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Paradoxes for chromonic liquid crystal droplets
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Chromonic liquid crystals constitute a novel lyotropic phase, whose elastic properties have so far been
modeled within the classical Oseen-Frank theory, provided that the twist constant is assumed to be considerably
smaller than the saddle-splay constant, in violation of one Ericksen inequality. This paper shows that paradoxical
consequences follow from such a violation for droplets of these materials surrounded by an isotropic fluid. For
example, tactoids with a degenerate planar anchoring simply disintegrate indefinitely in myriads of smaller ones.

DOI: 10.1103/PhysRevE.106.044703

I. INTRODUCTION

Chromonic liquid crystals (CLCs) are lyotropic materials,
which include Sunset Yellow (SSY), a popular dye in food
industry, and disodium cromoglycate (DSCG), an antiasth-
matic drug. In these materials, molecules stuck themselves
in columns, which in aqueous solutions develop a nematic
orientational order, described by a unit vector field n, called
the director, representing the average direction in space of the
constituting supra-molecular aggregates. A number of reviews
have already appeared in the literature [1–5], to which we
refer the reader.

Experiments have been performed with these materials in
capillary tubes, with either circular [6,7] or rectangular [8]
cross-sections, as well as on cylindrical shells [9], all enforc-
ing degenerate planar anchoring, which allows constituting
columns to glide freely on the anchoring surface, provided
they remain tangent to it. These experiments revealed a ten-
dency of CLCs to acquire in cylinders a twisted configuration
at equilibrium, which is represented by an escaped twist (ET)
director field.

Despite the lack of uniformity in the ground state of
these phases [10], they have been modeled by the classical
Oseen-Frank theory of nematic liquid crystals, albeit with an
anomalously small twist constant K22. To accommodate the
experimental findings and justify the twisted ground state, this
constant has to be smaller than the saddle-splay constant K24,
in violation of one of the inequalities Ericksen [11] had put
forward to guarantee that the Oseen-Frank free-energy density
be bounded below.

Actually, as shown in Ref. [12], such a violation does not
prevent the twisted ground state from being locally stable in
a cylinder enforcing degenerate planar anchoring. The same
reassuring conclusion was reached in Ref. [13]. But the ques-
tion remained as to whether different boundary conditions,
still physically significant, could unleash the unboundedness
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of the total free energy potentially related to the violation of
one Ericksen inequality (see also Ref. [13] in this connection).

In this paper, we answer this question for the positive. If
K22 < K24, a CLC droplet, tactoidal1 in shape and surrounded
by an isotropic fluid environment enforcing degenerate planar
anchoring for the director, is predicted to be unstable against
shape change: it would split indefinitely in smaller tactoids
while the total free energy plummets to negative infinity.

This prediction is in sharp contrast with the wealth of
experimental observations of CLC tactoidal droplets, stable
in the biphasic region of phase space, where nematic and
isotropic phases coexist in equilibrium. Experiments have
been carried out with a number of substances (including
DSCG and SSY) stabilized by the addition of neutral (achi-
ral) condensing agents (such as PEG and Spm) [14–18].
These studies have consistently reported stable twisted bipo-
lar tactoids. Here is our conundrum: if we adopt the
Oseen-Frank theory to describe CLCs, then we need to as-
sume that K24 > K22 to explain the twisted nematic textures
observed in cylindrical capillaries, but we also need to assume
that K24 < K22 to justify the very existence of the twisted
tactoids observed in the biphasic coexistence region.

A similar paradoxical behavior is expected if the splay
constant K11 is anomalously small. If K11 < K24, in violation
of another Ericksen inequality, a spherical CLC droplet sur-
rounded by a fluid environment enforcing homeotropic2 an-
choring would split indefinitely in smaller spherical droplets,
while the total free energy diverges to negative infinity.

The paper is organized as follows. In Sec. II we recall
a modicum of the classical Oseen-Frank theory for nematic
liquid crystals, including all Ericksen inequalities. In Sec. III,
we set the scene for the free-boundary problem that need be
solved to identify the sequences of shapes that fragment a par-
ent drop proving it unstable. Sections IV and V are devoted to
the explicit construction of such sequences for cases in which
one or the other of two Ericksen inequalities are violated. In

1Tactoids are elongated, cylindrically symmetric shapes with
pointed ends as poles.

2That is, with n along the outer unit normal.
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Sec. VI, we draw the conclusions of this work, casting doubts
on the applicability of the Oseen-Frank theory to describe the
elasticity of CLCs. This is our attitude to account for the body
of experimental evidence observed in both capillary tubes
and twisted tactoids, as within the Oseen-Frank framework
the former would justify violating some Ericksen inequalities,
whereas the latter would require them to be valid. The paper is
closed by five Appendices, where a number of mathematical
proofs are relegated to ease reading the main text.

II. CLASSICAL ELASTIC THEORY

The classical elastic theory of liquid crystals goes back to
the pioneering works of Oseen [19] and Frank [20].3 This
theory is variational in nature, as it is based on a bulk free-
energy functional Fb written in the form

Fb[n] :=
∫

B
WOF(n,∇n)dV, (1)

where B is a region in space occupied by the material and V is
the volume measure. In Eq. (1), WOF measures the distortional
cost produced by a deviation from a uniform director field n.
It is chosen to be the most general frame-indifferent,4 even
function quadratic in ∇n,

WOF(n,∇n) := 1
2 K11(div n)2 + 1

2 K22(n · curl n)2

+ 1
2 K33|n × curl n|2

+ K24[tr(∇n)2 − (div n)2]. (2)

Here K11, K22, K33, and K24 are elastic constants characteristic
of the material. They are often referred to as the splay, twist,
bend, and saddle-splay constants, respectively, by the features
of the different orientation fields, each with a distortion energy
proportional to a single term in Eq. (2) (see, for example,
Ch. 3 of Ref. [22]).

Recently, Selinger [23] has reinterpreted the classical for-
mula (2) by decomposing the saddle-splay mode into a set of
other independent modes. The starting point of this decom-
position is a novel representation of ∇n (see also Ref. [24]),

∇n = −b ⊗ n + 1
2 T W(n) + 1

2 SP(n) + D, (3)

where b := −(∇n)n = n× curl n is the bend vector, T :=
n · curl n is the twist, S := div n is the splay, W(n) is the
skew-symmetric tensor that has n as axial vector, P(n) :=
I − n ⊗ n is the projection onto the plane orthogonal to n,
and D is a symmetric tensor such that Dn = 0 and tr D = 0.

3Also a paper by Zocher [21], mainly concerned with the effect of
a magnetic field on director distortions, is often mentioned among
the founding contributions. Some go to the extent of also naming
the theory after him. Others, in contrast, name the theory only after
Frank, as they only deem his contribution to be fully aware of the
nature of n as a mesoscopic descriptor of molecular order.

4A function W (n, ∇n) is frame-indifferent if it is invariant
under the action of the orthogonal group O(3), that is, if
W (Qn, Q(∇n)QT ) = W (n, ∇n) for all Q ∈ O(3), where QT de-
notes the transpose of Q.

By its own definition, D �= 0 admits the following biaxial
representation:

D = q(n1 ⊗ n1 − n2 ⊗ n2), (4)

where q > 0 and (n1, n2) is a pair of orthogonal unit vectors
in the plane orthogonal to n, oriented so that n = n1×n2.5

By use of the following identity:

2q2 = tr(∇n)2 + 1
2 T 2 − 1

2 S2, (5)

we can easily give Eq. (2) the equivalent form,

WOF(n,∇n) = 1
2 (K11 − K24)S2 + 1

2 (K22 − K24)T 2

+ 1
2 K33B2 + 2K24q2, (6)

where B2 := b · b. Since (S, T, B, q) are all independent dis-
tortion characteristics, it readily follows from Eq. (6) that WOF

is positive semidefinite whenever

K11 � K24 � 0, (7a)

K22 � K24 � 0, (7b)

K33 � 0, (7c)

which are the celebrated Ericksen’s inequalities [11]. If
these inequalities are satisfied in strict form, the global
ground state of WOF is attained on the uniform director field,
characterized by

S = T = B = q = 0. (8)

As already mentioned in the Introduction, inequality (7b)
must be violated for the ground state of WOF to be different
from Eq. (8), involving a nonvanishing T . We shall see below
how such a choice entails paradoxical consequences.

Liquid crystals are (within good approximation) incom-
pressible fluids. Thus, when the region B is not fixed, as in the
cases considered in this paper, for a given amount of material,
B is subject to the isoperimetric constraint that prescribes its
volume,

V (B) = V0. (9)

When B is surrounded by an isotropic fluid, a surface energy
arises at the free interface ∂B, which, following Ref. [27], we
represent as

Fs[n] :=
∫

∂B
γ [1 + ω(n · ν)2]dA, (10)

where ν is the outer unit normal to ∂B, γ > 0 is the isotropic
surface tension, and ω > −1 is a dimensionless parame-
ter weighting the anisotropic component of surface tension.
For ω > 0, Fs promotes the degenerate planar anchoring,
whereas for ω < 0, it promotes the homeotropic anchoring.
The total free-energy functional will then be written as

F [n] := Fb[n] + Fs[n]. (11)

5It is argued in Ref. [25] that q should be given the name tetrahedral
splay, to which we would actually prefer octupolar splay for the role
played by a cubic (octupolar) potential on the unit sphere [26] in
representing all scalar measures of distortion, but T .
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FIG. 1. The function R(z) represents the boundary ∂B, while
Rρ (z) = ρR(z), for ρ ∈ [0, 1], is the retraction of R(z), representing
a surface on which the polar angle β is constant. The director field is
tangent to the boundary, but free to orient itself in any direction, as
illustrated by the sketch on the side.

III. FREE-BOUNDARY PROBLEM

A drop comprising a given quantity of CLC is free to
adjust its shape B when surrounded by an isotropic envi-
ronment, subject only to Eq. (9). In particular, we assume
that B is a region in three-dimensional space rotationally
symmetric about the z-axis of a standard cylindrical frame
(er, eϑ , ez ). As shown in Fig. 1, the boundary ∂B is obtained
by rotating the graph of a smooth function, R = R(z), which
represents the radius of the drop’s cross-section at height z ∈
[−R0, R0]. The function R vanishes at z = ±R0, where the
drop has its poles. As in Ref. [28] [see, for example, Eqs. (19)
and (20)], the volume of B can be expressed in terms of the
function R(z) as

V (B) = π

∫ R0

−R0

R2(z)dz, (12)

and the area of ∂B as

A(∂B) = π

∫ R0

−R0

R(z)
√

1 + R′(z)2dz. (13)

Here and below, a prime ′ will denote differentiation.
The only requirement for the director n at the free surface

of the drop is to fulfill the degenerate planar condition,

n|∂B · ν = 0, (14)

which here, for simplicity, is imposed as a constraint. As
a consequence of Eq. (14), the surface free energy Fs

reduces to

Fs[n] = γ A(∂B). (15)

In the present setting, A(∂B) is given by Eq. (13) and ν is
written as

ν = er − R′ez√
1 + R′2 . (16)

FIG. 2. The director field n is described by the azimuthal angle
α, which the projection of n on the (r, ϑ ) plane makes with er , and
the polar angle β, which n makes with the drop’s symmetry axis ez.

For n to be tangent to ∂B, it should be allowed to flip out
the plane (eϑ , ez ). The class of admissible director fields will
thus be described by

n = cos α sin βer + sin α sin βeϑ + cos βez, (17)

where α ∈ [0, 2π ) is the azimuthal angle and β ∈ [0, π ] is the
polar angle (see Fig. 2). Here, we shall assume that α depends
only on z, α = α(z), while β depends on both r and z, but only
through the ratio

ρ := r

R(z)
∈ [0, 1]. (18)

The rationale behind this choice is to let β be constant on
∂B, where r = R(z) and ρ = 1, and on all surfaces in the
interior of B obtained from ∂B by a linear retraction towards
the symmetry axis z, represented by Rρ (z) := ρR(z) with
0 � ρ < 1 (see Fig. 1). By letting β = β(ρ), we assign a polar
angle to each retracted surface, the value on one surface being
possibly different from the value on other surfaces. Since all
retracted surfaces fill the drop, the director field n is defined
on the whole of B through only two scalar-valued functions
in a single variable, α(z) and β(ρ). The constraint in Eq. (14)
makes these functions not independent, as with the aid of
Eq. (16) we see from Eq. (17) that Eq. (14) is valid only if

cos α(z) = R′(z)

tan β(1)
, (19)

which amounts to the alternative,

α(z) =
{

arccos
[ R′(z)

tan β(1)

]
,

2π − arccos
[ R′(z)

tan β(1)

]
,

(20)

whose meaning will soon become clear. Meanwhile, we note
that a new constraint arises from Eq. (19) for R′, that is,

−| tan β(1)| � R′(z) � | tan β(1)|. (21)
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FIG. 3. A tactoid with a twisted nematic director field repre-
sented as in Eqs. (17) and (20). The (r, z) plane of the drawing
is a symmetry plane of the drop through its axis. A (red) segment
represents n when it lies on the plane of the drawing, while a nail is
used for the projection of n on that plane when the director is askew
with it, the head designating conventionally the end on the same
side as the viewer. Dashed lines are cross-sections of the surfaces
representing retractions of the boundary.

Figure 3 illustrates our construction for a twisted tactoid:
it shows a meridian cross-section of the drop with its family
of retracted surfaces to which n is everywhere tangent. Gener-
ically, the director does not lie on the plane of the drawing
(spanned by er and ez), as indicated by the nail symbols,
whose heads are conventionally above that plane. Neither is
the projection of n on the (r, z) plane tangent everywhere to
the lines representing the retracted boundary for 0 < ρ < 1.
This is confirmed by a careful inspection of Fig. 3, but is
perhaps better revealed by noting that the outer unit normal
νρ to the retracted surface represented by Rρ is

νρ = er − R′
ρ (z)ez√

1 + R′2
ρ

(22)

and that, consequently,

n · νρ = R′(z) cos β(ρ)√
1 + R′2

ρ (z)

[
tan β(ρ)

tan β(1)
− ρ

]
. (23)

In particular, the latter formula shows that the nails depicted
in Fig. 3 are tangent to the cross-sections of the surfaces
retracting the boundary on the symmetry plane z = 0 and,
of course, for ρ = 1 and ρ = 0 [if, by symmetry, we assume
that tan β(0) = 0]. Finally, choosing one instead of the other
alternative in Eq. (20) amounts to swap head and tails in
the nails.

Standard computations (deferred to Appendix A) show
that the distortion characteristics associated with the field in
Eq. (17) are given by

S = 1

R

(
cos α cos ββ ′ + 1

ρ
cos α sin β + ρR′ sin ββ ′

)
, (24a)

T = 1

R

[
sin α

(
β ′ + 1

ρ
cos β sin β

)
− sin2 βα′R

]
, (24b)

B2 = 1

R2

[
β ′2(ρR′ cos β − cos α sin β )2 + sin2 β

(
α′R cos β + 1

ρ
sin α sin β

)]
, (24c)

2q2 = 1

R2

{
β ′2

2
[(cos α cos β + ρR′ sin β )2 + sin2 α] + 1

2ρ2
sin2 β(1 − sin2 α sin2 β )

− 1

ρ
cos β sin ββ ′ + 1

2
(α′R)2 sin4 β + sin α sin2 β(α′R)(β ′ − cos β sin β ) − R′ cos α sin2 ββ ′

}
. (24d)

In particular, Eq. (24b) shows that, for given β, changing the
representation of α in accordance with Eq. (20) only changes
the sign of T , thus indicating that the two alternative represen-
tations of α in Eq. (20) correspond to two director fields with
opposite helicity, that is, winding in opposite senses around
the drop’s axis. Since both representations for α in Eq. (20)
are equivalent, hereafter, for definiteness, we shall choose the
first, with no prejudice for the generality of our development.

We denote by Re the equivalent radius, that is, the radius of
a spherical drop with volume V0, and by 2μ the span (at the
poles) of the drop, scaled to the equivalent diameter 2Re,

μ := R0

Re
> 0. (25)

We also rescale lengths r, z and R(z) to Re, leaving their names
unaltered; with such a renormalization, we further set

U (ξ ) := √
μR[z(ξ )], (26)

where ξ is defined by

ξ := z

μ
∈ [−1, 1]. (27)

With the aid of Eq. (12), the volume constraint (9) then simply
reads as ∫ 1

−1
U (ξ )2dξ = 4

3
. (28)
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For clarity and later use, we record here the form that Eq. (26)
acquires in the original dimensional quantities,

U

(
z

μRe

)
=

√
μ

Re
R(z). (29)

Furthermore, the function U must vanish at the poles,

U (±1) = 0, (30)

and, by Eq. (21), its derivative is subject to the restriction

−μ3/2| tan β(1)| � U ′(ξ ) � μ3/2| tan β(1)|. (31)

For example, for an even, concave function (corresponding
to a convex drop B), it would suffice that constraint (31)
be obeyed for a given μ = μ0 and at ξ = 1, for it to be
valid for all μ > μ0 and for all ξ ∈ [−1, 1]. On the other
hand, smooth shapes are not allowed by Eq. (31), as for them
limξ→±1 U ′(ξ ) = ∓∞. Thus, hereafter we shall only consider
tactoids, like the one represented in Fig. 3, for which U ′ is
everywhere bounded.

By use of Eqs. (19), (20), (24), and both changes of vari-
ables (18) and (27), we give the bulk and surface free energies
the following forms:

Fb[U, β; μ] := Fb[n]

2πK22Re

= 1

μ2

[∫ 1

−1
U ′(ξ )2dξ

]
F1[β]

+ 1

μ2

[∫ 1

−1

U (ξ )2U ′′(ξ )2

μ3 tan2 β(1) − U ′(ξ )2
dξ

]
F2[β]

+ μF3[β] (32a)

and

Fs[U ; μ, υ] := Fs[n]

2πK22Re
= υ

√
μ

∫ 1

−1
U (ξ )

√
1+U ′(ξ )2

μ
dξ,

(32b)

where

υ := γ Re

K22
(33)

is a reduced (dimensionless) volume, and the following nota-
tion has been employed,

F1[β] :=
∫ 1

0

{
1

tan2 β(1)

[
β ′2

2
(k1 cos2 β + k3 sin2 β − 1) + 1

2ρ2
(k1 sin2 β − cos2 β sin2 β + k3 sin4 β ) + (k1 − 1)

ρ
cos β sin ββ ′

]
+ 1

tan β(1)

[
ρ cos β sin ββ ′2(k1 − k3) + sin2 ββ ′(k1 − 1) + 1

ρ
cos β sin3 β(k3 − 1)

]
+

[
ρ2β ′2

2
(k1 sin2 β + k3 cos2 β )

]}
ρdρ, (34a)

F2[β] :=
∫ 1

0

sin2 β

2
(sin2 β + k3 cos2 β )ρdρ, (34b)

F3[β] :=
∫ 1

0

[
β ′2

2
+ 1

2ρ2
cos2 β sin2 β + k3

2ρ2
sin4 β

]
ρdρ + (1 − 2k24)

2
sin2 β(1), (34c)

which feature the scaled elastic constants defined as

k1 := K11

K22
, k3 := K33

K22
, k24 := K24

K22
. (35)

The functionals in Eq. (34) depend only on the polar angle
β = β(ρ). For both F1 and F3 to be finite, β must satisfy the
condition

sin β(0) = 0, (36)

which entails that n is parallel to ez along the drop’s axis. As
shown in Appendix A, the dependence of Fb on α is hidden in
U ′(ξ ) and tan β(1) through the relation (19) rewritten in the
new coordinate ξ in Eq. (27) as

cos α[z(ξ )] = U ′(ξ )

μ3/2 tan β(1)
. (37)

Finally, the appropriate dimensionless form of the to-
tal free energy F in Eq. (11) is expressed as the sum of

the expressions in Eqs. (32a) and (32b):

F[U, β; μ, υ] := F [n]

2πK22Re
= Fb[U, β; μ] + Fs[U ; μ, υ],

(38)

where the role of parameters μ and υ is distinguished from
that of functions U and β for later convenience. In the fol-
lowing sections, we shall make use of this expression for F
to show that for either K22 < K24 or K11 < K24 there are se-
quences of droplets, which the drop B can disintegrate in, so
that the total volume V0 is preserved, but the total free energy
plummets to −∞. These sequences will provide ground for
paradoxes.

IV. VIOLATING K22 � K24

Here, we construct a family of droplets and associated
director fields within a class of distortions with cylindrical
symmetry, where the total free energy F in Eq. (38) does not
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attain a minimum whenever K24 > K22. We find it convenient
to split our discussion into two cases: one where the domain
B can be unbounded and the other where the domain B is
constrained to be bounded.

A. Unconfined drops

Functional F3[β] in Eq. (34c) is nothing but the dimen-
sionless form taken by the Oseen-Frank elastic free energy in
a cylinder subject to degenerate planar boundary conditions

[12,29]. Whenever k24 > 1, the minimizer of F3 is the escaped
twist (ET) field represented by the function

βET(ρ) := arctan

(
2
√

k24(k24 − 1)ρ√
k3[k24 − (k24 − 1)ρ2]

)
, (39)

This field together with its chiral variant, represented by the
function β̂ET(ρ) := π − βET(ρ), describe the director twist
within a CLC tactoid (see Fig. 3). They give F3 one and the
same value [12],

F3[βET] = F3[̂βET] =
⎧⎨⎩1 − k24 + 1

2
k3√
1−k3

arctanh
( 2

√
1−k3(k24−1)

k3+2(k24−1)

)
, k3 � 1,

1 − k24 + 1
2

k3√
k3−1

arctan
( 2

√
k3−1(k24−1)

k3+2(k24−1)

)
, k3 � 1.

(40)

It should be noted that F3[βET] < 0 and, by Eq. (32), its contribution to the total free energy F of the drop in Eq. (38) scales
like the dominant power in μ as μ → ∞. This suggests a path capable of driving F to −∞ along a sequence of needle-shaped
twisted tactoids, whose polar span grows indefinitely, while the drop’s volume is preserved. For this argument to be conclusive,
we need to prove that the contributions to F other than μF3, which are all positive, are unable to counterbalance the divergence
of this latter.

To this end, we take U to be a smooth, positive function in the interval [−1, 1], which obeys Eqs. (30) and (31). Since U
is independent of μ, Eq. (31) is asymptotically satisfied for μ → ∞, provided that U ′ is bounded and the integrals in Eq. (32)
converge. We can now estimate F[U, β; μ] for any given U in the above admissible class and β = βET as μ → ∞. The leading
orders in μ are given by

F[U, βET; μ, υ] = μF3[βET] + υ
√

μ

∫ 1

−1
U (ξ )dξ + O

(
υ√
μ

)
� μF3[βET] +

√
8

3
υ
√

μ + O
(

υ√
μ

)
, (41)

where the inequality follows from Hölder’s inequality and
Eq. (28).6 Thus, for any admissible function U = U (ξ ), in
the limit as μ → ∞ the total free energy of a CLC droplet
is shown to be unbounded below whenever k24 > 1.

Restoring physical units with the aid of Eqs. (38), (33), and
(25), to leading orders we can rewrite Eq. (41) as

F [n] � 2π

(
K22R0F3[βET] +

√
8

3
γ R3/2

e R1/2
0

)
, (42)

which diverges to negative infinity as the span 2R0 of the
tactoid increases indefinitely.

Clearly, this disconcerting result revolves about F3[βET]
being negative; one could wonder whether adding a constant
to the elastic free-energy density WOF would render F3[βET]
positive. It is shown in Appendix B that such a simplistic
remedy is indeed illusory.

In our development, βET in Eq. (39) plays the role of a test
function capable of representing the twisted nematic texture
inside a tactoid. We have chosen it as the minimizer of the
functional F3 in Eq. (34c), but any test function that makes
F3 negative for all k24 > 1 would serve precisely the same
purpose. In Appendix C, we show an alternative choice, which
has the advantage of giving F3 a form simpler than Eq. (40).

Here, we have proved that for k24 > 1 the Oseen-Frank
elastic free energy is responsible for the divergence to −∞

6The classical form of Hölder’s inequality estimates the integral of
|gf |, where f and g are functions defined in a real interval (see, for
example, Ref. [30, p. 213]); here it has been applied with f ≡ 1 and
g = U .

FIG. 4. Sequence of tactoidal drops with fixed volume V0 and
increasing values of μ, the distance between poles scaled to the
diameter of the sphere with equal volume. For k24 > 1, the total free
energy diverges to −∞.

of the total free energy of a CLC droplet surrounded by an
isotropic fluid enforcing degenerate planar anchoring on the
droplet’s free boundary. Our proof is based on the construction
of a family of filamentous twisted tactoids with a shape chosen
arbitrarily within a wide admissible class (see Fig. 4). For
definiteness, in Appendix D, we illustrate the details of this
construction for a specific drop’s profile.

B. Confined drops

An objection could be moved against the disruptive ar-
gument presented above: in real life, CLC drops cannot be
surrounded by an arbitrarily large amount of fluid, so the
minimizing sequence shown in Fig. 4 would come to a halt
as soon as the drop stretches through the largest available

044703-6



PARADOXES FOR CHROMONIC LIQUID CRYSTAL … PHYSICAL REVIEW E 106, 044703 (2022)

FIG. 5. Splitting procedure described in the text: each droplet
splits in halves at every step, thus preserving the total volume. All
drops have one and the same polar span 2L.

length, and no paradox would stand, as the total free energy is
finite. Such a pervasive behavior of CLC drops would be too
striking to go unnoticed, but, to the best of our knowledge,
it has never been observed. There are, however, also strong
theoretical reasons to rebut this objection. They are given here.

We study the same problem as in Sec. IV A, but confining
drops between two parallel plates, 2L apart, and assuming that
2L is the maximum polar extension that they have all reached.
We start with a single parent drop of given volume V0 with
twisted director field represented by β = βET and boundary
profile described by a given function U (ξ ) (see Fig. 5). The
value of μ corresponding to this shape is

μ0 := L

Re
, (43)

for which Eq. (38) delivers a finite (dimensionless) total free
energy F0.

We argue that splitting recursively the parent drop in
halves, preserving the total volume, will again drive the total
free energy to negative infinity. We proceed in steps indexed
by the integer n ∈ N. For n = 1, the drop is split in two equal
parts; for n = 2, each half is again split in two; etcetera, as
shown in Fig. 5. The volume of each droplet at step n is
Vn = V0/2n. All droplets have the same polar span 2L, but
since they have different volumes (and so different equivalent
radii), the parameter μ defined by Eq. (25) here depends on n
too. The equivalent radius Rn of droplets at step n is

Rn = 2−n/3Re, (44)

so that

μn := L

Rn
= 2n/3μ0 (45)

and μnRn = μ0Re for all n. Not only μ, but also υ, the reduced
volume defined by Eq. (33), depends on n:

υn = γ Rn

K22
= 2−n/3υ0, (46)

where υ0 is the reduced volume of the parent drop.
It should be noted that the splitting strategy adopted here

affects the droplet’s shape, while leaving the function U un-
changed. Keeping in mind that the equivalent radius at step
n is Rn, we rewrite U as expressed by Eq. (29) in terms of
dimensional R(z),

U

(
z

μnRn

)
=

√
μn

Rn
R(z), (47)

from which, with the aid of Eqs. (43), (44), and (45), it
follows that

R(z) = 2−n/2Re

√
Re

L
U

( z

L

)
for − L � z � L. (48)

Similarly, for the total free energy Fn at step n (scaled to
2πK22Re), we readily obtain the estimate

Fn = Rn

Re
2nF[U, βET; μn, υn] � 2nμ0F3[βET]

+
√

8

3
2n/2υ0

√
μ0 + O(2−n/2), n → ∞. (49)

Since F3[βET] < 0, Eq. (49) implies the divergence of Fn to
negative infinity as the splitting proceeds indefinitely.

This confirms that the total free energy of a CLC drop is
unbounded below also in the confined case. Being, however,
an asymptotic argument, it still leaves room for an objection,
more of a physical than mathematical nature. For the above
splitting strategy to be interpreted as a shape instability for
the parent drop, we should prove that

F1 < F0. (50)

It does not suffice to know that Fn → −∞. Indeed, it is not
difficult to show that for (50) to be valid μ0 must be suffi-
ciently large. However, as proved in Appendix E, if we split
the parent drop in appropriate unequal components, then we
can always guarantee the validity of Eq. (50), thus proving
that the violation of Ericksen’s inequality K22 � K24 makes a
CLC drop unstable against domain splitting.

In the following section, we shall use a similar argument to
show that a spherical drop subject to homeotropic anchoring
on its boundary would disintegrate if Ericksen’s inequality
K11 � K24 is violated.

V. VIOLATING K11 � K24

Here we assume that K11 < K24 and consider a spherical
droplet B0 of volume V0 enforcing homeotropic anchoring
for the director n on its boundary,

n|∂B0 · ν = 1, (51)

where ν is the outer unit normal to ∂B0. The radial
hedgehog nH = er , that is, the director field everywhere di-
rected like the unit vector field er emanating from the center
of B0, is a universal solution [31]. It satisfies the equilibrium
equations associated with any frame-indifferent free-energy
density W (n,∇n).7 Moreover, nH clearly obeys Eq. (51).
With the aid of Eqs. (1) and (10), the total free-energy func-
tional F in Eq. (11) is readily computed for nH; its scaled
value is

F∗ := F [nH]

4πK11Re
= 1 − k∗

24 + υ∗(1 + ω), (52)

7Since the Oseen-Frank energy density WOF in Eq. (2) is frame-
indifferent, nH is an equilibrium solution for F , for any choice of
the elastic constants.

044703-7



SILVIA PAPARINI AND EPIFANIO G. VIRGA PHYSICAL REVIEW E 106, 044703 (2022)

where, in analogy with Eqs. (35) and (33), we have set

k∗
24 := K24

K11
> 1 and υ∗ := γ Re

K11
. (53)

We now proceed as in Sec. IV B, splitting the drop into 2n

equal spherical components, each of radius Rn as in Eq. (44).
The formula for the total free energy F∗

n (scaled to 4πK11Re)
that mimics Eq. (49) is here

F∗
n = 22n/3[(1 − k∗

24) + 2−n/3υ∗(1 + ω)]

= 22n/3(1 − k∗
24) + O(2n/3) → −∞, n → ∞, (54)

which proves the asymptotic instability of the parent spherical
drop when the Ericksen inequality K11 � K24 is violated.

As already remarked in Sec. IV B, this reasoning does not
guarantee that the parent spherical drop splits spontaneously
in halves. For this to be the case, it must be F∗

1 < F∗
0, which

requires that

υ∗ <
(k∗

24 − 1)

(1 + ω)

(22/3 − 1)

(21/3 − 1)
, (55)

thus setting an effective upper bound on the drop’s initial
volume.

A drop is however unstable also when Eq. (55) is not
satisfied. To see this, for given 0 < λ < 1

2 , we split the parent
drop into two unequal spherical components, with volumes V1

and V2 adding up to V0,

V1 = λV0, V2 = (1 − λ)V0 (56)

and corresponding radii

R1 = λ1/3Re, R2 = (1 − λ)1/3Re. (57)

The total free energy F∗
λ (again scaled to 4πK11Re) is now

given by

F∗
λ = λ1/3[(1 − k∗

24) + λ1/3υ∗(1 + ω)]

+ (1 − λ)1/3[(1 − k∗
24) + (1 − λ)1/3υ∗(1 + ω)], (58)

and the inequality F∗
λ < F∗

0 is satisfied for

υ∗ <
(k∗

24 − 1)

(1 + ω)

[λ1/3 + (1 − λ)1/3 − 1]

[λ2/3 + (1 − λ)2/3 − 1]
= O(λ−1/3)

→ +∞, λ → 0. (59)

Thus, for every given volume of the drop there is a splitting
fraction λ > 0 corresponding to a net decrease in the total free
energy.

VI. CONCLUSIONS

This paper shows the paradoxical consequences stemming
from adopting the classical Oseen-Frank elastic theory to de-
scibe CLCs when either of the following Ericksen inequalities
is violated,

K22 � K24, (60a)

K11 � K24. (60b)

Violation of the former is at the heart of the commonly
accepted understanding of CLCs, as it substantiates the
experimentally observed ground state of these materials,

which in capillary cylinders with degenerate planar boundary
conditions take one of two symmetric twisted director config-
urations.

As shown in Ref. [12], violation of Eq. (60a) in the pres-
ence of degenerate planar anchoring is not prejudicial to the
stability of the twisted ground state (see also Ref. [13]);
this has perhaps nurtured the hope that Eq. (60a) may be
renounced in the Oseen-Frank theory of CLCs. Our paper
proves that this is not the case, as such a relaxed theory
would entail shape instability of tactoids, an instability which
contradicts a full body of solid experimental evidence, and
which we deem paradoxical.

When Eq. (60b) is violated, a similar shape instability is
predicted, this time for spherical droplets with homeotropic
anchoring. We know about only one material for which both
inequalities in Eq. (60) are allegedly violated. This is SSY,
for which the following values of the elastic constants were
measured in Ref. [32], K11 = 4.3pN, K22 = 0.7pN, and K33 =
6.1pN, and it was found in Ref. [7] that K24 = 15.8pN. These
experimental values were obtained by assuming valid the
Oseen-Frank theory.

We cannot justify within the Oseen-Frank theory both the
observed ground state of CLCs and their ability to form stable
twisted tactoids. We see two ways to avoid this contradiction:
either (i) the common interpretation of the capillary experi-
ments that established the CLC ground state is incorrect, or
(ii) the Oseen-Frank theory is inapt to describe the elasticity
of these materials. Boundary conditions are instrumental to
alternative (i): one might question whether a mild azimuthal
anchoring is at work, which could alter the determination of
K24 so that the Ericksen inequalities are not violated. Here we
trust the detailed experimental analysis of the capillaries’ in-
ner boundary performed in Ref. [7] with the aid of both atomic
force microscopy (AFM) and scanning electron microscopy
(SEM)8; it was concluded that any azimuthal anchoring, if at
all present, must be negligible compared with the saddle-splay
energy, thus fully supporting the hypothesis of a pure degener-
ate planar anchoring. In want of further experimental data, we
are inclined towards alternative (ii): we reckon worth pursuing
a novel elastic theory for CLCs. Some timid proposals have
already been advanced. For example, in Ref. [13] the role of
added disclinations is advocated (provided that their energy
cost can be made sufficiently low), whereas in Ref. [33] a
quartic twist term is added to the Oseen-Frank free-energy
density, which has the potential to restore shape stability when
Eq. (60a) is violated [but Eq. (60b) is not]. We are presently
favoring this line of thought, although we are aware that it
may suffer from the many difficulties encountered by other
higher-order theories.

APPENDIX A: USEFUL COMPUTATIONS

This technical Appendix contains ancillary results
used in Sec. III. For the particular class of distortions

8See also the supplementary information of Ref. [7] and the AFM
measurements of Ref. [6].
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described by Eq. (17) with α a smooth function of z, we compute

∇n = 1

R

{
cos α cos ββ ′er ⊗ er − 1

ρ
sin α sin βer ⊗ eθ − (sin α sin βα′R + ρR′ cos α cos ββ ′)er ⊗ ez

+ sin α cos ββ ′eθ ⊗ er + 1

ρ
cos α sin βeθ ⊗ eθ + (cos α sin βα′R − ρR′ sin α cos ββ ′)eθ ⊗ ez

− sin ββ ′ez ⊗ er + ρR′ sin ββ ′ez ⊗ ez

}
, (A1)

where, as in the main text, a prime denotes differentiation.
The following identities justify the expression for the reduced functionals (32a) and (32b); they are obtained making use

of Eq. (19), ∫ μ

−μ

cos2 αdz = 1

tan2 β(1)

∫ μ

−μ

R′2dz = 1

μ2 tan2 β(1)

∫ 1

−1
U ′2dξ, (A2a)∫ μ

−μ

sin αα′Rdz = − 1

tan β(1)

∫ μ

−μ

R′′Rdz = 1

tan β(1)

∫ μ

−μ

R′2dz = 1

μ2 tan β(1)

∫ 1

−1
U ′2dξ, (A2b)∫ μ

−μ

α′2R2dz =
∫ μ

−μ

R′′2R2

tan β(1)2 − R′2 dz = 1

μ2

∫ 1

−1

U ′′2U 2

μ3 tan β(1)2 − U ′2 dξ . (A2c)

Here ξ is the variable defined in Eq. (27) and an integration by
parts has been performed in Eq. (A2b) with the aid of Eq. (30).

APPENDIX B: USELESS CONSTANT

When k24 > 1, the ET configuration (39) realizes the min-
imum of F3[β], the dimensionless form of the Oseen-Frank
elastic free energy in a cylinder subject to degenerate bound-
ary conditions, and possess less elastic free energy than the
uniform alignment n = ez, described by β ≡ 0, for which F3

vanishes.
We have seen that the divergence to negative infinity of

the functional in Eq. (38) in the sequences of droplets con-
sidered in Sec. V stems from being F3[βET] < 0. One could
wonder whether the Oseen-Frank energy density WOF might
be altered by an additive constant c chosen to make positive
the minimum energy of the ET configuration in a cylinder.
This question is easily answered for the positive, but it turns
out that c depends on the cylinder’s radius R,

c = −2K22

R2
F3[βET], (B1)

and, failing to be intrinsic, it is of no use.

APPENDIX C: ALTERNATIVE TEST FUNCTION

Functional F3[β] in Eq. (34c) could be negative for every
k24 > 1 also when the function β is different from βET in
Eq. (39). Let the function βω be defined as

βω(ρ) := arctan (ωρ). (C1)

Here ω is a parameter to be chosen to minimize F3[βω]. A
simple calculation delivers

F3[βω] = k3

4
ln

(
1 + ω2

) + ω2

4(1 + ω2)
[k3 + 4(k24 − 1)],

(C2)

which is minimized for

ω = ω̄ :=
{ 2

√
k24−1√

k3
, k24 � 1,

0, k24 � 1.
(C3)

Correspondingly, for k24 > 1,

F3[βω̄] = k3

2
arctanh

[
2(k24 − 1)

k3 + 2(k24 − 1)

]
+ 1 − k24 < 0.

(C4)

Clearly, as is not difficult to check directly, F3[βET] <

F3[βω̄].

FIG. 6. Graphs of F in Eq. (38) against 1/μ for U as in Eq. (D1)
and β = βET as in Eq. (39) for k1 = k3 = 10, υ = 10 and a sequence
of values of k24 > 1, precisely, k24 = 1.2, 4., 7.5, 12 (arranged in
increasing order, as indicated by the arrow). Whenever k24 > 1, F is
unbounded below and diverges to −∞ as μ tends to ∞.
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APPENDIX D: SINUSOIDAL PROFILE

We present here an illustrative example, in which the drop’s
profile is described by the following sinusoidal function

U = 2√
3

cos

(
πξ

2

)
, (D1)

which vanishes at the poles, where ξ = ±1, and satisfies
Eq. (28). For U as in Eq. (D1), Eq. (31) is satisfied whenever

μ � 1

31/321/3

[ √
k3√

k24(k24 − 1)

]2/3

. (D2)

The functional F in Eq. (38) has been computed numerically
for U as in Eq. (D1), β = βET, and μ satisfying Eq. (D2).
The outcome is illustrated by the graphs shown in Fig. 6 for
k1 = k3 = 10, υ = 10, and different values of k24 > 1. For
every k24 > 1, in the limit as μ tends to ∞, F does not attain
a minimum and diverges to −∞, as expected.

APPENDIX E: DESTABILIZING SPLITTING

In this Appendix, we reason as in Sec. V to show that when
k24 > 1 a confined droplet can be split into two unequal com-
ponents in such a way that the total free energy is decreased.

Let 0 < λ < 1
2 be given and let the volumes of the split

droplets V1 and V2 be defined as in Eq. (56), for which R1 and
R2 in Eq. (57) play the role of equivalent radii. Correspond-
ingly, there are two parameters defined for each droplet as in
Eq. (43),

μ1 = λ−1/3μ0, μ2 = (1 − λ)−1/3μ0, (E1)

and two dimensionless volumes,

υ1 = λ1/3υ, υ2 = (1 − λ)1/3υ. (E2)

In analogy with Eq. (49), the total free energy Fλ of the
pair of split droplets (scaled to 2πK22Re) is given by

Fλ = λ1/3F[U, βET; μ1, υ1] + (1 − λ1/3)F[U, βET; μ2, υ2],

(E3)

where F is delivered by Eq. (38). To ease our proof, with the
aid of Eqs. (32) and (34), we now rewrite F in Eq. (38) as

F[U, β; μ, υ] = 1
μ2 G1[U ]F1[β] + 1

μ2 G2[U ; μ]F2[β] + μF3[β] + υ
√

μGs[U ; μ], (E4)

where we have set

G1[U ] :=
∫ 1

−1
U ′(ξ )2dξ, G2[U ; μ] :=

∫ 1

−1

U (ξ )2U ′′(ξ )2

μ3 tan2 β(1) − U ′(ξ )2
dξ, Gs[U ; μ] :=

∫ 1

−1
U (ξ )

√
1 + U ′(ξ )2

μ
dξ . (E5)

Since both G2 and Gs are monotonically decreasing in μ and, by Eq. (E1), μi > μ0, for i = 1, 2, we readily see from Eq. (E4)
that

Fλ < 1
μ2

0
G1[U ]F1[βET] + 1

μ2
0
G2[U ; μ0]F[βET] + 2μ0F3[βET] + υ

√
μ0[λ1/2 + (1 − λ)1/2]Gs[U ; μ0]

= F0 + μ0F3[βET] + υ
√

μ0[λ1/2 + (1 − λ)1/2 − 1]Gs[U ; μ0], (E6)

where F0 is the total free energy of the parent drop. The inequality Fλ < F0 is then valid for

υ < −
√

μ0

[λ1/2 + (1 − λ)1/2 − 1]

F3[βET]

Gs[U ; μ0]
= O(λ−1/2) → +∞, λ → 0. (E7)

The divergence of this upper bound for υ as λ tends to 0 guarantees that there is always a λ̄ ∈ (0, 1
2 ] such that for every λ ∈ (0, λ̄)

the inequality (E7) is satisfied for a given υ, and so the parent drop is unstable.
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