
point, without affecting the magnitude of the nematic order.
Importantly, this alternative implementation also results in an
extensile-like flow around +1/2 topological defects as shown
in Figs. 3 and 4(b).

APPENDIX D: MESOSCOPIC SIMULATIONS
OF DEFECT DYNAMICS

To verify the limit of equal effective temperatures for
the velocity and director fluctuations (T Q = T u), we em-
ploy multiparticle collision dynamics (MPCD), a mesoscale
coarse-grained algorithm that intrinsically simulates noisy dy-
namics. MPCD is a particle-based method that can simulate
complex fluids, including viscoelastic fluids [75], colloidal
suspensions [76], binary mixtures [77], ferrofluids [78], and
passive [50] and active [51] nematics. Here, we provide a
brief description of the nematic-MPCD algorithm and refer
the reader for more detail to recent publications [50,51].

The nematic-MPCD algorithm discretizes the fluid into
N point particles (labeled i ∈ {1, . . . , N}), each with mass
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mi = m ∀ i, position, �ri(t ), velocity, �vi(t ), and orientation,
�ui(t ). Their dynamics proceeds in two discrete steps: (1) bal-
listic streaming and (2) multiparticle collisions.

(1) Streaming step: The particles move for a time δt to a
new position �ri(t + δt ) = �ri(t ) + �vi(t )δt .

(2) Collision step: After each streaming period, the par-
ticles are sorted into cubic cells of size a on a lattice that
is randomly shifted to ensure Galilean invariance. Within
each cell c, coarse-grained collision operations stochasti-
cally exchange momentum and orientation between particles,
while conserving the local value. The momentum colli-
sion event is �vi(t + δt ) = 〈�v〉c(t ) + ��i,c(t ), where 〈�v〉c is
the center of mass velocity of cell c and ��i,c is the colli-
sion operator. We choose the angular-momentum conserving
Anderson thermostatted operator ��i,c = �αi − 〈�α j〉c + (I−1

c ·
[δ �Lvel + δ �Lori]) × �r′

i [79,80], where �αi is a random velocity
drawn from the Maxwell-Boltzmann distribution for thermal
energy kBT , 〈�α j〉c is the cell average and Ic = m

∑
j∈c(r′2

j I −
�r′

j�r′
j ) is the moment of inertia relative to the center of mass

�r′
i = �ri − 〈�r〉c. The first angular momentum term δ �Lvel =∑

j∈c �r′
j × (�v j − �α j ) corrects any spurious angular momen-

tum introduced by the collision and the second δ �Lori =
−γ

∑
j∈c �u j × �̇u j simulates nematic backflow for a viscous

rotation coefficient, γ .
Similarly, the orientational collision operator draws ran-

dom directions from the local equilibrium distribution about
the local director �nc as �ui(t + δt ) = �nc(t ) + �ηi,c, where �ηi

is drawn from the equilibrium Maier-Saupe distribution
∼ exp (USc[�ui · �nc]2/kBT ) for the local scalar order param-
eter, Sc, and a mean-field interaction constant, U [50]. The
orientation is coupled to gradients in the velocity through Jef-
fery’s equation �̇ui = χ [�ui · � + ξ (�ui · E − �ui�ui�ui : E)] for the
tumbling parameter, ξ , and hydrodynamic susceptibility, χ .
The Frank coefficients are a linear function of U/kBT [50,81]
and nematic-MPCD has been shown to accurately simulate
the coupling between fluctuating hydrodynamic modes at the
mesoscopic level [82].

The 2D nematic MPCD simulations are performed in
square simulation boxes of size 300a with periodic boundary
conditions. The density is 20 particles per cell. The streaming
time step is δt = 0.1τ in simulation units of τ = a

√
m/kBT .

Six independent simulations are performed for 50τ warmups
and 250τ runs. The mean-field interaction constant is U =
30kBT , the rotation coefficient γ = 0.01ma2, and the dimen-
sionless tumbling parameter and hydrodynamic susceptibility
are ξ = 2 and χ = 0.5. The Frank coefficients are a linear
function of U/kBT [50,81] and nematic MPCD has been
shown to accurately simulate the coupling between fluctuating
hydrodynamic modes at the mesoscopic level [82]. Initial
particle speeds are drawn from the Maxwell-Boltzmann dis-
tributions, and orientations are initialized isotropically. Thus,
the nematic starts in a quenched disordered state, which
orders through defect annihilation. Over the course of the
Berezinskii-Kosterlitz-Thouless transition, the velocity field is
measured in the vicinity of the defects.
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