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Emergent synchronization and flocking in purely repulsive self-navigating particles
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Inspired by groups of animals and robots, we study the collective dynamics of large numbers of active
particles, each one trying to get to its own randomly placed target, while avoiding collisions with each other. The
particles we study are repulsive homing active Brownian particles, self-propelled particles whose orientation
relaxes at a finite rate towards an absorbing target in two-dimensional continuous space. For a wide range of
parameters, these particles form synchronized system-wide chiral flocks, in spite of the absence of explicit
alignment interactions. We show that this dramatic behavior obtains for different system sizes and density, that it
is robust against the addition of noise, polydispersity, and bounding walls, and that it can exhibit dynamical
topological defects. We develop an analogy to an off-lattice, ferromagnetic XY model, which allows us to
interpret the different phases, as well as the topological defects.
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I. INTRODUCTION

Synchronized swirling is a spectacular phenomenon seen
in systems of many scales, from molecular filaments [1,2] to
groups of cells [3,4], to macroscopic animals [5–8]. Design-
ing minimal sets of instructions such that groups of artificial
agents, like robotic swarms, can display harmonious motion,
avoiding collisions, without central control or extensive com-
munication is a current challenge in robotics [9,10], and in
particular autonomous transportation [11]. In abstract mod-
els, velocity alignment, or flocking [12–14], occurs at low
densities only when there are explicit synchronizing inter-
actions [4,15–17]. However, recent studies have shown that
chiral self-propelled particles interacting via repulsion only
could feature striking self-organization properties, building
up long-range properties like hyperuniformity [18,19]. In this
paper, we study another example of such self-organization:
we show that a dilute system of self-propelled particles [20]
forms large chiral groups that flock and rotate in synchrony,
despite only interacting through short-ranged repulsion [21],
a phenomenon that is best appreciated by watching videos
in the Supplemental Material (SM) [22]. Moreover, we show
this phenomenon to be robust against a variety of possible
disturbances. This shows that large-scale flocking can be
achieved by unbiased local interparticle interactions alone, an
idea which may find application in robotics.

The system we study consists of many particles, each of
which has a specific randomly placed target towards which
it tends. The flocks which develop are a striking example
of emergent self-organization, and are surprising for sev-
eral reasons. First, it is remarkable that particles manage to
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harmoniously avoid each other and sustain regular trajectories
at finite densities, with interleaved layers of particles remi-
niscent of the low-density Biham-Middleton-Levine (BML)
model [23]; see Fig. 1 and videos in the SM [22]. Second,
they achieve system-wide synchronization, even though the
model contains no explicit aligning interactions, which are
required to observe large flocks in dilute chiral active matter
[15–18,24]. Third, even in the presence of effective alignment,
one usually expects the long-range synchronization of two-
dimensional (2D) driven rotators in 2D space to be precluded
by Mermin-Wagner–type arguments when their interactions
are short ranged and isotropic [25].

II. MODEL

Our model consists of N disks of diameter a, typically
simulated in a two-dimensional (2D) square box with side
length L with periodic boundary conditions, although we will
discuss hard boundaries later. To each particle we associate
a stationary target disk of diameter a. Initially, the positions
{ri(0), rT,i} of particles and targets are distributed randomly
and uniformly in the box, and we give every particle a ran-
dom initial orientation {θi(0)}. Each particle then follows the
overdamped equations of motion

ṙi = v0ê(θi) +
∑
j �=i

F ji +
√

2D0ηi,

θ̇i = ωr (θi,T − θi ) +
√

2Drξi, (1)

where v0 is a self-propulsion speed, ê(θi ) is a unit vector mak-
ing an angle θi with the x axis, θi,T points towards the target
of particle i, and F ji = F0(ri j − a)r̂i j1(ri j < a) is a harmonic
repulsion term. The orientation angles θi relax towards the tar-
gets at a finite rate ωr , and are understood modulo 2π , so that
−π < θi,T − θi < π . This choice of a harmonic relaxation of
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FIG. 1. Chiral synchronization. Two snapshots, separated by a
time �t = 50, of a system of N = 2048 particles at a packing frac-
tion φ = 0.20 and for a relaxation rate �r = 0.02. Each particle is
represented by its instantaneous self-propulsion vector, with color
encoding orientation on a color wheel, shown as an inset.

angles, rather than a sinusoidal one, is motivated by the idea
that robots or animals would likely have a monotonically in-
creasing correction to their heading as it goes off target. ηi and
ξi are two sets of unit-variance, zero-mean white noise that are
delta correlated in time and independent of one another. D0

and Dr are translational and rotational diffusion constants that
can be tuned to adjust the noise levels in both equations. These
equations, together with the rule that whenever a particle and
its target touch, they annihilate and are replaced by a new

pair uniformly drawn in space, define a model we termed
homing active Brownian particles (HABP) [21]. Note that the
coupling between a particle and its target is here considered to
be independent of range, which would be the case of isolated
animals or robots traveling to known destinations.

Employing adimensional time and space units: t → v0t/a
and r → r/a, the system is described by a set of six dimen-
sionless parameters: the number of particles N , the packing
fraction φ = Nπa2/(4L2), the dimensionless hardness of
particles f0 = F0/v0, the Péclet number Pe ≡ v0a/D0, its ro-
tational equivalent Per ≡ v0/(aDr ), and the dimensionless
relaxation rate �r ≡ ωra/v0. In the limit �r → 0, one recov-
ers a model of active Brownian particles (ABPs) [26]. We fix
f0 = 100, ensuring that particles never overlap significantly.
This model was shown to undergo a jamming transition [21]
for φ > φJ ≈ 0.23, but here we focus on the low-density
phases of the model, φ < φJ , where it is always expected to be
a homogeneous fluid, and on relaxation rates �r < �C

r small
enough that the particles do not reach their targets ballistically.

Let us first consider a single particle-target pair. For certain
initial conditions, the equations of motion admit a constant-
speed, circular-orbit solution around the target, with θT − θ =
±π/2, and constant θ̇ . The radius of these orbit solutions
is R0 = 2v0/(πωr ) = 2a/(π�r ), and the sign of the angu-
lar speed defines a chirality for the trajectory. Although this
circular motion is reminiscent of so-called circular swimmers
[15–18,27], there are two crucial differences: (i) in our case,
circular motion is only one possible solution, requiring special
initial conditions (see Appendix E), and (ii) HABPs have no
intrinsic chirality.

III. COLLECTIVE SYNCHRONIZATION

To get a sense of the emergent synchronized states, let us
begin by considering the model at finite relaxation rates with
no noise. First, we determine the chirality χ of each particle
by measuring whether its target lies to its left (χ = +1) or
to its right (χ = −1), when orienting the particle along its
self-propulsion. (For closed orbits, χ = +1 is counterclock-
wise, and χ = −1 is clockwise.) At each point in time, we
split the particles into two chiral groups, with nL having
χ = +1 and nR having χ = −1, and measure the degree
of alignment within each group: σL = n−1

L

∑
ê(θi )δχ,+1 and

σR = n−1
R

∑
ê(θi )δχ,−1. Since opposite-chirality groups can-

not synchronize with each other, we quantify the extent of the
synchronization by the parameter σ ≡ (nL|σL| + nR|σR|)/N .
Low values of σ reflect low synchronization, while a value of
unity indicates that the entire system is synchronized.

In Fig. 2(a), we plot the steady-state value of σ against
�rL, when varying �r at a fixed density φ = 0.2 and for sev-
eral system sizes N . For small �r , σ ≈ 0, with a sudden rise
to σ ≈ 1, indicating global synchronization, at �

sync
r ≈ 1/L.

σ ≈ 1 is maintained for a while as �r increases, eventually
falling to zero again. In this window the system is globally
synchronized.

Some insight into this behavior comes by noting that or-
bits can only be stable in a bounded domain of �r even at
the single-particle scale. On the one hand, since targets are
absorbing, orbits can only persist if R0 > a (or, equivalently,
�ra < 2/π ≈ 0.6). On the other hand, if the particle is placed
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a b

FIG. 2. Synchronization of noiseless HABPs. (a) Synchroniza-
tion amplitude σ against the rescaled relaxation rate �rL at φ = 0.2
at several system sizes, averaged over 10 realizations. (b) 2D map
of the synchronization σ in the �rL, φ plane for N = 2048. Lines
represent 2R0 = L (black) and close packing of orbits φO = π/2

√
3.

The color function used for σ is shown in the color bar.

in an L × L box, orbits must also satisfy R0 � L/2(�r �
4a/πL ≈ 1.3a/L). Therefore, for a given system size, once
can only have σ > 0 in an interval 4a/(πL) � �r � 2/π

whose lower bound decreases as L−1 and whose upper bound
is roughly constant (see Appendix C for raw curves of σ

against �r). In the data, we do observe that the maximally syn-
chronized state is indeed observed at �rL/a ≈ 1 across more
than two orders of magnitude of N [see Fig. 2(a)], while the
synchronization vanishes within an interval �r ∈ [0.2; 0.4]
across the same range of sizes, slightly below the highest
possible upper bound given above but still roughly constant.
This holds at any density below φJ , as shown in Fig. 2(b).
We note that this behavior is very different from that usually
observed when tuning the strength of aligning interactions in
phase oscillators [28]; that is, this model does not trivially
map onto a Kuramoto model with �r playing the role of the
coupling.

At very low densities one could expect a sizable domain of
relaxation rates such that orbits are observed (�r < 2/π ) but
do not interact (�rL � 1), However, we find that synchro-
nization decays far before orbits become trivially decoupled.
This is seen in Fig. 2(b), where we indicate with a red line
the place where the packing fraction of orbits, φO = φ4R2

0/a2,
reaches the close-packing value φcp = π/

√
12 ≈ 0.91. The

decay of synchronization happens at values of φO still large
enough to ensure that the particles will interact, and only far
to the right of this line could one observe absorbing states of
independent orbits such as those described in previous works
on circular swimmers [18].

IV. EFFECT OF NOISE

It is natural to inquire as to the effect of noise terms, as
they are known to strongly affect traffic models like the BML
model [23,29,30]. Having verified (see Appendix E) that a
single isolated orbit survives a finite amount of noise, much
like orbiting trajectories of confined active particles [31], we
show in Fig. 3 that synchronization survives a finite amount
of both translational and rotational noise. For the case of
translational noise, synchronization is destroyed at small �r

when diffusion displaces a particle of one orbit radius in one

(a) (b)

FIG. 3. Effects of noise. (a) Map of σ in the rescaled relaxation
rate �rL, dimensionless noise intensity 1/Pe plane, for φ = 0.2 and
N = 2048 particles. (b) Same map using rotational noise instead
of translational. Vertical lines represent 2R0 = L. Here φ = 0.2 and
N = 2048.

revolution; this happens when D0 � R2
0ωr (or 1/Pe � 1/�r).

In the case of rotational noise, however, a smaller amount will
destroy synchronization at lower relaxation amplitudes; this
time, rotational diffusion needs to be directly compared to the
relaxation rate, so that Dr � ωr (or 1/Per � �r). We also
check (see Appendix D) that synchronization is remarkably
robust against polydispersity in the relaxation rates, which can
be thought of as some quenched behavioral noise.

V. EFFECTIVE MODEL

Having established the domain of existence of synchro-
nization, we now seek to explain and characterize its buildup.
Self-propelled particles usually display velocity alignment
or synchronization because they have explicit aligning in-
teractions [12,14–17]. Exceptions to this rule exist [32], but
typically at very high densities [33–35] or in confined geome-
tries [36,37]. In our model, we observe high polarization of a
continuous vector without any explicit alignment interaction,
at rather low densities, and in full 2D space.

To understand this phenomenon, we first note that particles
in our model are able to sustain stable circular orbits centered
about their targets. Once a particle-target pair reaches an orbit
state, we may see it as analogous to a planar pendulum,
moving in a circular orbit of fixed radius R0 at a constant
angular velocity ±�r . When driven pendula with similar or-
bits collide, they can synchronize provided that they have the
same chirality and a small enough initial phase difference
[38]. However, unless they interact via anisotropic interactions
or at long range, driven phase oscillators are prevented from
developing long-ranged alignment per a mapping [25] onto
Kardar-Parisi-Zhang [39] dynamics, that is effectively equiv-
alent to a Mermin-Wagner [40–42] argument. It is therefore
a priori surprising to observe unit synchronization at wildly
different values of N , as shown in Fig. 2(a).

We can qualitatively describe this behavior with an ef-
fective coarse-grained model. By symmetry, and considering
only the leading orders in both synchronization amplitude and
in the amplitude of spatial fluctuations, one would expect the
dynamics of σ to be captured by an effective coarse-grained
free energy density F that only contains a ϕ4 potential and a
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(a) (b) (c) (d)

FIG. 4. Correlations. (a) Staggered correlation of self-propulsion orientations Cσσ , against the distance r over the orbit radius R0, at different
system sizes, averaged over 10 to 100 realizations. The color code of sizes is shown in (d). They correspond to �rL ≈ 2.2, 4.5, 9.0, 18, 36, and
72, respectively, from mauve to red. Inset: Zoom on the short-time decay, in logarithm scale. Dashed lines show exponential decays with typical
lengths 2R0 and 2.5R0. (b) Transient dynamics of σ starting from a uniform, random initial condition, for N = 32 768, �r = 0.007 (black line)
and best fit to the mean-field prediction (dashed red line). Inset: Steady state σ with rotational (green) or translational (red) noise, against the
effective temperature Pe−1

r or Pe−1, here noted Teff, divided by its estimated critical value, for N = 2048 particles at φ = 0.2, �r = 0.02. The
dashed gray line is the mean-field XY magnetization. (c) Snapshot of a system showing topological defects, at N = 32 768, �r = 0.02. See
full video in the SM [22]. (d) Correlation of chiralities Cχχ against r/R0 at different system sizes, using the same data as in (a).

squared gradient [25,43],

F[σ ] ∼ 1

2τ

(
σ 4

4σ 2∞
− σ 2

2
+ C

2
(∇σ )2

)
, (2)

where τ is a characteristic time, and σ∞ and C are functions
of φ and �r . In this effective theory, one expects (∇σ )2 ∼
σ 2/ξ 2, where ξ is the correlation length of the synchroniza-
tion. Since the interaction range of an orbit is given by its
radius, the correlation length ξ should be proportional to R0.
Thus, when L/R0 ∼ 1, as usual in finite systems smaller than
their correlation length [44,45], the gradient term becomes
negligible and one is just left with a mean-field theory. In other
words, when the relaxation rate of HABPs is tuned, it affects
the amplitude of the gradient term of the theory, sweeping
all regimes from a mean-field theory to an XY model with
short-ranged correlations. Of course, in the limit of small
correlation lengths, Eq. (2) becomes less and less accurate,
as other (more complicated) gradient terms reflecting the full
microscopic couplings between orbits become relevant.

We confirm this picture in Fig. 4. First, we define the
“staggered” correlation function of self-propulsion orienta-
tions within one chiral group,

Cσσ (r)

≡ 1

c0

∑
i �= j[ê(θi ) − σχi ] · [ê(θ j ) − σχ j ]δχi,χ j δ̂(r − ri j )∑

i �= j δχi,χ j δ̂(r − ri j )
,

(3)

where c0 ensures that Cσσ (0) → 1, δχi,χ j is a Kronecker delta
that selects same-chirality particles, σ(χ j ) is the polarization
of the selected chirality, and δ̂(r − ri j ) is a binning function
for the distances. This function is similar in spirit to the
velocity-velocity correlation functions defined in conventional
flocks [46]. This function is plotted in Fig. 4(a) at one relax-
ation rate (�r = 0.1) and density (φ = 0.2) but several system
sizes, against the distance in units of the radius of orbits R0.

In the case N = 128, where the synchronization is very
high, the correlation extends over the whole system, which
mimics the long-range order predicted by mean-field theory.

This mean-field behavior can be checked by looking at the
dynamics of the synchronization starting from random initial
conditions. Indeed, from (2) in the mean-field limit (no gradi-
ents), we expect

σ̇ (t ) = 1

2τ
σ (t )

(
1 − σ 2(t )

σ 2∞

)
(4)

with solution

σ (t ) = σ∞√
1 + 3e(t−t0 )/τ

, (5)

which agrees well with the curves obtained in the high-
synchronization regime; see Fig. 4(b). We also check the
behavior of σ against rotational and translational noise am-
plitudes, each time rescaled by the estimated critical noise
amplitude, choosing a relaxation amplitude such that σ ≈ 1 in
the noiseless case. For both kinds of noise, the curves collapse
and follow the mean-field magnetization of an XY model [43],
confirming that the high-σ regime displays mean-field-like
behavior.

When the system gets larger, Fig. 4(a) shows a decay of
the correlation, which eventually oscillates around zero at
very large distances. This decay occurs in two steps: a first
decay occurs within one orbit diameter, and a second decay
regime is observed beyond 2R0, showing that the scale for the
synchronization decay is several orbit sizes. Both decays scale
exponentially with the distance, with a typical length of a few
orbit diameters.

By analogy with the equilibrium 2D XY model [47–49],
one would expect this exponential decay to be accompanied
by the nucleation of topological defects in the system. Such
defects are indeed found in the regime a � R0 � L, as shown
in the snapshot of Fig. 4(c). Note that these defects are ob-
served at zero noise: varying the relaxation rate brings the
system from a mean-field regime straight to a phase similar
to that of high-temperature XY models with, seemingly, no
critical phase in-between. During the dynamics (see videos in
the SM [22]), the centers of these defects play a special role,
as they are associated with periodic accumulation of particles.
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(a) (b)

FIG. 5. Effect of walls. (a) Synchronization σ against �rL for
a system of N = 2048 particles at φ = 0.2, when bounded by a
hard circular wall with radius L. (b) Snapshot of the system at the
relaxation rate �r = 0.02 (�rL ≈ 1). Each particle is represented
by its instantaneous self-propulsion vector, with color encoding
orientation.

The correlation of chiralities can be studied by defining

Cχχ (r) ≡ 1

cχ,0

∑
i �= j (χi − χ )(χ j − χ )δ̂(r − ri j )∑

i �= j δ̂(r − ri j )
, (6)

where χ is the average chirality in the system. In Fig. 4(d),
we plot this and show that particles with the same chirality
tend to stick together, but typically at a range shorter than 2R0.
This correlation, as seen in snapshots of Fig. 1 and videos of
the dynamics (see SM [22]), is actually also anisotropic, as
particles tend to move in interleaved lanes of same-chirality
particles. These lanes are also responsible for the oscillations
of Cσσ in Fig. 4(a). While laning has been reported in traffic
problems with driven entities heading in opposite [5,50–53] or
perpendicular [23,54] directions, laning of circular trajectories
is highly unusual.

VI. CLOSED BOUNDARY CONDITIONS

Finally, the addition of bounding walls can have dramatic
effects on the buildup of density and velocity correlations
in systems of self-propelled particles [36,55–57]. Therefore,
we briefly check that the synchronization of HABPs survives
when they are placed inside of a simulation box bounded by
a hard, circular wall with radius L. The results are shown in
Fig. 5. In Fig. 5(a), we show the synchronization amplitude σ

against the rescaled relaxation rate �rL for φ = 0.2 and N =
2048. It is essentially the same as in periodic boundary con-
ditions. Figure 5(b) shows a snapshot of a well-synchronized
configuration, which suggests that walls lead to self-sorting
into swirling chiral flocks in lieu of simple laning, a fact that
we also checked in a closed square with hard walls (see videos
in the SM [22]).

VII. CONCLUSIONS

We have studied a minimal model of repulsive homing
particles at low densities. In spite of collisions, these par-
ticles eventually achieve stable circular orbits and manage
to harmoniously avoid each other, even in the presence of
finite noise, polydispersity in behaviors, or bounding walls.
Despite the lack of any explicit aligning interactions, these

orbits synchronize at the scale of their diameter, in a way rem-
iniscent of the collective actuation of particles in active elastic
solids due to rotations around their resting positions [58].
Since particles and targets are coupled in a nonreciprocal way,
this synchronization might be a distant relative of chiral syn-
chronization of nonreciprocal rotators [24]. Such remarkable
self-organization emerging from simple ingredients suggests
that harmonious collective motion is achievable with minimal
communication in real systems of self-navigating agents, like
animals or robots, without resorting to explicit alignment.
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APPENDIX A: CAPTIONS OF THE VIDEOS

We here detail the content of the various ancillary video
files in the SM [22]. All videos are animated at 30 frames per
second, with a time between two frames δt = 0.5a/v0, where
a the repulsive diameter of particles and v0 the self-propulsion
speed.

FullBuildup.mp4. Short-time dynamics of a system of
noiseless homing active Brownian particles, or HABPs, start-
ing from a uniform local density of particles in space, and
a uniform distribution of self-propulsion orientations, until a
synchronized steady state builds up. The number of particles
is N = 128, the overall packing fraction φ = 0.2, and the
dimensionless relaxation rate �r = 0.1. The color of each
particle codes for the phase of the instantaneous orientation
of the self-propulsion (mapped onto a color wheel like in the
main text), which is also represented by a black arrow inside
of each particle.

2k_0p02_highmag.mp4. Steady-state dynamics of a syn-
chronized state of HABPs with a synchronization amplitude
σ ≈ 1. In this simulation, the number of particles is N =
2048, the density φ = 0.2, the noise amplitudes are all set to
zero, and the relaxation rate is �r = 0.02. The color code is
the same as in the previous video. Figure 1 of the main text
was made from snapshots of this video.

2k_0p02_LaneFlock_BackseatView.mp4. Same data as in
the previous video, but this time 3D rendered using a ray-
tracing algorithm. The video follows the perspective of a
tagged particle, shown as a spherical light emitter in the
middle of the frame, traveling its orbit in the midst of other
particles, represented as colored refractive spheres with re-
fraction index n = 1.5. The color code is the same as in the
previous video, and the camera angle is chosen so that its
azimuthal component always matches the 2D orientation of
the self-propulsion of the tagged particle.

32k_0p02_intermediarymag.mp4. Steady-state dynamics
of a synchronized state of HABPs, with an intermediary
synchronization amplitude σ ≈ 0.5. In this simulation, the
number of particles is N = 32 768, the density φ = 0.2, the
noise amplitudes are all set to zero, and the relaxation rate
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is �r = 0.02. The color code is the same as in the previous
video.

32k_0p1_lowmagnetisation.mp4. Steady-state dynamics of
a synchronized state of HABPs, with a low synchronization
amplitude σ ≈ 0.1. In this simulation, the number of particles
is N = 32 768, the density φ = 0.2, the noise amplitudes are
all set to zero, and the relaxation rate is �r = 0.1. The color
code is the same as in the previous video.

2k_bidisperse_onlyone_even.mp4. Steady-state dynamics
of a system of HABPs with bidisperse relaxation rates.
Here, each particle is represented by its instantaneous self-
propulsion polarity, which is colored according to two criteria:
the gray arrows are particles with one of the relaxation rates,
while the colored arrows are the group with the other relax-
ation rate. The precise color then represents the chirality of
each particle: right-goers are green and left-goers are red.
In this simulation, the number of particles is N = 2048, the
density φ = 0.2, the noise amplitudes are all set to zero, and
the relaxation rates are �r,1 = 0.02 for the colored arrows
(very synchronized on large orbits), and �r,2 = 0.01 for gray
arrows (not on orbits).

2k_bidisperse_onlyone_odd.mp4. Same video as above,
but this time coloring the nonsynchronized population: left-
goers are blue and right-goers are orange.

2k_bidisperse_both_even.mp4. Same as
2k_bidisperse_onlyone_even.mp4, but with both families
of particles undergoing synchronized motion, at two different
frequencies. In this simulation, the number of particles is
N = 2048, the density φ = 0.2, the noise amplitudes are
all set to zero, and the relaxation rates are �r,1 = 0.02 for
the colored arrows (very synchronized on large orbits), and
�r,2 = 0.05 for gray arrows (very synchronized on smaller
orbits).

2k_bidisperse_both_odd.mp4. Same video as above, but
this time coloring the small-orbit population: left-goers are
blue and right-goers are orange.

2k_bidisperse_oneabsorbed_even.mp4. Same as
2k_bidisperse_onlyone_even.mp4, but with one fast-relaxing
family of particles that reaches its targets in almost direct
paths. In this simulation, the number of particles is N = 2048,
the density φ = 0.2, the noise amplitudes are all set to zero,
and the relaxation rates are �r,1 = 0.02 for the colored arrows
(very synchronized on large orbits), and �r,2 = 0.2 for gray
arrows (not on orbits).

2k_bidisperse_oneabsorbed_odd.mp4. Same video as
above, but this time coloring the nonsynchronized population:
left-goers are blue and right-goers are orange.

2k_phi0p2_0p02_walledchiralflocks.mp4. Steady-state dy-
namics of a synchronized state of HABPs with a synchro-
nization amplitude σ ≈ 1, placed within a circular hard wall
(black). In this simulation, the number of particles is N =
2048, the density φ = 0.2, the noise amplitudes are all set to
zero, and the relaxation rate is �r = 0.02. Color codes for the
orientation of self-propulsion Fig. 5(b) of the main text was
made from snapshots of this video.

2k_phi0p1_0p015_walledswirlingflocks.mp4. Steady-state
dynamics of a synchronized state of HABPs with a synchro-
nization amplitude σ ≈ 0.8, placed within a circular hard
wall (black). In this simulation, the number of particles is
N = 2048, the density φ = 0.1, the noise amplitudes are all

set to zero, and the relaxation rate is �r = 0.015. The color
code is the same as in the previous video.

2k_phi0p2_re0p02_squarewalls.mp4. Steady-state dynam-
ics of a synchronized state of HABPs with a synchronization
amplitude σ ≈ 0.9, placed within a square-shaped hard wall
(black). In this simulation, the number of particles is N =
2048, the density φ = 0.2, the noise amplitudes are all set to
zero, and the relaxation rate is �r = 0.02. The color code is
the same as in the previous video.

2k_phi0p2_re0p02_InvPe0p2_highmag.mp4. Steady-state
dynamics of a synchronized state of HABPs with a synchro-
nization amplitude σ ≈ 0.8, placed within a square-shaped
periodic box, with nonzero translational noise. In this sim-
ulation, the number of particles is N = 2048, the density
φ = 0.2, the translational noise is switched on at 1/Pe = 0.2,
and the relaxation rate is �r = 0.02. The color code is the
same as in the previous video.

2k_phi0p2_re0p02_InvPe0p0005_highmag.mp4. Steady-
state dynamics of a synchronized state of HABPs with
a synchronization amplitude σ ≈ 0.8, placed within a
square-shaped periodic box, with nonzero rotational noise.
In this simulation, the number of particles is N = 2048,
the density φ = 0.2, the rotational noise is switched on at
1/Per = 0.0005, and the relaxation rate is �r = 0.02. The
color code is the same as in the previous video.

APPENDIX B: NUMERICAL METHODS

All the results presented in the main text are obtained
via molecular dynamics (MD) simulations with the simplest
possible order-1 integrator. Namely, we write the equation of
motion of any Cartesian component of the position of a parti-
cle symbolically as

dx = x(t + dt ) − x(t ) = vdetdt + vstochdt1/2, (B1)

where dt is a fixed time step, vdet is the deterministic part
of the velocity that comes from self-propulsion and interac-
tions with other particles, and vstoch is the stochastic part of
the velocity that appears when we introduce noise. In the
case with noise, the stochastic part of the velocity simply
reads as vstoch = √

2DT ηx, with ηx drawn from a unit-variance
centered normal distribution, and it is zero otherwise. The
computation of the interaction part of vdet is accelerated by
introducing a partition of space into square cells twice as wide
as the longest-range interaction in the system, and labeling at
all times each particle with its cell number. In practice, we set
the time step to, at most, dt = 10−4, or to the largest power
of 10 that ensures that no update dx can be larger than 0.01
in simulation units. This choice ensures that even high noise
amplitudes cannot simply bypass repulsive interactions, e.g.,
jump to the other side of a neighboring particle, due to the
choice of discretization of time. For instance, if

√
2DT = 100,

corresponding in the main text to an inverse Péclet number 50,
we set dt = 10−6.

The initial positions of particles and targets are each drawn
uniformly in a periodic square simulation box with linear
size L, only rejecting pairs such that particles are absorbed at
drawing time. When the relaxation rate of the self-propulsion
orientation towards the target is finite, we also draw the initial
polarity of each particle uniformly on the circle.
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FIG. 6. Raw synchronization against relaxation. Synchronization
amplitude σ against the raw relaxation rate �r at φ = 0.2 at several
system sizes, averaged over 10 realizations.

When hard walls are considered, we reflect any update
leading outside of the box towards the inside of the box.
More concretely, for a particle starting at position r0 and a
proposed move to r0 + δr lying outside the simulation box,
we first move the particle to the point of contact with the wall,
r0 + δrc, then compute the line tangent to both the particle and
the wall at that point, and flip the remainder δrr = δr − δrc of
the proposed displacement perpendicular to that line. In other
words, we operate the replacement

δrr = δr‖
r + δr⊥

r → δrflip
r = δr‖

r − δr⊥
r , (B2)

where the exponents indicate the parallel and orthogonal di-
rections with respect to the wall at contact. We then update the
position to r0 + δrc + δrflip

r . If that last position lies outside of
the box again, which is increasingly unlikely as dt becomes
smaller and as long as the walls are regular enough, we repeat
the reflection steps.

APPENDIX C: SYNCHRONIZATION AMPLITUDE
AGAINST NONRESCALED RELAXATION RATE

In the main text, we show that the onset of the synchroniza-
tion amplitude σ in noiseless HABPs is located at a value of
the relaxation rate �r that scales like L−1, resorting to plots
of σ against �rL. In Fig. 6, we show a raw set of curves of
σ against �r , that was used to plot Fig. 2(a) of the main text.
As expected, the value of �r that corresponds to the onset of
σ on the left-hand side is shifted to lower values as the size of
the system increases, while the decay of σ at high relaxation
rates essentially always happens at the same relaxation rate,
as it is set by the ratio between the size of orbits and that of
targets R0/a = 2/(π�r ), which does not depend on L.

APPENDIX D: SYNCHRONIZATION WITH BIDISPERSE
RELAXATION RATES

In the main text, we mention the resistance of synchro-
nization to mixing different values of the relaxation rate �r .
Here, we present additional data on the synchronization am-
plitude of systems set up as follows. We consider a system
of N = 2048 HABPs, half of which evolve with a relaxation
rate �r,1 = 0.02, which yields a synchronization amplitude
σ ≈ 1 in the monodisperse case, while the other half evolves
with �r,2 that is varied. The two families of particles can
therefore admit stable orbit solutions with different sizes and,
since the self-propulsion speed is fixed, different periods: as a
result, they cannot synchronize with each other. Starting from
uniformly drawn initial positions and orientations, we let the
system evolve following the same dynamics as in the rest of
this work. During these dynamics, we record the synchroniza-
tions σ1,2 of each family. We present the results in Fig. 7. We
show that, regardless of the value of �r,2, σ1 ≈ 1 as in the
monodisperse case. In other words, in spite of the collisions
with a system that has different orbit sizes or, sometimes, does
not even have orbits, the subsystem at �r,1 manages to self-
organize into regular orbits and synchronize. Furthermore, the
synchronization of the second group σ2 also reaches the value
that it is expected to have in the monodisperse case. Videos
in the SM [22] show dynamics in both the (σ1 ≈ 1, σ2 ≈ 0)
and the (σ1 ≈ 1, σ2 ≈ 1) cases. These results show that the
synchronization of HABPs is not a trivial consequence of the
existence of a single orbit size: it is in fact robust to some
degree of polydispersity.

APPENDIX E: SINGLE-PARTICLE DYNAMICS

1. Deterministic case

In the main text, we discuss the nature of the steady state
of N HABPs at a finite density, and describe the occurrence
of large synchronized orbits. These orbits can be observed
because they are in fact steady states of the deterministic
single-particle dynamics. We here briefly discuss these dy-
namics. They are described by the equations of motion of one
particle,

ṙ = v0ê(θ ), (E1)

θ̇ = ωr (θT − θ ), (E2)

and by the condition that a target absorbs the particle when
they are at a distance a. Without any loss of generality, one
can place the target at the origin, so that at all times θT =
atan(−y/x), and rescale time and space units by, respectively,
a/v0 and v0. The only free parameter in the equations of mo-
tion is then the nondimensional relaxation rate �r = ωra/v0,
to which one can associate the radius of the stable circular
orbit allowed by the dynamics R0 = 2a/(π�r ). At any given
value of this parameter, one can test various initial conditions
and record the long-time state of the system.

Using the rotational symmetry of the system, the choice of
initial conditions can be reduced to that of the initial distance
to the origin d0 =

√
x(0)2 + y(0)2 and of the initial orientation

of self-propulsion θ0 = θ (0). Since we enforce absorption by
the target at a distance a, only distances d0 > a should be
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(a) (b) (c) (d)

FIG. 7. Synchronization of bidisperse HABPs. In each panel, we present the synchronization σ1 of the group of particles with �r,1 = 0.02
(blue) and σ2 that of the group of particles with a relaxation rate �r,2 (orange), that is varied across panels. The values of �r,2 across (a)–(d) are,
respectively, 0.01 (no orbits), 0.05, 0.1 (smaller orbits), and 0.2 (no orbits).

considered. Furthermore, by symmetry, θ0 and θ0 + π are
bound to yield the same final state. We therefore only need
to explore the observed states of the particle for d0 ∈]a; ∞]
and θ0 ∈ [0; π ]. Using numerical integration of the dynamics,
we find that only two kinds of trajectories are observed: some
end up in an absorption by the target, while others end up on
stable circular orbits at R0. These domains are mapped out for
a few values of �r , in the [(d0 − a)/R0, θ0] plane Fig. 8. We
show that, for values of �r small enough (�r < 2/pi ≈ 0.6)
that orbits verify R0 > a, there is a finite domain of initial
conditions that leads to stable orbits at long times. This do-
main is finite in both directions: there always exists a d0 large
enough that orbits are never observed regardless of θ0, and
a θ0 small enough that no orbits are observed regardless of
d0. Note that the value of θ0 for which the domain of orbits

FIG. 8. Deterministic single-particle dynamics. We plot (dashed
black lines) the limiting lines between numerical observations of
circular orbits (green domain) and absorption by the target (white
domain) for a few values of �r , in the dimensionless initial distance
to absorption (d0 − a)/R0 initial self-propulsion orientation θ0/π

plane. The two kinds of observed trajectories are shown as insets.
In these insets, we show the initial position of the particle as a
transparent blue disk, its position when it enters the absorbing state
in dark blue, the trajectory between the two as an arrow, and the
position of the target as an orange disk.

is the broadest is θ0 = π/2. As �r increases (R0 → a), the
domain in which stable circular orbits are observed becomes
smaller and smaller, until it essentially contains only the line
(d0 = a, π/2 � θ0 � π ).

The integration was here performed in free space: in the
simulations of the main text there is the additional scale of the
size of the periodic box that plays a role. Essentially, if 2R0 <

L < dmax, meaning that the box can hold a full orbit but that it
is smaller than maximal distance at which orbits are observed,
one can expect stable orbits at all allowed distances, given
the right θ0. This does not, however, guarantee the stability
of orbits in the many-body case.

2. Noisy case

One can also discuss the properties of a single HABP in the
presence of noise terms. In order to do so, let us first write the
full Langevin equations of motion for a single particle tagged
i, with both noise terms enabled,

ṙi = v0êi(θ ) +
√

2DT ηi, (E3)

θ̇i = ωr (θi,T − θi ) +
√

2Drξi, (E4)

where the difference (θi,T − θi ) should always be understood
modulo 2π . Let us then define the probability density of
finding that particle at position r and with orientation θ at time
t ,

pi(r, θ, t ) = δ(ri(t ) − r)δ(θi(t ) − θ ), (E5)

where the probability should here be understood as a probabil-
ity over realizations of the noise, and the probability p to find
any of N independent particles around r, θ at time t , defined
by

p(r, θ, t ) =
N∑

i=1

pi(r, θ, t ). (E6)

The last sum can be understood as a sum over independent
runs with different initial conditions and different noise his-
tories. Consider a microscopic, one-particle observable A that
only depends on the coordinates of the particles. By definition,
its value for particle i can be written as

A(ri, θi ) =
∫

dr dθ pi(r, θ, t )A(r, t ). (E7)
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One can apply the same equality to the observable B = dA/dt , leading to

dA

dt
(ri, θi ) =

∫
dr dθ pi(r, θ, t )

dA

dt
(r, t ). (E8)

Since A is only a function of two random variables that each follow overdamped Langevin equations, its time derivative can be
written following the Itō convention, so that

dA

dt
(ri, θi ) =

∫
dr dθ pi(r, θ, t )

[
ṙi∇rA + θ̇i∂θA + DT ∇2

r A + Dr∂
2
θ A

]
.

(E9)

Using the equations of motion, this equation becomes

dA

dt
(ri, θi ) = ∫

dr dθ pi(r, θ, t )
[
(v0ê(θ ) + √

2DT ηi ) · ∇rA + (ωr (θT,i − θ ) + √
2Drξi )∂θA + DT ∇2

r A + Dr∂
2
θ A

]
.

(E10)

The derivatives can then be passed on to the probability field using integrations by parts, leading to

dA

dt
(ri, θi ) =

∫
dr dθ A(r, θ )

[ − ∇r{(v0ê(θ ) +
√

2DT ηi )pi(r, θ, t )} + DT ∇2
r pi(r, θ, t )

− ∂θ {(ωr (θT,i − θ ) +
√

2Drξi )pi(r, θ, t )} + Dr∂
2
θ pi(r, θ, t )

]
. (E11)

Finally, one can notice that taking the time derivative of Eq. (E7) yields another expression for dA/dt ,

dA

dt
(ri, θi ) =

∫
dr dθ

∂ pi

∂t
(r, θ, t )A(r, θ ). (E12)

Since the equality between the two integrals is verified for any test function A, it implies the equality

∂ pi

∂t
(r, θ, t ) = − ∇r{(v0ê(θ ) +

√
2DT ηi )pi(r, θ, t )} + DT ∇2

r pi(r, θ, t )

− ∂θ {(ωr (θT,i − θ ) +
√

2Drξi)pi(r, θ, t )} + Dr∂
2
θ pi(r, θ, t ). (E13)

We finally sum the equations corresponding to all particles, and use the integral definition of the delta distribution to rewrite the
sum of interaction forces as an integral, leading to

∂ p

∂t
(r, θ, t ) = − ∇r{(v0ê(θ ))p(r, θ, t )} + DT ∇2

r p(r, θ, t ) −
N∑

i=1

∂θ {(ωr (θT,i − θ )

+
√

2Drξi +
√

2DT ηi )pi(r, θ, t )} + Dr∂
2
θ p(r, θ, t ). (E14)

One can show that the noise term can readily be replaced by an equivalent, macroscopic white noise term that does not depend
explicitly on the microscopic degrees of freedom, with the same statistical properties [59], so that

∂ p

∂t
(r, θ, t ) = − ∇r{v0ê(θ )p(r, θ, t )} + DT ∇2

r p(r, θ, t ) +
√

2DT ∇r · [η(r, θ, t )
√

p(r, θ, t )]

−
N∑

i=1

∂θ {(ωr (θT,i − θ )per )pi(r, θ, t )} + Dr∂
2
θ p(r, θ, t ) +

√
2Dr∂θ [ξ (r, θ, t )

√
p(r, θ, t )], (E15)

where, introducing the averaging 〈·〉 over realizations of the noise,

〈ηa(r, θ, t )ηb(r′, θ ′, t ′)〉 = δabδ(r − r′)δ(θ − θ ′)δ(t − t ′), (E16)

〈ξ (r, θ, t )ξ (r′, θ ′, t ′)〉 = δ(r − r′)δ(θ − θ ′)δ(t − t ′). (E17)

If one considers interacting particles, the remaining sum in Eq. (E15) cannot easily be coarse rained into a single macroscopic
field, as each particle is coupled to a single target, not the field of all targets. In the case of independent particles, however,
targets can all be placed at the same position without any loss of generality, and one finally gets the closed-form Fokker-Planck
equation

∂t p(r, θ, t ) = −v0ê(θ )∇r · [p(r, θ, t )] + DT ∇2
r p(r, θ, t ) +

√
2DT ∇r · [η

√
p(r, θ, t )] (E18)

+ωr∂θ [p(r, θ, t )(θ − θT )] + Dr∂
2
θ p(r, θ, t ) +

√
2Dr∂θ

[
ξ
√

p(r, θ, t )
]
. (E19)
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It is then interesting to define some coarse-grained, mean
density and polarization fields,

ρ(r, t ) =
〈∫

dθ p(r, θ, t )

〉
, (E20)

P(r, t ) =
〈∫

dθ p(r, θ, t )ê(θ )

〉
, (E21)

respectively. Integrating Eq. (E19) over angles on the one
hand, and multiplying it by ê(θ ), then integrating on the other
hand, one gets, after averaging over realizations of the noise,

∂tρ = DT ∇2
r ρ − v0∇r · P, (E22)

∂t P = DT ∇2
r P − v0

2
∇rρ − DrP + ωrR, (E23)

with R the field defined by

R(r, t ) =
〈∫

dθ ê(θ )∂θ [p(r, θ, t )(θ − θT )]

〉
, (E24)

which, after an integration by parts, yields

R(r, t ) =
〈∫

dθ ê
(
θ − π

2

)
p(r, θ, t )(θ − θT )

〉
. (E25)

This field encodes the effect on p of the torque caused by the
homing interaction to the target. Assuming that the timescales
for rotational diffusion and advection of the macroscopic
fields are well separated, so that rotational dynamics are faster
than the translational ones (small Per), one can assume that the
second equation is only relevant in steady state, so that

DrP = DT ∇2
r P − v0

2
∇rρ + ωrR. (E26)

Substituting this equation in the first one yields

∂tρ =
(

DT + v2
0

2Dr

)
∇2

r ρ − v0DT

Dr
∇2

r P − v0ωr

Dr
∇r · R.

(E27)

We henceforth assume that the density and polarization fields
are smooth enough in space that the Laplacian of P can be
neglected. In the equation above, one can substitute P using
its steady-state expression to realize that this is tantamount to
neglecting terms of order equal to or higher than ∇3 in the
gradient expansion of ρ. Doing so leads to

∂tρ =
(

DT + v2
0

2Dr

)
∇2

r ρ − v0ωr

Dr
∇r · R. (E28)

Notice that this equation, as expected from the microscopic
dynamics, simply yields diffusion with the effective diffusion
coefficient observed for ABPs [26], Deff = DT + v2

0/(2Dr ), in
the limit of ωr → 0.

In order to understand the effects of being homing com-
pared to simple ABP dynamics, we now focus on the R field.
To make it more tractable, we assume that the probability
distribution function p(r, θ, t ) is factorizable into p(r, θ, t ) =
ρ(r, t )ϒ(θ ), with ϒ a steady-state distribution of polarities.
Since the homing interaction plays the same role as a mag-
netic field h acting on an internal polarity, in analogy with
equilibrium continuous spins [43], we assume that ϒ is a Von
Mises distribution, with a parameter λ to be determined that

plays the role of βh in a spin system at the inverse temperature
β:

ϒ(θ ) ≡ eλ cos(θ−θT )

2π I0(λ)
. (E29)

Under this hypothesis, the integral at hand is

R = ρ

2π I0(λ)

∫ π

−π

dθ eλ cos(θ−θT )(θ − θT )ê
(
θ − π

2

)
.

(E30)

It is convenient to switch to the variable ϑ = θ − θT , which
takes care of the periodicization of the relaxation term, leading
to

R = ρ

2π I0(λ)

∫ π

−π

dϑ eλ cos ϑϑ ê
(
ϑ + θT − π

2

)
. (E31)

One can then rewrite

ê
(
ϑ + θT − π

2

)
= sin(ϑ + θT )êx − cos(ϑ + θT )êy (E32)

= [cos ϑ sin θT + sin ϑ cos θT ]êx

− [cos ϑ cos θT − sin ϑ sin θT ]êy,

(E33)

and notice that, by parity,∫ π

−π

dϑ eωr cos ϑ/Dr ϑ cos ϑ = 0. (E34)

There is only one other integral left to compute,

I ≡
∫ π

−π

dϑ eλ cos ϑϑ sin ϑ. (E35)

An integration by parts yields

I =
[
−ϑ

λ
eλ cos ϑ

]π

−π

+
∫ π

−π

dϑ
eλ cos ϑ

λ
(E36)

= 2π

λ
(I0(λ) − e−λ). (E37)

All in all, one gets an expression for R,

R = ρ

λ

(
1 − e−λ

I0(λ)

)
ê(θT ). (E38)

For convenience, we define the shorthand notation

f (λ) ≡ 1

λ

(
1 − e−λ

I0(λ)

)
, (E39)

as this function depends on the precise choice of the distribu-
tion of angles, whereas the density factor and the vector that
carries R are generic for any distribution that is symmetric
around θT .

The final expression of R can be injected into the equa-
tion on ρ, leading to

∂tρ = Deff∇2
r ρ − v0ωr

Dr
f (λ)∇r · (ρê(θT )). (E40)
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The nabla can then be applied to the product in the usual way,
leading to

∂tρ = Deff∇2
r ρ − v0ωr

Dr
f (λ)[ê(θT ) · ∇rρ + ρ∇r · ê(θT )].

(E41)

Using a chain rule for the last term, this equation can be
rewritten as

∂tρ = Deff∇2
r ρ − v0ωr

Dr
f (λ)

×
[

ê(θT ) · ∇rρ + ρê
(

θT + π

2

)
· ∇rθT

]
. (E42)

One can finally use the expression of the θT field,

θT = arctan
[yT − y

xT − x

]
, (E43)

so that, in particular,

∇rθT = yT − y

‖rT − r‖2 êx − xT − x

‖rT − r‖2 êy, (E44)

cos θT = xT − x

‖rT − r‖ , (E45)

sin θT = yT − y

‖rT − r‖ . (E46)

Using these equations, one notices that

ê
(

θT + π

2

)
· ∇rθT = − 1

‖rT − r‖ , (E47)

ê(θT ) · ∇rρ = xT − x

‖rT − r‖∂xρ + yT − y

‖rT − r‖∂yρ. (E48)

Since we are here studying a single-particle problem, the tar-
get can be placed at the origin, leading to the simpler equation

∂tρ = Deff∇2
r ρ + v0ωr

Dr
f (λ) [ρ + (∇rρ) · r]. (E49)

In order to understand the role of noise on single-particle
trajectories, we simply seek steady-state, radially symmetric
solutions of this equation. In other words, we seek solutions
of the ordinary differential equation (ODE)

d2

dr2
ρ + 1

r

d

dr
ρ + κ

(
d

dr
ρ + ρ

r

)
= 0, (E50)

with the inverse length κ defined through

κ = v0ωr

DrDeff
f (λ), (E51)

and the boundary conditions

ρ(a) = 0, (E52)

ρ(d ) = ρ0. (E53)

The first boundary condition encodes the fact that the target is
an absorbing boundary at a distance a (the targets’ and parti-
cles’ diameters), while the second one encodes the presence
of a source of particles at a constant density at some distance
d , that one can for instance picture as an initial distance from
which particles are initially drawn. This ODE is cast into a

form that can be used as a definition for Ei, the exponen-
tial integral [60], so that the corresponding solutions can be
written as

ρ(r) = 1(r � a)ρ0eκ (a−r) Ei(κd ) − Ei(κr)

Ei(κd ) − Ei(κa)
. (E54)

The choice of ρ0 is then imposed by the condition that this
density should integrate to 1 over the whole annulus, so
that

1

ρ0
= 2π

∫ d

a
dr reκ (a−r) Ei(κd ) − Ei(κr)

Ei(κd ) − Ei(κa)
(E55)

= 2π

κ2

(
eκd ln(d/a) + κ (d − a)

Ei(κd ) − Ei(κa)
− (1 + κd )

)
.

(E56)

Note that these solutions are ill defined in the limit κ → 0, but
that the ODE can easily be solved in the case κ = 0, in which
they yield a logarithmic profile on the annulus, as expected
from simple diffusion.

To use the steady-state solution found above, it is useful
to rewrite the inverse length κ in terms of the dimensionless
quantities introduced in the main text. After some algebra, one
finds

κ = 2

a

Per�r

Per + 2/Pe
f (λ). (E57)

This expression is useful to determine a reasonable depen-
dence of λ on the other parameters. Indeed, we expect to
recover purely diffusive dynamics (κ → 0) in three differ-
ent limits: �r → 0 (no relaxation to the target), �r finite
but Per�r → 0 (relaxation is obscured by rotational noise),
and Pe → 0 (self-propulsion is obscured by translational
noise).

The function f itself is a strictly decreasing function
with limiting values f (0) = 1 and f (λ) → 0 as λ → ∞.
Therefore, when proposing an expression of λ(Pe, Per,�r ),
one should ensure three conditions. First, that λ → 0 as
Pe → 0, so that κ ∝ Pe f (0) → 0 as well. Second, that λ →
∞ as Pe → ∞ and Per → 0, so that κ ∝ f (∞) → 0. Fi-
nally, that κ → 0 for any values of Pe and Per when
�r → 0.

Seeing the dependence on the two Péclet numbers imposed
by these conditions, we propose that λ should be inversely
proportional to the effective diffusion constant Deff, that plays
the role of an effective temperature in terms of alignment to-
wards the target. It should be compared to the effective spatial
diffusion associated to angular relaxation. Within a time 1/ωr ,
a particle moves a distance v0/ωr , so that one can construct
the quantity (v0/ωr )2(v0/a) = v3

0/(aω2
r ), homogeneous to a

diffusion constant, that Deff can be compared to. In short, we
posit that

λ = v3
0

aω2
r Deff

= 2

�2
r (Per + 2/Pe)

. (E58)
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(a) (b)

FIG. 9. Steady-state density profiles. Curves obtained by plotting normalized profiles of Eq. (E54) with κ given by the ansatz of Eq. (E59).
(a) We set Pe = ∞ (no translational noise), a = 1, d = 20 and fix �r = 2a/(πR0) with an orbit radius R0 = 5, then vary the rotational Péclet
Per . The noise amplitude grows from red to mauve. (b) We set Per = 50 and keep the other parameters unchanged.

One can check that this expression satisfies all three condi-
tions above, as the expression of κ then reduces to

κ = 1

a
Per�

3
r

(
1 −

exp
[− 2

�2
r (Per+2/Pe)

]
I0

[
2

�2
r (Per+2/Pe)

]
)

. (E59)

We now check the shape of the density profiles given by
Eq. (E54), with the choice of κ given by Eq. (E59). The results
are shown in Fig. 9. In Fig. 9(a), we set the translational
noise to 0 and vary the rotational Péclet number Per at a
fixed value of the relaxation rate �r . We show our simple
approximation captures the appearance of a local maximum
of the density at the expected orbit radius if the noise am-
plitude is low enough. Beyond a critical value of the noise
(that here depends on the arbitrary value of the outer distance
d), this maximum disappears, and one eventually recovers
the logarithmic density profile associated to pure diffusion.
In Fig. 9(b), we show a similar set of curves obtained when

varying the amplitude of the translational noise at a fixed
value of the rotational noise (the full study above should be
repeated in the case Dr = 0 strictly since that value forbids
the substitution of P into the equation on ρ that we used at the
start).

All in all, this simple approximation suggests that even in
the single-particle regime there is a transition, when tuning
the amplitude of the noises, between trajectories that still orbit
around the target but with a finite width, and trajectories that
reach the target following a diffusive path. This is supported
by the shape of single-particle trajectories, like those shown
in Fig. 10: when one switches on a source of noise, the
orbits simply get wider at first, but then disappear altogether.
Note that this transition is reminiscent of the trajectories of
real-life self-propelled particles in harmonic confinement, that
feature a transition between trajectories that spend a long time
at the bottom of the potential and others in which particles
orbit around the minimum but never visit it [31].

FIG. 10. Noisy single-particle trajectories. All trajectories were obtained for R0 = 5a and starting the particle at (x0 = −d, y0 = 0, θ0 =
π/2) (transparent blue disk) with d = 20a, and a the diameter of the target (orange disk). The dynamics are run either until the particle touches
its target, or until time Tmax = 1000a/v0. The final position of the particle is shown as a dark blue disk. Top line: trajectories with rotational
noise only, with a noise amplitude that grows from left to right (panels were obtained with Per] = 10 000, 1000, 100, 10, and 1). Bottom line:
similar plots obtained with translational noise only (from left to right, Pe = 1000, 100, 10, 5, and 1).
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