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The biaxial phase in nematic liquid crystals has been elusive for several decades after its prediction in the
1970s. A recent experimental breakthrough was achieved by Liu et al. [Proc. Natl. Acad. Sci. USA 113, 10479
(2016)] in a liquid-crystalline medium with magnetic nanoparticles. They exploited the different length scales of
dipolar and magnetonematic interactions to obtain an equilibrium state where the magnetic moments are at an
angle to the nematic director. This tilt introduces a second distinguished direction for orientational ordering
or biaxiality in the two-component system. Using coarse-grained Ginzburg-Landau free-energy models for
the nematic and magnetic fields, we provide a theoretical framework which allows for the manipulation of
morphologies and quantitative estimates of biaxial order.
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I. INTRODUCTION

Liquid-crystal (LC) phases are mesomorphic states be-
tween ordinary liquids and crystals. The constituent molecules
translate freely as in a liquid while exhibiting long-range ori-
entational order. The simplest LCs are nematic liquid crystals
(NLCs), where constituent particles are often rodlike or disk
shaped. The NLC molecules typically orient along a preferred
direction n called the director. They exhibit uniaxial order
if the molecular alignment is only about n. Alternatively,
there can be an additional distinguished (secondary) director
k (perpendicular to n) for orientational ordering. These are
referred to as biaxial nematic liquid crystals (BNLCs), and
were predicted by Freiser in 1970 [1]. BNLCs have been the
subject of much experimental and theoretical research [2–8].
They are believed to offer significantly improved response
times and better viewing characteristics in displays, optical
switching, and optical imaging as compared to their uniaxial
counterparts [7,8].

The working principle behind LC applications is the Fréed-
ericksz transition, where the light transmissibility changes
when the NLC molecules go from an ordered state to a dis-
ordered state [7–10]. In BNLCs, it was predicted that this
transition could occur along more than one direction. How-
ever, the experimental detection of thermotropic BNLCs was
elusive until 2004, when three groups independently demon-
strated the existence of the biaxial phase [11–13]. It was
observed that the Fréedericksz transition about the secondary
director is energetically favorable, yielding light transmission
that can potentially be switched on and off more abruptly
[7–10,14]. These experiments also revealed that the switching
time is at least an order of magnitude faster in BNLCs (∼1
ms) as compared to uniaxial NLCs (∼15 ms) [8,14]. Despite
these major advances on the experimental side, the biaxial
phase remains a challenge because the ordering of molecules

along the secondary director is fragile and easily destroyed
by thermal fluctuations [7,8]. So the quest for a robust biaxial
phase continues.

A breakthrough in this direction is provided by the re-
cent experiments of Liu et al., where they achieved the
elusive biaxial phase by immersing magnetic nanoparticles
(MNPs) in an NLC medium [15]. These fascinating ferrone-
matics (FNs) were first proposed theoretically in 1970 by
Brochard and de Gennes with the purpose of enhancing the
magnetic response in NLCs for magneto-optic effects [16].
Unfortunately, in experimental samples, MNPs flocculated
within tens of minutes due to dipole-dipole interactions [17].
It was only four decades later, in 2013, that Mertelj et al.
designed the first such stable suspension using barium hex-
aferrite magnetic nanoplatelets in pentylcyanobiphenyl (5CB)
LCs [17,18]. They overcame the challenges of flocculation by
cleverly choosing the shape and composition of the MNPs,
and a homeotropic MNP-NLC coupling.

In their experiments with FNs, Liu et al. [15] leveraged
the different length scales of dipolar and magnetonematic
interactions to obtain an equilibrium state where the magnetic
moment of the MNPs is at an angle to the nematic director
n. Such a coupling introduced an additional direction of order
(k) in the perpendicular plane at no additional cost (see the
schematic in Fig. 1). Subsequently, the authors confirmed
the presence of biaxial order from the absorption spectrum
and magnetic hysteresis studies. This development opens up
newer horizons for applications of NLCs, and these require
theoretical guidance. In this paper, we provide the requisite
framework to study biaxial order in FNs. We will demonstrate
how the magnetonematic coupling introduces biaxiality in the
system, even though it is absent in the pure NLCs. We also
provide quantitative evaluations of biaxiality as a function of
the coupling strength, which will be useful for experimental-
ists.
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FIG. 1. Schematic depicting the orientations of nematic (blue)
and magnetic (red) particles for the coupling limit γ < 0.

This paper is organized as follows. In Sec. II, we introduce
the order parameters and coarse-grained free energy for FNs.
In Sec. III, we present results for the ordering kinetics of FNs,
and the development of biaxiality. In Sec. IV, we conclude
with a summary and discussion.

II. COARSE-GRAINED FREE ENERGY
FOR FERRONEMATICS

FNs are described in terms of two order parameters: (i) The
Q tensor, which contains information about the orientational
order of the NLCs, and (ii) the magnetization vector M, which
gives the average orientation of the magnetic moments of the
MNPs. The Q tensor is symmetric and traceless, and is given
by [19]

Qi j = Snin j + T̃ kik j − (S + T̃ )
δi j

3
. (1)

Here, the scalar order parameter S measures the uniaxial
degree of order about the leading eigenvector or the director
n. Further, T̃ is the magnitude of the biaxial order about the
secondary director k. (A system with only uniaxial order has
T̃ = 0. For such a system, the isotropic phase corresponds to
S = 0, and the nematic phase has S �= 0.) Taking into account
the requirements of symmetry and tracelessness, the Q tensor
can be expressed in terms of five independent parameters as
follows:

Q =
⎛
⎝−q1 + q2 q3 q4

q3 −q1 − q2 q5

q4 q5 2q1

⎞
⎠. (2)

To obtain the nematic directors and S, T̃ , we choose a
frame of reference in which Q is diagonal. This provides us
the three eigenvalues (λ3 > λ2 > λ1), and the corresponding
eigenvectors n, k, l. The largest eigenvalue λ3 = S , and the
corresponding eigenvector is the primary direction of order
n [19,20]. We will use a standard measure of biaxial order
about the secondary director k, T = (λ2 − λ1)/λ3 [7,8,20],

which is proportional to T̃ . Naturally, λ1 = λ2 if the system
is uniaxial. The degree of biaxiality can also be defined as
B2 = {1 − 6 Tr(Q3)2/[Tr(Q2)3]} [21,22], where B2 = 0 for
the uniaxial state and B2 = 1 for a state with maximum biax-
iality. This definition of biaxiality also exploits the difference
between two eigenvalues to determine biaxial order, similar
to T .

We use the Landau–de Gennes (LdG) approach to write
down the phenomenological free energy for this composite
system. This is a functional of the order parameter fields Q(r)
and M(r) and has three contributions [23–28]:

G[Q, M] =
∫

dr

{
A

2
Tr(Q2) + C

3
Tr(Q3) + B

4
[Tr(Q2)]2

+ L

2
|∇Q|2 + α

2
|M|2 + β

4
|M|4 + κ

2
|∇M|2

− γμ0

2

3∑
i, j=1

Qi jMiMj

}
. (3)

The first four terms in Eq. (3) represent the Ginzburg-Landau
(GL) free energy for the nematic component with Landau
coefficients A, B, C, L having their usual meaning. The next
three terms correspond to the GL free energy for the mag-
netic component. In the GL framework, the gradient terms
|∇Q|2 and |∇M|2 are essential to capture the effects of elastic
interactions [29–33]. They penalize local variations in the
order parameters—this surface tension results in the motion
of domain boundaries in coarsening kinetics.

The magnitudes of the Landau coefficients determine the
scales of order parameter, length, and time in the system.
For example, A = A0(T − TN ) and α = α0(T − TM ) depend
on the quench temperature T and the critical temperatures
TN , TM . (Here, A0, α0 are material-dependent constants.) A
direct estimate of the coefficients can be obtained from exper-
imentally determined quantities such as the latent heat, order
parameter magnitudes, susceptibilities, etc. [30,33]. However,
the current experimental data on FNs are not adequate to
provide accurate estimates of these coefficients. The utility
of the LdG framework lies primarily in predicting universal
behaviors, e.g., power laws and their exponents, scaling vari-
ables, etc.

The effect of dopant particles in LCs has been modeled in
several previous studies [34–37]. These models describe the
coupling of the dipole moment of ferroelectric particles with
the NLCs at a molecular level. The induced field due to the
impurity atoms acts as an aligning field, and enhances orien-
tational order in the NLCs. On a similar footing, the last term
in Eq. (3) is the phenomenological magnetonematic coupling
defined as a dyadic product of Q and M and the parameter γ is
the strength of the coupling. It is related to the shape and size
of the MNPs and their interaction with the NLCs. This cubic
magnetonematic coupling term [24] enforces the specific ori-
entations of the magnetic and nematic components essential
for the emergence of biaxial order in the system [15,38]. A
more accurate description of the free energy can be obtained
by incorporating dipolar and quadrupolar interactions. This
may be required for studies of phase transitions and critical
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phenomena. As discussed in Ref. [26], these terms may be
ignored for dilute ferronematic suspensions.

In their experiments, Liu et al. demonstrated that biaxial
order emerges only when n and M are tilted at an angle. By
manipulating the surface functionalization, they could achieve
a tilt angle up to 90◦. (Their optical absorbance measurements
to detect the biaxial phase were carried out for a limited range
from 10◦ to 65◦.) Motivated by these experiments, we choose
γ < 0 for simplicity, which corresponds to a tilt angle of 90◦.
In principle, it is possible to modify the coupling term in
Eq. (3) such that n and M are at an arbitrary angle, but this
makes the expression considerably more complicated. The
emergence of biaxiality (or the presence of two distinguished
directions) in the NLCs for nonzero values of γ < 0 can be
understood from the schematic in Fig. 1: Choosing M along
the positive x axis, the LC molecules can align in two orthog-
onal directions, say along the y axis and z axis.

In Ref. [26], the authors studied pattern formation in d = 2
micron-sized ferronematic wells. There, the choice of γ > 0
allowed the creation of domain walls in the magnetization
profile, and stable nematic defects whose location could be
manipulated by the magnetonematic coupling. The present
study is a generalization of this framework to d = 3 to observe
the elusive biaxiality.

A few comments regarding the FN free energy are in order:
(i) The state which minimizes the nematic free energy with
terms up to order [Tr(Q2)]2 is always uniaxial. The inclu-
sion of higher-order terms such as [Tr(Q2)]3 is necessary
for biaxial order in the pure nematic system [39,40]. (ii) Liu
et al. proposed the Frank free-energy approach to model FNs,
which only accounts for the elastic free energy. This simpli-
fied framework could not provide a theoretical understanding
of the observed biaxiality. The LdG free-energy approach is
more generic. It includes the Landau free energy, in addition
to the elastic energies. These additional terms are important
to identify the state that the LCs would prefer to be in, e.g.,
uniaxial, biaxial, or isotropic [19,23]. Further, a quantitative
estimate of the biaxial order T is straightforward from the Q
tensor.

III. ORDERING KINETICS OF FERRONEMATICS

A. Time-dependent Ginzburg-Landau equations

To obtain the free-energy minimum, we study the dissi-
pative dynamics of the FN using the coupled time-dependent
Ginzburg-Landau (TDGL) equations

∂ψ

∂t
= −
ψ

δG[Q, M]

δψ
, (4)

where ψ denotes Q or M. The terms on the right-hand side
of Eq. (4) are the functional derivatives of the free-energy
functional G[Q, M] [31,32,41]. This formulation ensures the
relaxation of the system to a stable fixed point via the process
of domain growth.

A dimensionless form of the TDGL equations can be ob-
tained by introducing the rescaled variables Q = aQ′, M =
bM′, r = ζr′, t = ηt ′. The appropriate values of the scale
factors are a = √|A|/2B, b = √|α|/β, ζ = √

κ/|α|, η =


−1
M

√
2B/A. We drop the primes to obtain the dimensionless

evolution equations:

1




∂q1

∂t
= ξ1

[±3q1 − q23q1 + C̄
(
6q2

1 − 2q2
2 − 2q2

3 + q2
4 + q2

5

)
+ l∇2q1

] + c0
( − M2

1 − M2
2 + 2M2

3

)
, (5)

1




∂q2

∂t
= ξ1

[±q2 − q2q2 + C̄
(
4q1q2 + q2

4 − q2
5

) + l∇2q2
]

+ c0
(
M2

1 − M2
2

)
, (6)

1




∂q3

∂t
= ξ1[±q3 − q2q3 + C̄(−4q1q3 + 2q4q5) + l∇2q3]

+ 2c0M1M2, (7)

1




∂q4

∂t
= ξ1[±q4 − q2q4 + C̄(2q1q4 + 2q2q4 + 2q3q5)

+ l∇2q4] + 2c0M1M3, (8)

1




∂q5

∂t
= ξ1[±q5 − q2q5 + C̄(2q1q5 − 2q2q5 + 2q3q4)

+ l∇2q5] + 2c0M2M3, (9)

∂M1

∂t
= ξ2[±M1 − |M|2M1 + ∇2M1] + c0[(q2 − q1)M1

+ q3M2 + q4M3], (10)

∂M2

∂t
= ξ2[±M2 − |M|2M2 + ∇2M2] + c0[−(q1 + q2)M2

+ q3M1 + q5M3], (11)

∂M3

∂t
= ξ2[±M3 − |M|2M3 + ∇2M3] + c0[2q1M3

+ q4M1 + q5M2]. (12)

Here,

ξ1 = 2Aβ

α

√
A

2B
, ξ2 = α

√
2B

A
, C̄ = C

2
√

2AB
,

l = Lα

2Aκ
, c0 = γμ0

2
, 
 = α
Q

β
M

√
2B

A
,

q2 = 3q2
1 + q2

2 + q2
3 + q2

4 + q2
5. (13)

The ± sign indicates whether the quench temperature is
below (+) or above (−) the critical temperature, say TN and
TM for the components Q and M, respectively. In this paper,
we will study the case with T < TN , TM . Thus, we consider
Eqs. (5)–(12), i.e., both Q and M prefer the ordered state in
the absence of coupling (c0 = 0). The parameters ξ1 and ξ2

depend on the magnitudes of Q and M, l is proportional to
the relative elastic constant, and C̄ determines the order of the
transition. The parameter c0 is the magnetonematic coupling
strength, and 
 determines the relative timescales for Q and
M during the evolution process. Equation (13) provides the
values of these rescaled parameters in terms of the Landau
coefficients, which depend on the material properties and
experimental conditions [30,33]. Notice that different combi-
nations of these coefficients can lead to the same values of the
rescaled parameters. For simplicity, we set 
 = 1, C̄ = 1, and
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FIG. 2. Nematic morphologies for the cases (a) c0 = 0, and
(b) c0 = −5 at t = 50. The regions are colored according to the
direction of n, as shown in the key. The snapshots in (c) c0 = 0, and
(d) c0 = −5 depict the regions corresponding to n ⊥ M and n �⊥ M.

l = 1. Unless specified otherwise, the results are presented for
ξ1 = ξ2 = 1.

We have numerically solved Eqs. (5)–(12) using the Euler
discretization method [42] to determine the evolution of the
nematic and magnetic components. The initial fields Q(r, 0)
and M(r, 0) consisted of small random fluctuations about 0,
corresponding to the high-temperature disordered state for
both fields. The discretization mesh sizes �x = 1 and �t =
10−4 are used in our simulation. Periodic boundary conditions
were employed to simulate the bulk behavior and remove
edge effects. All statistical results presented here are for the
system size N3 (N = 64), averaged over ten independent runs
denoted by 〈· · · 〉. The evolution of Eqs. (5)–(12) provides
{Qi j} and Mi at all lattice points. The Q tensor thus obtained
is symmetric and traceless, but not necessarily diagonal. The
physically relevant quantities n, k, S , and T can be obtained
from Q [refer to the text following Eq. (1)].

Starting with identical random initial conditions, Fig. 2
shows evolution snapshots of the nematic morphology (n) at
t = 50 for c0 = 0 [Fig. 2(a)] and c0 = −5 [Fig. 2(b)]. The
n field has inversion symmetry, so the orientation at each
point on the cubic grid can be represented by one of the four
colors shown in the key. The growth of domains is faster in
the uncoupled system as compared to the FN. Recall that the
magnetonematic coupling parameter γ < 0 coerces n to be
perpendicular to M. The lower panel again shows the n field
at t = 50 for c0 = 0 [Fig. 2(c)], and c0 = −5 [Fig. 2(d)]. In
these subfigures, regions with n ⊥ M are identified as those
where the dot product |n · M| < 0.05. In Fig. 2(c), both n and
M undergo ordering but their relative directions are not con-
strained. On the other hand, in Fig. 2(d) the magnetonematic
coupling enforces n ⊥ M.

B. Emergence of biaxiality

Let us now demonstrate that the Q field in Fig. 2 becomes
biaxial when the coupling is introduced. Uniaxial LCs have
average orientational order along the (primary) director n. Ad-

(a)

(c)

(b)

(d)

c0=0 c0=-5

FIG. 3. Morphologies of the S field for (a) c0 = 0, and (b) c0 =
−5.0 at t = 50. The regions are colored according to the magnitude
of S. The corresponding T field is shown below in (c) c0 = 0, and
(d) c0 = −5.0.

ditional orientational order in the perpendicular plane signifies
the presence of yet another (secondary) director k leading to
biaxiality in the system [19]. In Figs. 3(a) and 3(b), we plot
the order parameter S of the n field at t = 50 for c0 = 0,−5.
The darker regions in the snapshots denote regions with higher
values of S . Clearly, the n field is significantly ordered in
both cases. In Figs. 3(c) and 3(d), we plot the corresponding
order parameter T of the k field (secondary director). In this
case, we see that there is significant order only when the
magnetonematic coupling is turned on.

Next, we estimate the average biaxiality parameter 〈T 〉.
This is obtained by spatially averaging T (r, t ) for each
run, and then averaging over independent runs. Figure 4(a)
shows 〈T 〉 vs t for different values of c0. For the uncoupled
limit c0 = 0, 〈T 〉 � 0 after the initial transients, signifying

FIG. 4. (a) Plot of the average biaxiality parameter, 〈T 〉 vs t ,
for different values of c0. The dashed lines correspond to the fixed-
point values of T for c0 = −5, −10. (b) Plot of saturation value of
biaxiality parameter Ts vs c0. The dashed line denotes the fixed-point
values of T , obtained numerically from the TDGL equations. The
inset shows the behavior for small c0. The solid line denotes the result
in Eq. (26) with C̄ = 1.
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relaxation to the uniaxial state. For c0 < 0, 〈T 〉 grows and
saturates to Ts at late times. (We have checked this for values
starting from c0 = −0.05.) The saturation values are obtained
from the fixed point solutions Q∗ and M∗ of the TDGL
equations. These can be obtained by first setting ∂/∂t = 0
and ∇2 = 0 in Eqs. (5)–(12), and solving the coupled equa-
tions numerically via the Newton-Raphson method [42]. The
relevant equations are

ξ1
[±3q1 − q23q1 + C̄

(
6q2

1 − 2q2
2 − 2q2

3 + q2
4 + q2

5

)]
+ c0

( − M2
1 − M2

2 + 2M2
3

)
= 0, (14)

ξ1
[±q2 − q2q2 + C̄

(
4q1q2 + q2

4 − q2
5

)]
+ c0

(
M2

1 − M2
2

)
= 0, (15)

ξ1[±q3 − q2q3 + C̄(−4q1q3 + 2q4q5)]

+ 2c0M1M2

= 0, (16)

ξ1[±q4 − q2q4 + C̄(2q1q4 + 2q2q4 + 2q3q5)]

+2c0M1M3

= 0, (17)

ξ1[±q5 − q2q5 + C̄(2q1q5 − 2q2q5 + 2q3q4)]

+ 2c0M2M3

= 0, (18)

ξ2[±M1 − |M|2M1] + c0[(q2 − q1)M1

+ q3M2 + q4M3]

= 0, (19)

ξ2[±M2 − |M|2M2] + c0[−(q1 + q2)M2

+ q3M1 + q5M3]

= 0, (20)

ξ2[±M3 − |M|2M3] + c0[2q1M3

+ q4M1 + q5M2]

= 0. (21)

The dashed horizontal lines in Fig. 4(a) denote the fixed-point
values obtained numerically from Eqs. (14)–(21). Next, we
obtain the relation between Ts and the magnetonematic cou-
pling strength. Figure 4(b) shows the variation of Ts vs c0.
Notice that Ts increases for small c0 and then saturates for
larger values of c0.

The small-c0 dependence of T for c0 < 0 can be obtained
analytically using a perturbative approach as follows. Let
Q∗ = Q∗

0 + �Q and M∗ = M∗
0 + �M, where (Q∗

0, M∗
0) are

the fixed points of the uncoupled equations (c0 = 0). Without
loss of generality, we use rotational invariance to make the
choice

Q∗
0 =

⎛
⎝−q∗

1 0 0
0 −q∗

1 0
0 0 2q∗

1

⎞
⎠, M∗

0 = (1, 0, 0), (22)

where

q∗
1 = 2C̄ + √

4C̄2 + 12

6
. (23)

This corresponds to n∗
0 pointing along the z axis, and M∗

0
pointing along the +x axis, i.e., n∗

0 ⊥ M∗
0. Thus, the base

state for our expansion is only valid for c0 < 0. For c0 > 0,
a suitable base state would have n∗

0 ‖ M∗
0. The expressions for

(�Q,�M), correct to O(c0), can be obtained from Eqs. (14)–
(21) with ξ1 = ξ2 = 1:

�Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

− (3 + 2C̄)c0

6C̄q∗
1 (1 + C̄q∗

1 )
0 0

0
(4C̄q∗

1 + 3)c0

6C̄q∗
1 (1 + C̄q∗

1 )
0

0 0 − c0

3(1 + C̄q∗
1 )

⎞
⎟⎟⎟⎟⎟⎟⎠

,

�M =
(

−c0q∗
1

2
, 0, 0

)
. (24)

From the Q tensor, the small-c0 dependence of S and T
can be obtained as

S = (6 + 4C̄2)q∗
1 + 2C̄ − c0

3(1 + C̄q∗
1 )

+ O
(
c2

0

)
, (25)

T = − 3(1 + C̄q∗
1 )c0

C̄q∗
1 (6q∗

1 + 4C̄2q∗
1 + 2C̄)

+ O
(
c2

0

)
. (26)

[We stress that Eqs. (25) and (26) are only valid for c0 < 0
due to our choice of the unperturbed state. For c0 > 0, an ex-
act numerical solution of Eqs. (14)–(21), where we carefully
consider all possible roots, shows that T = 0.] The solid line
in the inset of Fig. 4(b) denotes T vs c0 from Eq. (26) with
C̄ = 1. There is in very good agreement with the numerical
results up to c0 � −4.0.

We also demonstrate that the equilibrium morphologies
for c0 > 0 are uniaxial in nature. In Fig. 5, we show the

044701-5



VATS, PURI, AND BANERJEE PHYSICAL REVIEW E 106, 044701 (2022)

FIG. 5. Plot of average biaxiality parameter, 〈T 〉 vs t , for differ-
ent values of positive c0.

time dependence of the average biaxiality parameter 〈T 〉
for c0 = 2.0, 4.0, 6.0, evaluated from Eqs. (5)–(12). The
dashed line denotes the fixed-point value of T = 0, ob-
tained by a Newton-Raphson solution of Eqs. (14)–(21).
Clearly, 〈T 〉 → 0 at late times, confirming uniaxial order for
c0 > 0.

IV. SUMMARY AND DISCUSSION

To conclude, we have presented a framework that explains
the emergence of biaxiality due to the magnetonematic cou-
pling in nematic liquid crystals with magnetic inclusions or
ferronematics. This topic has generated interest because of
its potential application in the multi-billion-dollar LC display
industry. Further excitement has resulted after the benchmark-
ing experiments of Liu et al. [15], which demonstrated the
emergence of the elusive biaxial order in FNs. Our frame-
work to guide experiments in these unique systems with the
twin properties of magnetism and biaxiality is therefore very
timely. We have used coarse-grained Landau–de Gennes free
energies and a time-dependent Ginzburg-Landau formulation
to explore the free-energy minima of this coupled system.

The different feature is the inclusion of a coupling parameter
c0 < 0 due to which the FN relaxes to a state where n ⊥ M.
This choice is crucial for the emergence of biaxiality in our
study, and is also consistent with the experiments of Liu et al.
[15]. Our formulation provides a quantitative evaluation of
biaxiality and its dependence on the magnetonematic coupling
strength. The latter, in principle, can be manipulated in the
laboratory. We hope that this quantification will enable more
systematic experiments.

In a related context, we also mention the earlier exper-
iments of Mertelj et al. which created the first stable FN
with enhanced magnetic response [18,27,28]. In the Mertelj
experiments, the equilibrium state of the FN had n ‖ M. The
work of Mertelj et al. formed the basis of the experiments
by Liu et al. Our theoretical formulation with c0 > 0 mim-
ics the key results of the experiments of Mertelj et al. This
choice promotes alignment of the nematic and magnetic order
parameters [27,28]. However, we emphasize that this class of
systems shows uniaxial behavior. Therefore, by manipulating
model parameters, our formulation allows for tailoring mor-
phologies as well as biaxiality. FNs are of great fundamental
and technological interest, and much remains to be understood
regarding their equilibrium and nonequilibrium properties.
Our study is a modest step in this direction. We hope that it
will provoke joint experimental and theoretical investigations
in this area.
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