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suspensions under shear flow
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We present a theoretical framework to investigate the microscopic structure of concentrated hard-sphere
colloidal suspensions under strong shear flows by fully taking into account the boundary-layer structure of
convective diffusion. We solve the pair Smoluchowski equation with shear separately in the compressing
and extensional sectors of the solid angle, by means of matched asymptotics. A proper, albeit approximate,
treatment of the hydrodynamic interactions in the different sectors allows us to construct a potential of mean
force containing the effect of the flow field on pair correlations. We insert the obtained pair potential in the
Percus-Yevick relation and use the latter as a closure to solve the Ornstein-Zernike integral equation. For a wide
range of either the packing fraction η and the Péclet (Pe) number, we compute the pair correlation function and
extract scaling laws for its value at contact. For all the considered values of Pe, we observe a very good agreement
between theoretical findings and numerical results from the literature, up to rather large values of η. The theory
predicts a consistent enhancement of the structure factor S(k) at k → 0, upon increasing the Pe number. We
argue this behavior may signal the onset of a phase transition from the isotropic phase to a nonuniform one,
induced by the external shear flow.

DOI: 10.1103/PhysRevE.106.044610

I. INTRODUCTION

A long-standing problem in soft condensed matter physics
is to determine the microscopic structure of a colloidal sus-
pension as a function of the control parameters, when the
interaction potential among the particles in the suspension is
known. A possible description for the microscopic structure
is given by the so-called pair correlation function, g(r1, r2).
If N is the number of colloidal particles dispersed in the sus-
pension, g(r1, r2) represents the probability of finding a first
particle in a volume dr centered at r1, and a second particle
in a volume dr centered at r2, irrespective of the position
of the remaining N − 2 particles [1]. Efficient methods to
compute the pair correlation function of a colloidal suspension
at equilibrium are either simulations [2] and integral equa-
tion theories [3]. More challenging, instead, is to compute
g(r1, r2) in a system subjected to an external shear flow, a
problem which has many relevant applications in rheology
[4,5] and the preparation of nanomaterials [6,7]. In the case
of sheared colloidal suspensions, the spatial arrangement of
the colloidal particles results from an intricate interplay of in-
terparticle interactions, Brownian motion, shear-induced flow
field contributions and hydrodynamic interactions [8]. A so-
called Péclet number (Pe) is typically introduced to describe
the relative importance of shear-induced to Brownian effects.
For spherical particles of diameter σ, the Pe number is defined
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as

Pe = 6πη0(σ/2)3γ̇

kBT
, (1)

where η0 is the viscosity of the hosting fluid, γ̇ is the shear
rate, while kB and T are the Boltzmann constant and the ab-
solute temperature, respectively. In suspensions with Pe � 1
(Pe � 1), the flow field (Brownian motion) is the dominant
contribution.

The pair correlation function of a colloidal suspension
under shear flow can be obtained by solving the so-called
pair Smoluchowski equation with shear [9]. Several attempts
to solve the latter equation have been proposed in the past
decades, in the particular case of hard-sphere colloidal sus-
pensions under strong shear flow, i.e., for Pe � 1. Analytical
approaches include the exact solution found by Batchelor and
Green in the Pe → ∞ limit [10], and the work of Brady and
Morris which featured the presence of a boundary layer of
thickness O(Pe−1) [11]. For weak shear flows, i.e., Pe � 1,

it is easier to approach the Smoluchowski equation in the
Fourier rather than in the real space [12–15]. An account of
the shear-induced distortion of the structure factor in colloidal
suspensions can be obtained in this case, a phenomenon which
has been widely investigated also experimentally [16–18].

A new analytical scheme based on intermediate asymp-
totics has been recently introduced to solve the pair Smolu-
chowski equation with shear, separately in the compressing
and the extensional sectors of the solid angle [19]. While
in the compressing sectors the particles are pushed towards
each other by the shear flow, in the extensional sectors the
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particles are pulled away from one another by the shear flow.
The method introduced in Ref. [19] can be applied to systems
displaying different types of interparticle interactions and has
been successfully employed for suspensions of particles inter-
acting through hard-sphere, Lennard-Jones and Yukawa (or
Debye-Hückel) potentials [20]. Furthermore, hydrodynamic
interactions can be included as well, to some extent, in the
above framework.

The pair correlation function obtained by solving the pair
Smoluchowki equation only holds in very dilute conditions,
where the g(r1, r2) function is not affected by the N − 2
particles surrounding the two placed at r1 and r2, respectively.
This limit does not hold when pair correlations are obtained by
numerical simulations, as in Ref. [21].

A theoretical scheme able to compute the pair correlation
function of a sheared colloidal suspension, at concentrated
packing fractions as those considered in simulations, is miss-
ing. To fill this gap, in this paper we combine the analytical
treatment introduced in Ref. [19] with the integral equa-
tion theories of the liquid state [1]. While we introduce a
theoretical method in principle suitable for any pair potential,
we focus on the case of a hard-sphere colloidal suspension.
This allows us to test our theoretical predictions with results
of numerical simulations present in literature. We exploit
the analytical solution obtained by following the method of
Ref. [19] for hard spheres to build a potential of mean force
ueff, containing the effect of the flow field on the microscopic
structure. Crucial to build the potential of mean force is to
include hydrodynamic interactions, and treat them differently
in the compressing and extensional sectors, respectively. We
insert ueff in the Percus-Yevick relation and use the latter as
a closure to solve the Ornstein-Zernike integral equation for
a wide range of either the packing fraction η and the Péclet
number Pe. As it is well-known, the OZ equation expresses
the pair correlation function as a sum of a direct correlation
between two particles, and the indirect correlation propagated
via increasingly larger number of intermediate particles. It is
then suitable to deal with suspensions in the more concen-
trated regime.

We obtain profiles for the correlation function which are in
very good agreement with numerical results from Ref. [21]
up to rather large values of η, independently of the con-
sidered value of Pe. We then extract scaling laws for the
value of the pair correlation function at contact as a func-
tion of the Pe number at fixed η, and as a function of η

at fixed Pe number. In the former case, we obtain a scaling
law in agreement with the simulation study of Ref. [21]. In
the latter case, we obtain a scaling law which may open
the way for a nonequilibrium equation of state of strongly
sheared liquids. Finally we employ our method to investigate
the effect of the shear flow on the structure factor S(k) of
the system. The theory predicts a consistent enhancement of
S(k) at k → 0, upon increasing the Pe number. We argue this
behavior to unveil the onset of a shear-induced transition from
the isotropic to a nonuniform state, of the type discussed by
Brazovskii [22].

The paper is organized as follows. In Sec. II, we introduce
our theoretical scheme. In Sec. III, we present our predictions.
Finally, in Sec. IV, we draw our conclusions.

FIG. 1. Schematic illustration of a hard-sphere colloidal suspen-
sion subjected to a simple shear flow. In the dilute regime, the
probability of finding a target particle at a distance r from a reference
particle is weakly affected by the surrounding particles dispersed in
the suspension. We consider a simple shear flow in the x direction
with its gradient in the y direction such that, in the absence of
hydrodynamic interactions, the fluid flow velocity at point r is given
by κ · r = (γ̇ y, 0, 0), with κ and γ̇ the velocity gradient tensor and
the shear rate, respectively.

II. THEORY

As stated in Introduction, the pair correlation function
g(r1, r2) of a colloidal suspension at equilibrium describes the
probability of finding a first particle in a volume dr centered
at r1, and a second particle in a volume dr centered at r2,

irrespective of the position of the remaining N − 2 particles.
For the sake of convenience, we will refer to the first and
second particles as the reference and the target particles, re-
spectively, throughout the paper. In case the colloidal particles
have an isotropic spherical shape, the pair correlation function
depends only on the relative distance r ≡ r2 − r1 between the
particles, and in the presence of an external shear flow will
also depend on time. As a consequence the pair correlation
function can be indicated by g(r, t ). The situation is shown
in Fig. 1, where a Cartesian reference frame is introduced
with origin at the center of the reference particle, i.e., r1 =
(0, 0, 0).

The temporal evolution of the g(r, t ) function is given by
the pair Smoluchowski equation with shear flow [9,23]

∂g(r, t )

∂t
+ ∇ · [v(r)g(r, t ) − D(r) · ∇g(r, t )]

= −∇ · [D(r) · βF(r)g(r, t )], (2)

where F(r) describes the force acting between the colloidal
particles in the suspension, v(r) is the relative velocity be-
tween the particles and D(r) is the diffusion tensor. As is
clear from Eq. (2), the dynamics of the colloidal suspension is
determined by competing effects of interparticle interaction,
diffusion, and external flow.

We consider the dilute regime where triplet correlations
can be safely neglected [23]. It follows that the F(r) term
appearing in the previous equation describes the force acting
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between our chosen pair of particles due only to the direct
potential interaction u(r), i.e.,

F(r) = −∇u(r), (3)

where r ≡ |r|. Observe that we only consider isotropic pair
potentials that depend on the modulus of the relative distance
r between the particles. When hydrodynamic interactions
between the pair of particles are included in the theoretical
treatment, the diffusion tensor D(r) present in Eq. (2) can be
written as [23]

D(r) = 2D0

[
rr
r2

G(r) +
(

δ − rr
r2

)
H (r)

]
, (4)

where D0 ≡ kBT/(3πη0σ ) is the diffusion coefficient of a sin-
gle spherical particle of diameter σ in a medium of viscosity
η0, rr denotes the dyadic product, δ is the identity matrix,
and G(r) and H (r) are scalar functions containing the details
of the hydrodynamic interactions. Finally, the relative velocity
of the particles is given by [23]

v(r) = κ · r + C(r) : κ̄, (5)

where κ is the velocity gradient tensor, κT its transpose and
κ̄ ≡ (κ + κT )/2. The third-rank tensor C(r) is known as the
hydrodynamic resistance tensor. While κ · r describes the mo-
tion of the fluid suspension because of the applied shear, the
term C(r) : κ̄ describes the disturbance of the affine flow due
to the presence of the particles. The latter term can be written
as

C(r) : κ̄ = −r

[
rr · κ̄ · r

r3
A(r) +

(
δ − rr

r2

)
· κ̄ · r

r
B(r)

]
, (6)

where A(r) and B(r) are to be determined.
Neglection of hydrodynamic interactions in the introduced

theoretical framework can be obtained by imposing G(r) =
H (r) = 1 and A(r) = B(r) = 0 in Eqs. (4) and (6), respec-
tively. In this case the diffusion tensor and the relative velocity
between the particles reduce to D(r) = 2D0δ and v(r) =
κ · r, respectively.

In this paper, we consider suspensions under the action of a
simple shear flow directed along the x axis with gradient along
the y axis, as shown in Fig. 1. Thus, by indicating with γ̇ the
shear rate, the velocity gradient tensor κ reads

κ =
⎛
⎝0 γ̇ 0

0 0 0
0 0 0

⎞
⎠, (7)

from which κ · r = (γ̇ y, 0, 0). Furthermore, throughout the
paper we will only consider steady-state situations where
∂g(r, t )/∂t = 0. As a consequence we will neglect the time
dependence of the pair correlation function and indicate the
latter by “simply” g(r).

Recently, a new scheme to solve analytically the pair
Smoluchowski equation (2) in steady-state was proposed in
Ref. [19]. The method holds for a generic pair potential u(r)
and takes into account the hydrodynamic interactions by con-
sidering approximations for the G(r), H (r), A(r), and B(r)
functions introduced above. The starting point of the new
strategy is to realize that Eq. (2) is a partial differential equa-
tion whose solution is typically challenging even numerically.

To overcome this difficulty, it is then proposed to consider
an angular average of the pair Smoluchowski equation, thus
replacing Eq. (2) with an effective ordinary differential equa-
tion for the orientation averaged pair correlation function,
g(r).

However, as already noticed in Ref. [19], when Eq. (2) is
averaged over the full solid angle � ≡ (θ, φ) with θ ∈ [0, π ]
and φ ∈ [0, 2π ], a vanishing net effect of the shear flow on
the g(r) function results. To solve this problem, the authors
of Ref. [19] observed that a generic shear flow can be divided
into different sectors of the solid angle �, on the basis of the
sign of the radial component of the relative velocity between
the two particles, vr (r).

In the compressing sectors vr (r) < 0 and the particles
are pushed towards each other by the shear flow. By con-
trast, in the extensional sectors vr (r) > 0 and the particles
are pulled away from one another by the shear flow. As
showed in Ref. [19], the compressing sectors are identified by
the angles θc ∈ [0, π ], φc ∈ [π/2, π ] and φc ∈ [3π/2, 2π ],
while the extensional sectors are identified by the angles θe ∈
[0, π ], φe ∈ [0, π/2] and φe ∈ [π, 3π/2]. Two ordinary dif-
ferential equations result from the angular average of Eq. (2)
over the compressing and extensional sectors of �, respec-
tively, which can be solved independently for several values of
the Pe number by means of the so-called intermediate asymp-
totics methodology [24]. Two distinct functions are hence
obtained as output of the analytical treatment: a gc(r) function
describing the average of the pair correlation function g(r)
over the compressing sectors, and a ge(r) function describing
the average of the pair correlation function g(r) over the
extensional sectors. An estimate of the average of the pair
correlation function over the full solid angle � can be finally
obtained by combining the gc(r) and ge(r) functions. To re-
mark that the validity of the obtained pair correlation function
is limited to the very dilute regime η → 0, we indicate it as
g0(r) ≡ g(r, η → 0). We write

g0(r) ≡ gc(r) + ge(r)

2
, (8)

where, as shown in Appendix A, g0(r) corresponds to the
average of the pair correlation function g(r) over the full solid
angle �.

We observe that g0(r) only depends on the modulus of the
distance r between the particles, since the procedure of angu-
lar averaging comes at expense of loosing angular resolution.
The introduced procedure, however, is of remarkable impor-
tance since it considerably simplifies the pair Smoluchowski
equation and allows us to solve it analytically.

As noticed, a vanishing net effect of the shear flow on the
pair distribution function results when Eq. (2) is averaged over
the full solid angle �. As a consequence, in this case, the
solution of the resulting steady-state effective Smoluchowski
equation is a pair correlation function always identical to 1,
independently of the Pe number. In other words, the positions
of the reference and the target particles are always indepen-
dent of each other. This is not the case, however, for the g0(r)
function obtained by combining the gc(r) and ge(r) solutions
as in Eq. (8). As it will be discussed in the next section, this is
due to a proper treatment of hydrodynamic interactions in the
different sectors of the solid angle.
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The purpose of this paper is to extend the range of valid-
ity of the g0(r) function (8) at larger values of the packing
fraction η, for the particular case of a hard-sphere colloidal
suspension under shear flow. In this region of η, the effect on
the pair correlation function of the N − 2 particles surround-
ing the reference and target particles cannot be neglected.
we show that this effect can be taken into account when the
analytical solution of Eq. (2) proposed in Refs. [19] is com-
bined with the well-known integral equation theory of liquids
[1]. To distinguish the pair correlation function holding in this
larger range of the packing fraction from the g0(r) holding
in the very dilute limit, we will indicate the former by g(r)
throughout the paper.

A cornerstone of liquid-state theory is the so-called
Ornstein-Zernike (OZ) integral equation which, for a homo-
geneous and isotropic system, is given by [1]

h(r) = c(r) + ρ

∫
V

dr3 c(|r1 − r3|)h(|r3 − r2|), (9)

where r ≡ |r1 − r2|, h(r) are c(r) are the total and the di-
rect correlation functions, respectively, while ρ is the number
density. The OZ equation expresses the g(r) function as a
sum of the direct correlation function between the reference
and target particles, and the indirect correlation propagated
via increasingly larger number of intermediate particles. It
is then suitable to deal with suspensions in the more con-
centrated regime. To find the g(r), the OZ equation has to
be supplemented by an independent closure relation between
c(r), h(r), and the pair potential u(r). In this paper, we close
the OZ equation with the so-called Percus-Yevick relation [3]

c(r) = g(r) − g(r)eβu(r), (10)

which has been proved to be accurate for hard-sphere systems
[25]. Equations (9) and (10) form a self-closed system which,
for a fixed pair potential u(r), can be solved in order to find
g(r).

However, the dependence on the Pe number, and hence
the effect of the shear flow, is absent either in Eq. (9) and
in Eq. (10). We here exploit the solution g0(r) of the pair
Smoluchowski equation to define a potential of mean force
ueff(r, Pe) which contains the effect of the flow field on the
microscopic structure. More precisely we define

βueff(r, Pe) ≡
{∞ r < σ

− log[g0(r)] r � σ
, (11)

where g0(r) is given by Eq. (8). The introduced pair potential
has a clear dependence on the Pe number. Inserting ueff(r, Pe)
in the PY closure and solving the resulting equation together
with the OZ equation (9), allows us to obtain a g(r) function
which depends, at the same time, on the Pe number and con-
tains contributions from surrounding particles. This scheme,
hence, allows us to investigate the microscopic structure in a
range of η, so far unexplored by means of theoretical methods.

We notice that a simple shear flow is a nonconservative
external field for which a potential of mean force, in principle,
does not exist. Using Eq. (11) in our theoretical scheme is then
an approximation.

Finally, it is very important to notice that in the out-
lined framework, the OZ equation is used to determine the

pair correlation function of an out-of-equilibrium system, as
is a colloidal suspension under shear flow. This may be a
rather disputable assumption, since the OZ equation has been
typically employed for equilibrium systems. Addressing this
point at the theoretical level, however, is beyond the scope
of this paper. We here limit ourselves to verify the validity
of our method a posteriori, by a systematic comparison of
our theoretical predictions with simulations data present in the
literature.

A. Potential of mean force for hard spheres under shear flow

We here show how to build the potential of mean force
Eq. (11) in the case of a hard-sphere colloidal suspension
under shear flow.

As it is well-known, the hard-sphere pair potential is

βuHS(r) =
{∞ r < σ

0 r � σ
, (12)

where σ is the particle diameter. For this system, the steady-
state pair Smoluchowski equation was solved in Ref. [19]
by means of the intermediate asymptotics methodology. Here
we follow the treatment introduced in that paper. We start
by discussing the approximations considered to include the
hydrodynamic interactions in our theoretical framework. First
of all, we model the microscopic diffusion matrix D(r) present
in Eq. (2), and given by Eq. (4). We introduce a spherical refer-
ence system with origin at the center of the reference particle
(see Fig. 1). We assume all the off-diagonal elements of D(r)
to be null, i.e., Di j (r) = 0 for i, j = 1, 2, 3 and i �= j. Fur-
thermore we assume H (r) = 0 such that D22(r) = D33(r) =
0 and the only non-null element of the diffusion tensor is
D11(r) = 2D0G(r). G(r) is the hydrodynamic function for
the viscous retardation (also known as lubrication effect), and
the chosen form for the diffusion tensor D(r) is equivalent
to assume the viscous retardation to act only radially between
the particles. As noticed in Ref. [19], the G(r) function cannot
have the same functional form in either the compressional and
extensional sectors of the solid angle. G(r), indeed, describes
a repulsive effect experienced by particles approaching each
other radially, due to the squeezing of the liquid between
them. It then plays a relevant role in the compressing sectors,
while it is negligible in extensional sectors. We model G(r)
in the compressing sector through a polynomial fit to the
rigorous solution to the Stokes equation for the specific case
of two particles approaching each other [19]

Gc(r) = 6h2 + 4h

6h2 + 13h + 2
, (13)

where h ≡ r − σ is the surface distance between the particles.
By contrast, we assume the lubrication force to be negligible
in the extensional sectors, by imposing

Ge(r) = 1. (14)

As discussed, the hydrodynamic functions also enter the
expression for the relative velocity v(r) between the particles
[see Eq. (6)]. As shown in Refs. [19,26], v(r) can be written

044610-4



MICROSCOPIC THEORY FOR THE PAIR CORRELATION … PHYSICAL REVIEW E 106, 044610 (2022)

as

vr (r, θ, φ) = γ̇ r[1 − A(r)] sin2 θ sin φ cos φ,

vθ (r, θ, φ) = γ̇ r[1 − B(r)] sin θ cos θ sin φ cos φ,

vφ (r, θ, φ) = γ̇ r sin θ

[
cos2 φ − B(r)

2
cos 2φ

]
. (15)

To model the hydrodynamic functions we follow
Refs. [19,20,27]. We assume A(r) to be given by

A(r) = A1

(2r)5
+ A2

(2r)6
− A3

(2r)7
+ A4

(2r)8
, (16)

where A1 = 113.2568894, A2 = 307.8264828, A3 =
2607.54064288, and A4 = 3333.72020041, and B(r) to
be given by

B(r) = B1

(2r − B2)β1
− B3

(2r − B4)β2
, (17)

where B1 = 0.96337157, B2 = 1.90461683, B3 =
0.93850774, B4 = 1.90378420, β1 = −1.99517070, and
β2 = 2.01254004.

Having specified the approximations for the hydrodynamic
functions, we need to solve the pair Smoluchowski equa-
tion (2). To simplify the calculation, we first introduce the
dimensionless quantities

r̃ ≡ r/σ,

∇̃ ≡ ∇σ,

ũ ≡ βu, (18)

and ṽ ≡ v/(σ γ̇ ). Using these, in steady state, Eq. (2) becomes

1

Pe
[G(r̃)(∇̃ + ∇̃ũ(r̃))g(r̃)] = ṽ(r̃)g(r̃), (19)

where we have used the definition Eq. (1) of the Pe number.
Following Ref. [19], we average Eq. (19) over the com-

pressing and extensional sectors of the solid angle. In the
former case, we obtain a ordinary differential equation for
the average of g(r̃) over the compressing sectors, gc(r̃), in
the latter case we obtain a ordinary differential equation for
the average of g(r̃) over the extensional sectors, ge(r̃). We
solve the resulting equations perturbatively. To this aim, we
introduce a small perturbation parameter ε defined as the
inverse of the Pe number, i.e.,

ε ≡ 1/Pe. (20)

The approach followed in Ref. [19] hence consists of the
evaluation of two different power series related to two dif-
ferent regions of the radial coordinate domain: the outer layer
(far away from the reference particle), where the solution is
slowly changing with r̃, and the boundary layer (close to
the reference particle), where the solution is steeply and very
rapidly changing with r̃. Details of the mathematical solution
are presented in Appendix B. It is important to observe that,
being based on an expansion in terms of 1/Pe, the analytical
method holds mainly for large values of Pe, i.e., for strong
shear flows.

We plot the obtained gc(r̃) and ge(r̃) functions in Fig. 2, for
several values of the Pe number. The behavior of the pair cor-
relation function in the compressing [see Fig. 2(a)] and the ex-

FIG. 2. Angular average of the pair correlation function of
a hard-sphere colloidal suspension under shear flow, over the
compressing (a) and extensional (b) sectors of the solid angle, re-
spectively. In the compressing sectors, the averaged pair correlation
function shows a peak near contact, which increases with the Pe
number. The extensional sectors, feature a depletion layer near con-
tact where the pair correlation function is identically null. Either in
(a) and in (b), the values of r̃ for which the pair correlation function
is different from 1 decreases upon increasing of Pe number.

tensional [see Fig. 2(b)] sectors is very different. In the com-
pressing sectors, gc(r̃) shows a peak at r̃ = 1 which increases
with the Pe number. By increasing Pe, indeed, the shear
flow dominates over the hydrodynamic interactions which
are instead repulsive. The extensional quadrants, on the other
hand, feature a depletion layer near contact where the pair
correlation function is identically null. This depletion layer
is due to the presence of the hydrodynamic interactions and
would disappear in case A(r̃) = B(r̃) = 0. In the latter case, if
also Gc(r̃) = 1, we would find gc(r̃) = 2 − ge(r̃), from which
the g0(r̃) function given by Eq. (8) would be identically equal
to 1. It follows that, to investigate the effect of the shear flow,
it is crucial to include the hydrodynamic interactions in our
framework and to treat them properly in the compressing and
extensional sectors of the solid angle, respectively.

As mentioned above, when gc(r̃) and ge(r̃) are known for a
certain value of the Pe number, a potential of mean force ueff
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FIG. 3. Angular average of the pair correlation function of a
hard-sphere colloidal suspension under shear flow, over the com-
pressing (blue) and extensional (light blue) sectors of the solid angle,
respectively, at fixed Pe = 25. The dashed green line indicates the
linear combination of gc(r̃) and ge(r̃) obtained from Eq. (8) of the
main text. The full green line shows the linear combination of gc(r̃)
and ge(r̃) obtained from Eq. (8), when ge(r̃) ≡ gHS(r̃). The function
gHS(r̃) (see red line) represents the pair correlation function of a
hard-sphere gas (an extremely dilute suspension) in the absence of
any shear flow.

can be built through Eq. (11). To this aim, the function g0(r̃)
combining gc(r̃) and ge(r̃) needs to be considered, through
Eq. (8). For illustrative purposes, we show gc(r̃), ge(r̃) and
g0(r̃) at fixed Pe = 25 in Fig. 3. We observe (see dashed
green line) that g0(r̃) features an unphysical kink. Our (ap-
proximate) treatment, indeed, does not guarantee g0(r̃) to be
continuous in the first derivative. To solve this problem, we
here neglect the depletion layer featured by the ge(r̃) function,
and assume the latter to be identically equal to unity. In other
words, we assume ge(r̃) ≡ gHS(r̃), where gHS(r̃) is the pair
correlation function of a hard-sphere system in the very dilute
regime, i.e., a hard-sphere gas, in the absence of any external
flow. As it is known, while gHS(r̃) = 0 for r̃ < 1, gHS(r̃) = 1
for r̃ > 1. This approximation is justified by the lower weight
of the depletion layer of the ge(r̃) function in the average (8)
with respect to the large peak characterizing the gc(r̃) func-
tion. Moreover, the amplitude of the depletion layer reduces
by increasing the Pe number. The g0(r̃) obtained from Eq. (8)
when ge(r̃) ≡ gHS(r̃) is plotted with full green line in Fig. 3.
As it is clear, the unphysical kink is not observed in this case
and a smooth approximate solution is produced.

B. Strategy recap

We here summarize the strategy proposed in this paper to
compute the pair correlation function g(r̃) for a system of
concentrated hard spheres under shear flow.

For a fixed value of the Pe number, we first insert the
hard-sphere pair potential Eq. (12) into the pair Smoluchowski
equation, Eq. (19), and solve the latter by using the method

introduced in Ref. [19] and briefly recalled in the previous
section. In this way we find the compressional and extensional
pair correlation functions gc(r̃) and ge(r̃), respectively, which
allow us to build the potential of mean force ueff according
to Eq. (11). We then insert ueff in the PY closure and solve
the coupled OZ and PY equations, iteratively by means of the
Picard’s algorithm, for several values of the packing fraction
η. We repeat this scheme for different values of the Pe number.

III. RESULTS

In this section, we present predictions for the microscopic
structure of a concentrated hard-sphere suspension under
shear flow, obtained by using the framework of Sec. II. We
first compute the pair correlation function g(r̃) for several
combinations of η and Pe, and compare them to numerical
data from previous numerical work by Morris and Katyal [21].
We then extract scaling laws for the value at contact of g(r̃) as
a function of the Pe number at fixed packing fraction η, and
as a function of the packing fraction η at fixed Pe number. We
finally investigate the effect of the shear flow on the structure
factor.

A. Comparison with numerical results from the literature

By following the scheme introduced in Sec. II, we compute
the g(r̃) function for several values of the packing fraction η

and of the Pe number. In Fig. 4, we use a red dashed line
to plot our theoretically determined g(r̃) at fixed η = 0.30,

in cases Pe = 25 (a) and 1000 (b), respectively. In the same
figure, we use points to present results form the simulations
of Ref. [21]. These were obtained by using the Stokesian
Dynamics technique in Ref. [21]. An excellent agreement
between predictions of theory and results of numerical sim-
ulations can be observed for both values of the Pe number. In
particular, the theory (almost) correctly predicts the value of
the pair correlation function at the contact distance from the
reference particle r̃ = 1. Moreover, the location and the value
of a second (smaller) peak predicted by the theory are also in
agreement with results from simulations.

A graph similar to that of Fig. 4 is presented in Fig. 5
for the case η = 0.45. While a good qualitatively agreement
between theoretical predictions and numerical findings is still
found, a worse quantitative agreement with respect to that of
Fig. 4 is observed. We attribute this slight disagreement to the
growing importance that correlation functions involving more
than two particles, e.g., three particle correlation functions,
acquire upon increasing the packing fraction η.

Overall, Figs. 4 and 5 present a successful parameter-free
test for the accuracy of our theoretical findings. We obtain
correct results for the g(r̃) function in a range of the packing
fraction which cannot be explored by (just) solving the pair
Smoluchowski equation.

B. Contact value g(r̃ = 1) of the pair correlation function

After our theoretical findings have been successfully com-
pared with numerical results from the literature, we investigate
how the shear flow affects the structural change experienced
by a colloidal suspension when the packing fraction η is
increased.
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FIG. 4. Pair correlation function of a hard-sphere colloidal suspension under shear flow at packing fraction η = 0.30, and Pe = 25 (a) and
1000 (b), respectively. Dashed red lines represent results from our theoretical scheme, while points are results from numerical simulations of
Ref. [21]. A very good agreement between predictions of theory and results from numerical simulations can be observed for both values of the
Pe number.

In Fig. 6(a), we plot the g(r̃) function of a hard-sphere
system in the absence of shear flow, i.e., at Pe = 0, for
several increasing values of the packing fraction η. As it is
well-known, the shape of the g(r̃) function changes quite
significantly by increasing η. Indeed, while integral equa-
tion theories are typically not able to detect the onset of phase
transitions, they can capture the variation occurring in the mi-
croscopic structure of a suspension when the density increases
[28]. We here investigate how such a structural variation is
affected by the presence of a simple shear flow. To this aim
we compute the g(r̃) function for several values of η, at fixed
Pe �= 0. In particular, in Fig. 6(b), we plot g(r̃) for the same
values of the packing fraction as in Fig. 6(a), at fixed Pe = 50.

We observe that, for all the considered values of η, the value
g(r̃ = 1) of the pair correlation function at contact in case
Pe �= 0 is much larger than the same value obtained in case
Pe = 0. Moreover, the shear flow determines a shift of the
radial position at which the second peak of the g(r̃) function is
located. Indeed, while in Fig. 6(a), the location of the second
peak varies with η, in Fig. 6(b), the second peak is always
located at r̃ = 2, for each value of the packing fraction η.

We will now extract scaling laws for g(r̃ = 1) as a function
of η and Pe, respectively.

1. Scaling of g(r̃ = 1) with the Péclet number

We here investigate how the value g(r̃ = 1) of the pair cor-
relation function at contact scales with the Pe number, at fixed
packing fraction η. The first attempt to quantify this behavior
was performed by Brady and Morris [11], who found for
hard spheres the scaling relation g(r̃ = 1) ≈ Pe. This result
was successively revised by Morris and Katyal [21], who in-
stead found g(r̃ = 1) ≈ Pe0.7. While the scaling law of Brady
and Morris was obtained by solving the pair Smoluchowski
equation, the scaling law of Morris and Katyal was obtained
through Stokesian dynamics simulations.

In Fig. 7, we plot g(r̃ = 1) as a function of the Pe number,
at fixed η = 0.30 (a) and η = 0.45 (b), respectively. In both
cases, we find that our results can be fitted with the power law

g(r̃ = 1) = αPeβ, (21)

where the values of α and β are specified in the caption of
the figure. It is clear that our theory predicts a scaling law

FIG. 5. Same as in Fig. 4, but for packing fraction η = 0.45. While a good qualitative agreement between theoretical predictions and
numerical findings is still obtained, a worse quantitative agreement than in Fig. 4 can be observed.
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FIG. 6. Pair correlation function of a hard-sphere colloidal suspension for several values of the packing fraction η. In (a) Pe = 0, i.e., the
shear flow is absent, while in (b) Pe = 50. The insets in (b) show a zoom in the regions r̃ ∈ [1.0, 1.1] and r̃ ∈ [1.1, 2.4], respectively. When
Pe = 50, the value at contact of the pair correlation function is much larger than the same value in case Pe = 0, for all the considered values
of η. Moreover, while in (a), the position of the second peak varies with η, in (b) this peak is always located at r̃ = 2.

remarkably similar to the one obtained in the simulation study
of Morris and Katyal [21].

2. Scaling of g(r̃ = 1) with the packing fraction

It is well-known that in the absence of shear flow, i.e., at
Pe = 0, the value g(r̃ = 1) of the pair correlation function
at contact provides the pressure p of the uniform fluid as a
function of its packing fraction η ≡ 4

3π (σ/2)3ρ, through the
relation [2,29]

Z (η) = 1 + 4ηg(r̃ = 1), (22)

where Z ≡ p/ρkBT is the so-called compressibility factor,
ρ is the number density, T and kB are the (absolute) tem-
perature and the Boltzmann constant, respectively. When

FIG. 7. Value at contact of the pair correlation function as a
function of the Pe number, at fixed η = 0.30 (red) and 0.45 (blue),
respectively. While points represent results of the introduced theoret-
ical scheme, lines indicate a fit to Eq. (21) of the main text. While in
(a) α = 0.96 and β = 0.64, in (b) α = 1.37 and β = 0.64.

the Carnahan-Starling relation ZCS (η) ≡ (1 + η + η2 − η3)/
(1 − η)

3
is used to approximate the equation of state of the

equilibrium system [30], the functional dependence of g(r̃ =
1) on the packing fraction η is given by

g(r̃ = 1) = 1 − η/2

(1 − η)3
. (23)

We here aim to investigate how the relation (23) is modified
by the action of an external shear flow. We then investigate
how g(r̃ = 1) varies with η, at fixed Pe.

In Fig. 8, we plot the value g(r̃ = 1) of the pair correlation
function at contact as a function of the packing fraction η,

for several fixed values of the Pe number. In all cases, our
theoretical results can be fitted to the following scaling law:

g(r̃ = 1) = αηβ + γ , (24)

where α, β, and γ are reported in the caption of the figure.
To the best of our knowledge, a similar scaling law

has never been reported in the literature. However, we be-
lieve such a relation could represent the first step towards
a nonequilibrium equation of state for hard spheres under
shear flow. For this reason, we hope our finding will inspire
new studies to determine how the value at contact of the pair
correlation function of a sheared colloidal suspension varies
as a function of the packing fraction.

C. Structure factor

From the knowledge of the pair correlation function g(r̃),
the structure factor S(k) of the system can be obtained through
the relation [1]

S(k) = 1 + ρ

∫
drg(r)e−ik·r. (25)

In other words, the structure factor S(k) is given by the Fourier
transform of the pair correlation function g(r̃).

Here we exploit Eq. (25) to study the effect of the shear
flow on S(k). In Fig. 9 we plot the structure factor S(k) for
several values of the Pe number, in case η = 0.30 (a) and
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FIG. 8. Value at contact of the pair correlation function as a
function of the packing fraction η, for several fixed values of the Pe
number. While points represent results of the introduced theoretical
scheme, dashed lines indicate a fit to Eq. (24) of the main text.
At Pe = 10 (blue), α = 18.51, β = 1.87, and γ = 2.99; at Pe =
50 (red), α = 45.39, β = 1.76, and γ = 7.53; finally at Pe = 100
(green) α = 53.70, β = 1.73, and γ = 11.95. The black full line
indicates Eq. (23), obtained from the Carnahan-Starling equation of
state and holding in case Pe = 0.

η = 0.45 (b), respectively. We can observe the shear flow to
cause several important effects. These include (i) a lowering
of the main peak, (ii) an overall shift of the structure factor
towards higher values of the wave vector, and (iii) an overall
broadening of the first peak of the structure factor compared
with the equilibrium conditions. These are all novel predic-
tions that may stimulate experimental investigations in future
work.

FIG. 9. Structure factor S(k̃) of a hard-sphere colloidal suspension under shear flow, for several values of the Pe number, at fixed packing
fraction η = 0.30 (a) and 0.45 (b). In both cases, a consistent enhancement of S(k̃) at k̃ → 0 can be observed upon increasing the Pe number.
We argue (see main text) this behavior to signal the onset of a shear-induced phase transition from the isotropic phase to a nonuniform one.
The enhancement of the structure factor at small wave number is more pronounced at η = 0.30 than at η = 0.45. At higher concentrations,
indeed, the system presumably remains more uniform due to the higher density. Either in (a) and in (b), the inset shows a zoom in the region
k̃ ∈ [0.0, 1.0].

Finally, Fig. 9 shows that S(k) consistently increases at
k → 0, upon increasing the Pe number. This effect is more
visible at intermediate concentrations [see Fig. 9(a)] rather
than at larger η [see Fig. 9(b)].

A divergence of the structure factor at small wavenumber
is known to occur in colloidal mixtures, in the absence of
shear flow, and is associated with the physical instability of
the mixture against phase separation [31,32]. However, the
same phenomenon has been observed also for one-component
systems. Huang et al. [33] reported an enhancement in the
structure factor of water at small wave number under ambient
conditions, and suggested this enhancement to signal the pres-
ence of anomalous density fluctuations. An explanation for
the experimental observations of Huang et al. [33] was suc-
cessively provided by Overduin and Patey [34]. These authors
showed that different local structural arrangements are present
in water, which experience different effective interactions.
The latter are attractive between molecules with similar local
environments and repulsive between molecules with different
local environments. The presence of attractive and repulsive
interactions leads to concentration fluctuations which couple
with density fluctuations and can account for the increase of
the structure factor at low wave number.

We here invoke a similar mechanism to the one proposed
by Overduin and Patey [34], to explain the enhancement of
S(k) at k → 0 predicted by our theory upon increasing the
Pe number. We argue the shear flow to induce structural
heterogeneity in the colloidal suspension, which results in
effective interactions and hence in density fluctuations. A
phase-transition from the isotropic phase to a nonuniform
one would then occur at a sufficiently large value of the Pe
number, as a result of the action of the external shear flow.
Being associated with density fluctuations, the shear-induced
transition could be of the kind described by Brazovskii [22].
Finally, the transition is more likely to occur at intermediate
concentrations than at larger concentrations where the system
presumably remains more uniform due to the higher density.
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IV. CONCLUSION

In this paper, we introduced a theoretical framework to
investigate the microscopic structure of concentrated hard-
sphere colloidal suspensions subjected to a strong shear flow.
We started by solving the pair Smoluchowski equation with
shear, separately in the compressing and extensional sectors
of the solid angle. To this aim, we followed a new analyti-
cal scheme based on intermediate asymptotics [19]. We then
employed the obtained solution to construct a potential of
mean force ueff containing the effect of the flow field on
the pair correlation function, and inserted ueff in the Percus-
Yevick relation. We finally used the latter relation to solve the
Ornstein-Zernike integral equation for a wide range of either
the packing fraction η and the Péclet number Pe. Crucial to
build the potential of mean force is to include hydrodynamic
interactions, and treat them properly in the compressing and
extensional sectors, respectively.

We obtained profiles for the pair correlation function
which are in excellent agreement with numerical results from
Ref. [21] up to rather large values of η, independently of the
considered value of Pe. We then extracted scaling laws for the
value of the pair correlation function at contact as a function
of the Pe number at fixed η, and as a function of the η at
fixed Pe number. In the former case, we obtained a scaling
law in agreement with the simulation study of Ref. [21]. In
the latter case, we found a scaling law which could open the
way for a nonequilibrium equation of state of strongly sheared
liquids. Finally we employed our method to investigate the
effect of the shear flow on the structure factor S(k). The latter
analysis reveals a consistent increase of S(k) at k → 0, upon
increasing the Pe number. We argue this enhancement could
signal the onset of a phase transition from the isotropic to a
nonuniform state of the type discussed by Brazovskii [22],
here induced by the external shear flow.

Several extensions of the work presented in this paper
could be considered. While we have focused on the hard-
sphere colloidal suspensions, the introduced theory holds for
any (isotropic) interaction potential. It is then interesting to
employ our scheme to investigate the effect of an external
shear flow on the microscopic structure of suspensions of
colloidal particles interacting through, e.g., Lennard-Jones
or Yukawa (Debye-Hückel) potentials (the latter relevant
for plasmas and electrolyte solutions). It is also interesting
to include in the proposed framework correlation functions
involving more than two particles, e.g., three-body correlation
functions, in order to investigate the microscopic structure at
larger values of the packing fraction, in the so-called dense
regime. Finally, it is worthwhile to conduct further investi-
gation to understand the nature of the shear-induced phase
transition (possibly of the Brazovskii type) apparent at low-k
in the structure factor, predicted by our model. We aim to
address these issues in future work.
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APPENDIX A: ANGULAR AVERAGES

We use the symbol 〈· · · 〉i to indicate angular averages.
In particular, we use i = c to indicate the average over
the compressing sectors of the solid angle, i.e., 〈· · · 〉c ≡
(2π )−1

∫ π

0 dθ sin θ [
∫ π

π/2 dφ + ∫ 2π

3π/2 dφ], while we use i =
e to indicate the average over the extensional sectors of
the solid angle, i.e., 〈· · · 〉e ≡ (2π )−1

∫ π

0 dθ sin θ [
∫ π/2

0 dφ +∫ 3π/2
π

dφ]. The average of the pair correlation function g(r)
over the compressing sectors is hence defined as gc(r) ≡
〈g(r)〉c, while the average of g(r) over the extensional sectors
is defined as ge(r) ≡ 〈g(r)〉e.

From the above it follows that

gc(r) + ge(r)

2

= 〈g(r)〉c + 〈g(r)〉e

2

= 1

4π

∫ π

0
dθ sin θ

[ ∫ π

π/2
dφ +

∫ 2π

3π/2
dφ

]
g(r)

+ 1

4π

∫ π

0
dθ sin θ

[ ∫ π/2

0
dφ +

∫ 3π/2

π

dφ

]
g(r)

= 〈g(r)〉, (A1)

where we have defined 〈· · · 〉 ≡ (4π )−1
∫ π

0 dθ sin θ
∫ 2π

0 dφ. In
Eq. (8) of Sec. II, we have introduced the function g0(r) ≡
(gc(r) + ge(r))/2 which, as it is clear, corresponds to the
average of the pair correlation function g(r) over the full solid
angle � ≡ (θ, φ) with θ ∈ [0, π ] and φ ∈ [0, 2π ], respec-
tively.

It is important to observe that, while the normalizing co-
efficient (2π )−1 is used in defining angular averages over the
compressing and extensional sectors, the normalizing coeffi-
cient (4π )−1 is used in defining the angular average over the
full solid angle.

APPENDIX B: SOLUTION OF THE PAIR
SMOLUCHOWSKI EQUATION BY INTERMEDIATE

ASYMPTOTICS

When averaging Eq. (19) we follow Refs. [19,20] and
assume the relative velocity v and the pair correlation function
to be weakly correlated, such that

〈ṽ · ∇̃g(r̃)〉i ≈ 〈ṽ〉i · ∇̃g(r̃),

〈g(r̃)∇̃ · ṽ〉i ≈ g(r̃)〈∇̃ · ṽ〉i, (B1)

where i ∈ {“c,′′ “e′′}. The pair Smoluchowski equation (19)
consequently becomes

ε

[
Gi(r̃)

(
d2gi(r̃)

dr̃2
+ 2

r̃

dgi(r̃)

dr̃

)
+ dGi(r̃)

dr̃

dgi(r̃)

dr̃

+ gi(r̃)
dũ(r̃)

dr̃

dGi(r̃)

dr̃
+ Gi(r̃)

dũ(r̃)

dr̃

dgi(r̃)

dr̃

+ Gi(r̃)

(
2

r̃

dũ(r̃)

dr̃
+ d2ũ(r̃)

dr̃2

)
gi(r̃)

]
= 2〈ṽ〉i

dgi(r̃)

dr̃

+ 2gi(r̃)〈∇̃ · ṽ〉i, (B2)
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where ε ≡ 1/Pe, i ∈ {c, e} and Gc(r̃) and Ge(r̃) are given by
Eqs. (13) and (14), respectively. In Eq. (B2), we assume v to
be given only by its radial component [see the first line of
Eq. (15)], i.e., we assume v ≈ vr . From the definition of the
angular averages given in Appendix A and (the first line of)
Eq. (15), it follows that

〈ṽ〉i ≈ 〈ṽr〉i = αi[1 − A(r̃)]r̃,

〈∇̃ · ṽ〉i = αi

[
3B(r̃) − 3A(r̃) − r̃

dA(r̃)

dr̃

]
, (B3)

where αc ≡ 〈sin2 θ sin φ cos φ〉c = −2/(3π ) and αe ≡
〈sin2 θ sin φ cos φ〉e = 2/(3π ). From αc and αe, it is clear
that the relative radial velocity between the particles is
negative in the compressing sectors of the solid angle, while
it is positive in the extensional sectors. It is important to
notice that when v is averaged over the full solid angle, it is
〈v〉 = (4π )−1

∫ π

0 dθ sin θ
∫ 2π

0 dφ vr (θ, φ) = 0.

In order to fully specify the problem, Eq. (B2) has to be
supplemented with two boundary conditions. The first of these
is a no-flux condition at r̃ = r̃c,[

Gi(r̃)
dg(r̃)

dr̃
+

(
Gi(r̃)

dũ(r̃)

dr̃
− 2Pe〈ṽ〉i

)
gi(r̃)

]∣∣∣
r̃=r̃c

= 0,

(B4)
where i ∈ {c, e} and r̃c is a value of radial distance sufficiently
close to the reference particle. We here take r̃c = 1 + 5 × 105.

The second boundary condition is instead

gi(r̃ → ∞) = 1. (B5)

Equation (B2) is an example of so-called singular pertur-
bation problem, i.e., an ordinary differential equation with
perturbation parameter ε linked to the highest order derivative.
In this case, the problem can be approached by using the
boundary layer theory [24]. The approach consists of the eval-
uation of two different series in two different regions of the
domain: the outer layer where the solution is slowly varying
with r̃, and the inner layer, also known as the boundary layer,
where the solution is rapidly varying with r̃.

In the outer layer, we write

gout
i (r̃) ≈ gout

0,i (r̃) + εgout
1,i (r̃) + O(ε2), (B6)

where ε ≡ 1/Pe. To introduce the power series in the inner
layer a change of variable, called the inner transformation, in
Eq. (B2) needs to be considered [19]. In our case, the inner
transformation reads

ξ ≡ r̃ − r̃c

δ(ε)
, (B7)

where δ(ε) is the order of magnitude of the width of the inner
layer. Using the method of dominant balancing, in Ref. [19],
it was shown that δ(ε) ≈ ε. The power expansion in the inner
layer can then be written as

gin
i (ξ ) ≈ gin

0,i(ξ ) + εgin
1,i(ξ ) + O(ε2), (B8)

where ε ≡ 1/Pe.

As showed in Refs. [19,20], the gout
0,i (r̃) and gout

1,i (r̃) appear-
ing in the expansion Eq. (B6) are given by

gout
0,i (r̃) = 1

1 − A(r̃)
exp

[ ∫ ∞

r̃
d r̃′ 3B(r̃′) − 3A(r̃′)

r̃′ − r̃′A(r̃′)

]
(B9)

and

gout
1,i (r̃) = −gout

0,i (r̃)
∫ ∞

r̃

d r̃′

2〈ṽ〉i

{
Gi(r̃

′)
[(

Y (r̃′)
)2 + dY (r̃′)

dr̃′

+
(

2

r̃′ + dũ(r̃′)
dr̃

)
Y (r̃′) + d2ũ(r̃′)

dr̃2
+ 2

r̃′
dũ(r̃′)

dr̃′

]

+ dGi(r̃′)
dr̃′

(
Y (r̃′) + dũ(r̃′)

dr̃′

)}
, (B10)

respectively. In (B10) we have defined Y (r̃) ≡ −〈∇̃ · ṽ〉i/〈ṽ〉i.

As showed in Refs. [19,20], the gin
0,i(ξ ) and gin

1,i(ξ ) appear-
ing in the expansion Eq. (B8) are given by

gin
0,i(ξ ) = C1 + C0

∫ ξ

0
dξ ′ exp

[ ∫ ξ ′

0
2
〈ṽ(ε = 0)〉i

G(ε = 0)
dξ

]

(B11)
and

gin
1,i(ξ )

= C3 +
∫ ξ

0
dξ ′

{
C2 −

∫ ξ ′

0
dξ ′′

[(
2

ξ ′′ε + r̃c
+ W (ξ ′′)

+Gr,i(ξ ′′)
G(ξ ′′)

)
dgin

0,i(ξ
′′)

dξ ′′ − 2
〈∇̃ξ ′′ · ṽ(ξ ′′)〉i

G(ξ ′′)
gin

0,i(ξ
′′)

]

× exp

(
−2

∫ ξ ′

0
dξ

〈ṽ(ξ )〉i

G(ξ )

)}

× exp

(
−2

∫ ξ ′

0
dξ

〈ṽ(ξ )〉i

G(ξ )

)
, (B12)

respectively. In Eq. (B12), we have defined W (ξ ) ≡
(dũ(ξ )/dξ )/δ and Gr,i(ξ ) = δ−1(dGi(ξ )/dξ ).

The final step to obtain the analytical solution of Eq. (B2)
is the evaluation of the integration constants C0, C1, C2, and
C3 present in Eqs. (B11) and (B12).

Since our problem contains four (unknown) integration
constants, four conditions are needed to determine them. The
first of these conditions is the condition of zero flux at the
reference particle surface Eq. (B4). The other three are

gout
i (r̃ = r̃c + ε) = gin

i (r̃ = r̃c + ε),

dgout
i (r̃)

dr̃

∣∣∣
r̃=r̃c+ε

= dgin
i (r̃)

dr̃

∣∣∣
r̃=r̃c+ε

,

d2gout
i (r̃)

dr̃2

∣∣∣
r̃=r̃c+ε

= d2gin
i (r̃)

dr̃2

∣∣∣
r̃=r̃c+ε

.

(B13)

These are derived by the so-called patching procedure [24],
and specify that the inner solution must match the outer
solution at the boundary layer r̃ = r̃c + ε, in a smooth (dif-
ferentiable as many times as possible) way.
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