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Cellular automata approach to modeling self-organized periodic patterns
in nanoparticle-doped liquid crystals
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Elementary cellular automata provide one of the simplest ways to generally describe the phenomena of pattern
formation. However, they are considered too simple to be able to describe in detail the more complex phenomena
occurring in real experimental systems. In this article, we demonstrate the an application of these methods to
optical systems, providing an understanding of the mechanisms behind the formation of periodic patterns in
nanoparticle-doped liquid crystals. Our extremely simplified model also explains the observed linear relationship
between periodicity and system size.
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I. INTRODUCTION

Self-organized pattern formation observed in both natural
and technological contexts is a fascinating object of study
in various scientific areas including mathematics, physics,
biology, chemistry, and computer science. Classical examples
are periodic patterns emerging on animal skin such as leopard
spots or zebra stripes [1,2], regular thermal fluid convection
cells [3], periodic cycles in predator-prey distributions in
ecosystems [4], and oscillating chemical reactions such as the
Belousov-Zhabotinsky reaction [5,6].

Usually, such phenomena are modeled by nonlinear (some-
times partial) differential equations whose solutions are found
by numerical integration. The huge family of models of pat-
tern formation based on reaction-diffusion equations can serve
here as a best example [7]. An alternative approach relays on
discrete cellular automata (CA) [8]. Among all approaches
developed to deal with complexity, CA have the simplest
rules that are sufficient to resemble a variety of real emergent
patterns and structures. Their main advantage with respect
to systems of differential or partial differential equations is
the stability of their dynamics. Adding some new features
or interactions to the system does not introduce structural
instabilities. Such flexibility and computational simplicity
make CA an attractive modeling tool for pattern formation
phenomena.

To date, many different forms and classes of CA have been
developed [9–12]. The simplest ones are one-dimensional el-
ementary CA, which are usually considered “toy models” far
from real system dynamics, that only serve for a visual cat-
egorization of increasing complexity patterns [8]. In order to
analyze real systems, e.g., fluid flows, more sophisticated CA
based methods are used, such as the lattice Boltzmann method
that closely mimics differential Navier-Stokes equations [9].

Over the past two decades, the formation of self-organizing
patterns has been reported in many experimental studies of
liquid crystals (LCs) [13–17]. Due to doping them with

nanoparticles, many different textures consisting of stripes or
bubbles were obtained as a result of spatial separation of the
particle-rich and particle-poor domains. Especially, it has been
shown that it is possible to obtain one-dimensional periodic
structures spontaneously formed by spatial confinement of a
nematic LC doped with gold nanoparticles [17]. The ability
to control periodicity of these patterns makes these mixtures
attractive from the point of view of the future applications in
the information display sector, or in the other optical devices
such as low-power-consuming tunable filters or reflectors,
light shutters, or electrically controllable intensity modula-
tors. Therefore, modeling such systems, which enables the
identification of the most important factors influencing pattern
formation, their controllability and stability, is an excellent
alternative to expensive laboratory experiments.

LC systems can be mathematically modeled at differ-
ent levels, ranging from fully molecular approaches [18],
through mean-field approaches such as Onsager theory [19]
and Maier-Saupe theory [20], to fully continuum approaches
such as the Oseen-Frank theory [21], the Ericksen-Leslie the-
ory [22], and the celebrated Landau–de Gennes theory [23].
All of these approaches have their strengths and weaknesses
and are used to describe various aspects of the behavior
of liquid crystals. However, the complexity of the patterns
formed in the LC mixtures eludes the presented formalisms,
especially due to its heterogeneity in space. The only excep-
tion would be molecular dynamics simulations, but at a high
computational cost.

In this paper, we extend the range of available methods
used in LC systems to include extremely abstract elemen-
tary CA. In this way we show that treating them only as a
toy model is too simplistic. Within this approach we model
the observed periodic structures in LC mixtures. Creating
an automaton with a few simple local rules, we are able to
identify all the essential features of the LC system observed
in the experiments without having to bother with background
details. In particular, our simulations reproduce formation of
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FIG. 1. (a) Optical polarized microscopy image of the two-
dimensional LC mixture. The isotropic phase domains that start
to nucleate are visible as yellow bubbles. The visible birefringent
borders of the isotropic drops with boojums at the poles result from
the strong tangential surface anchoring at the isotropic-nematic (I-N)
interface. (b) The growing isotropic domain (on the right) pushes the
nanoparticles towards the nematic area (on the left). (c) An idealized
model of hedhehog-like molecules composed of rigid organic ligands
(A) bound by flexible hydrocarbonate chains (B) to the central gold
nanoparticle (C) immersed in a nematic liquid crystal (D). Sizes of
system elements are not shown to scale.

periodic patterns in a one-dimensional photonic lattice and a
continuous change of the structure period during a continuous
change of the capillary diameter.

In outline, the paper is as follows. First, we describe shortly
the experiment and its main results. Next, we present our
CA model. Finally, we discuss the results of the simulation
in comparison to the experimental results. The results are
supported by a video comparing the process in the simulations
vs the real experiment (see Supplemental Material [24])..

II. EXPERIMENT

Mixtures of nematic liquid crystals were produced by dop-
ing small quantities of gold spherical nanoparticles coated
with the longtitudal molecules that bind by flexible hy-
drocarbonate chains to a central nanoparticle and form
together a hedgehog-like complex (see Fig. 1) [17,25]. In
the described experiment gold (Au) nanoparticles (2.5 ± 0.4
nm diameter for the Au core) covered with the prome-
sogenic ligand N,N-dioctyl-4-[(4′-(10-mercaptodecyloxy)-
biphenyl-4-ylo)xymethyl]benzamide (2NC8) and LC mixture
based on nematics 4-cyano-4′-pentylbiphenyl, commonly re-
ferred to as 5CB, were used.

The analysis of an infinite volume sample shows that, as the
concentration of nanoparticles increases, the temperature of
the nematic-isotropic phase transition also increases. It turns
out that in this process nanoparticles act as “anchors” that
make it difficult to disrupt the arrangement of LC molecules.
Therefore, the transition to the isotropic phase occurs first in
regions where the local concentration of nanoparticles is much

FIG. 2. The process of formation of isotropic domains (yellow
shapes) in a mixture of LC and nanoparticles (red dots). Detailed
description in the text.

lower than the average, making these places centers of the
isotropic domains.

During the experiment, capillaries of various inner di-
ameters were filled with such a mixture. The capillaries
were slowly heated, letting the composite material reach
the isotropic state. During the heating process, local fluctu-
ations in nanoparticle concentration initiated the formation
of isotropic domains. These domains then grew, expelling
nanoparticles into adjacent nematic zones. In the first phase
of this process, these domains can spontaneously coalesce to
form a relatively larger cluster [Figs. 2(b) and 2(c)]. How-
ever, when diameters of these domains reach the diameter
of the capillary, nanoparticles become trapped between the
two growing domains, which leads to a local intense increase
in their concentration and ultimately to the excluded volume
repulsion of adjacent isotropic domains [Figs. 2(d) and 2(e)],
which stops their growth.

There are two experimental observations important for the
possible applications. First, it occurs that a one-dimensional
(along the capillary) structure of isotropic domains created in
the above described stochastic process seems to be periodic
(Fig. 3). Second, it has been shown that the period of such
a structure depends almost linearly on the capillary diameter
[Fig. 6(d)]. In the next section we demonstrate a simple CA
that models both these observations.

III. CELLULAR AUTOMATA MODELING

In general, a cellular automaton consists of a regular (any-
dimensional) grid of cells, each in one of a finite number of
states [8]. Initially, one has to assign a state for each cell. Then,
a new generation of states is created according to some fixed
rule that determines the new state of each cell in terms of the
current state of the cell itself and the states of its neighbors.
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FIG. 3. Periodic patterns obtained in the experiment in capillar-
ies of different widths. The concentration of gold nanoparticles in
5CB liquid crystals was 0.3 wt.%. Photos were taken at a temperature
T = 35.6 ◦C.

The simplest, elementary cellular automaton (ECA) is a
one-dimensional chain of cells where there are two possible
states (labeled 0 and 1) and the rule to determine the state of
a cell in the next generation depends only on the current state
of the cell and its two immediate neighbors. Since there are
23 = 8 possible current states, there are a total of 28 = 256
possible ECAs, each of which can be indexed with an 8-bit
binary number [8]. Two examples of such ECAs with rules
254 and 222 are shown in the Fig. 4(a) and 4(b).

To model the experiment described earlier, we create the
initial state of such an ECA consisting of a random sequence
of 1 and 0 sites with probabilities p and 1 − p respectively,
where 1’s represent independently formed isotropic domains.
The first phase of the process [corresponding to Figs. 2(a)–
2(c)] is modeled using the rule 254 shown in Fig. 4(a). This
rule produces growing domains that can coalesce into larger
clusters. Duration of this phase, tA depends on the capillary

FIG. 4. The diagram of the rule and the first 20 generations of el-
ementary cellular automaton starting with a random initial condition
for the rule: (a) 254 and (b) 222. Two realizations of the process of
isotropic domains’ growth that lead to the formation of the periodic
patterns in LC for two values of the model parameter tA = 5 (c) and
tA = 15 (d). In all subfigures the direction of time is indicated by a
black arrow.
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FIG. 5. Normalized standard deviation of the distance, δ̃, as a
function of time for p = 0.1 and tA = 10 in the large system (N =
106 cells, blue thick line) and in the small one (N = 400, red thin
line).

diameter d and it generally increases with d . After time tA, we
apply the second rule 222 [cf. Fig. 4(b)], which also supports
the growth of domains, but in this case two colliding domains
do not merge (which imitates the excluded volume effect).
The process ends when all adjacent isotropic domains are
separated by one nematic cell (in state 0) and the state of the
system does not change. This extremely simple model allows
one to simulate all main effects observed in the experiment.
For demonstration purposes we show in Figs. 4(c) and 4(d) the
full process of the periodic pattern formation for two different
times tA. The process, compared with the actual behavior of
the LC mixture in the experiment, is also shown as a movie in
the Supplemental Material [24].

In the following, we will demonstrate in detail, first, how
periodicity emerges in a system starting from irregular initial
conditions, and second, how the period of the resulting struc-
ture depends on the width of the system.

IV. RESULTS

To observe how a periodic pattern emerges from com-
pletely random initial conditions, at each time step we
compute the distance l between the centers of adjacent do-
mains and its mean value 〈l〉. In Fig. 5 we present the
normalized standard deviation of the distance, δ̃, as a function
of time for p = 0.1 and tA = 10 in the large (blue thick line)
and in the small system (red thin line).

In the large system (here N = 106), initially, at time t = 1,
the standard deviation is large. It results from the geometric
distribution of the initial distances between the domains, δ̃ =√

1 − p. In the first phase, for t ∈ [1, tA], δ̃ decreases sharply.
In the second phase, for t > tA, δ̃ still decreases, but slower,
and goes asymptotically to the finite value δ̃inf . This value
of δ̃inf = 0.34, obtained for the parameters specified above,
allows us to observe quasiperiodic patterns in the automaton.
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FIG. 6. Dependence of the mean period of the formed structure
〈l〉 on (a) the length tA of the first phase of the model, (b) the
diameter d of the capillary in the experiment, and (d) the width
d of the capillary in the model. (c) Relation between tA and the
width d of the capillary found from the simulation of the two-domain
system. The points are averaged over 100 different initial conditions
(random vertical positions of domains). The black line represents the
empirically found best fit function tA = 9 ln(d/10 + 1).

However, in the experiment, depending on the sample we
found even lower values of δ̃, ranging from 0.15 to 0.25.
Assuming that the model correctly describes the phenomenon
occurring in the liquid crystal, we see only two possible ex-
planations for this discrepancy.

The first one is a much smaller size of the experimental
system, allowing us to obtain only a set of over a dozen
distances between domains. This significantly reduces stan-
dard deviation. In Fig. 5 for comparison purposes we present
also the results obtained for a small system size of N = 400
(red line is an average over an ensemble of 100 different
realizations). In this case, δ̃inf = 0.22 is in agreement with
actual observations. The second possible explanation comes
from the observation that, in the capillary, small domains
may disappear due to thermal fluctuations, making the set of
interdomain distances more uniform (see the two red arrows
in the movie in Supplementary Material). Unfortunately, this
effect cannot be achieved with deterministic CA.

In the experiment, it was observed [17] that the period of
the obtained structure depends almost linearly on the capillary
diameter (see, e.g., Fig. 6(b) or more detailed Fig. 10 in [17]).
In order to simulate this phenomenon in our CA model we
note that the wider diameter of the capillary corresponds to
the longer time tA of the first phase. This is simply because in
the larger capillary the growing isotropic domain needs more
time to reach the medium boundary.

In Fig. 6(a) we show the dependence of the mean period
〈l〉 of the periodic pattern on the length tA of the first phase
of the model. It seems that the growth of 〈l〉 is not linear
but clearly exponential (note the log-linear scale of the plot).
This result, however, cannot be directly compared with the
behavior observed in the experiment [Fig. 6(b)], because we
do not know how the time tA relates to the width of the
capillary d (except that the relation should be increasing).

FIG. 7. (a) Schematic illustration of the two just created isotropic
domains separated horizontally by distance l . (b) An example of a
situation where two merging domains separate the two sides of a
capillary.

To find this relationship, we performed a simple simula-
tion of two growing circular domains in a d-wide capillary
(the Mathematica code of the simulation is included in the
Supplemental Material [24]). The centers of the domains are
horizontally distant by l = 1

p , while their vertical position is
completely random. This situation is schematically illustrated
in Fig. 7(a). In a simulated process, we measure the time tA
(averaged over different initial conditions) it takes for growing
domains to contact both capillary boundaries as a function of
d . When the capillary is thin, the domains cannot touch each
other before the end of the process. However, in the case of a
thick capillary, it is possible for the domains to join during
growth and separate the two sides of the capillary earlier
than if they were two noninteracting domains [see Fig. 7(b)].
The results of the simulation presented in Fig. 6(c) show
that the relation between tA and d is sublinear. The empirical
logarithmic curve shown there can be used as a guideline.
Having this relationship in mind, we can present in Fig. 6(d)
the dependence of the mean period 〈l〉 on the capillary width
d . The obtained dependence is linear, in a great analogy to the
experimental data [Fig. 6(b)].

V. CONCLUSIONS

A successful model should be as simple as it can be, easy
to use, and at the same time detailed enough to provide a good
description of the relevant physical situation. In this paper, we
believe we present such a model. It is based on the simplest,
elementary cellular automaton which realistically resembles
a composite material consisting of gold nanoparticles and a
nematic liquid crystal matrix that has the ability to self-create
a periodic structure in the form of a one-dimensional photonic
lattice through a phase separation process occurring in a con-
fined space. We expect that the simplicity of this model will,
in the future, facilitate analytical description of the observed
process.
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