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Controlled gel expansion through colloid oscillation
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We model the behavior of a single colloid embedded in a cross-linked polymer gel, immersed in a viscous
background fluid. External fields actuate the particle into a periodic motion, which deforms the embedding
matrix and creates a local microcavity, containing the particle and any free volume created by its motion. This
cavity exists only as long as the particle is actuated and, when present, reduces the local density of the material,
leading to swelling. We show that the model exhibits rich resonance features, but is overall characterized by
clear scaling laws at low and high driving frequencies, and a pronounced resonance at intermediate frequencies.
Our model predictions suggest that both the magnitude and position of the resonance can be varied by varying
the material’s elastic modulus or cross-linking density, whereas the local viscosity primarily has a dampening
effect. Our work implies appreciable free-volume generation is possible by dispersing a collection of colloids in
the medium, even at the level of a simple superposition approximation.
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I. INTRODUCTION

In nature there are many examples of biological systems
that must adapt to their environment to maintain functionality,
ranging from the intra- and intercellular signaling of proteins
[1], to the directed motion, e.g., chemotaxis, of bacteria [2],
and the tailored seed dispersal strategies of plants [3,4]. With
the envisioned goal of replicating such functionality in mind,
scientific research into artificial, stimuli-responsive materials
has enjoyed significant interest in recent years [5–8]. Gen-
erally, this concerns systems comprising synthetic polymers
that respond suitably to, for example, a variation of the pH
or temperature [9,10], the application of an electric or mag-
netic field [11,12], or the irradiation of light with a suitable
wavelength or intensity [13,14]. Prospective applications in-
clude on-demand drug delivery [15,16], tissue (re)generation
[17,18], and artificial muscles [19–21].

The physical properties that must be suitably altered for
such applications include, but are not limited to, the porosity
[22], conformation [23], wettability [24], and adhesion [25]
of the material. This response is typically programed into the
material on the molecular scale, during the synthesis [5–8].
Although this enables fine control over the resulting behavior,
it also limits the pool of suitable material candidates. In this
paper, we explore an alternative approach, which can render
any cross-linked polymer network, immersed in a viscoelastic
background fluid, responsive in a controlled manner.

To this end, we propose embedding responsive colloids
into the gel. Upon subsequent stimulation with an oscillatory
external field, e.g., electric or magnetic, we expect the colloids
to create microscopic cavities by displacing the embedding
matrix during their oscillation. The generated free volume
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(locally) reduces the density of the material and, in doing so,
increases its porosity.

Although the concept of embedding responsive colloids
into a polymer network is not necessarily new [26–28], its
application to volume expansion and porosity is. Nevertheless,
there is some precedent for the underlying mechanism. For
example, Sozanski and coworkers recently conducted viscos-
ity experiments on aqueous solutions of polyethelene glycol
using a quartz tuning fork, oscillating at nanoscopic ampli-
tudes [29]. For semidilute solutions of high molecular weight,
they report a significant drop in the local viscosity, orders of
magnitude below that of the bulk, which they rationalize based
on the motion of a dynamic depletion layer, i.e., a region of
free volume.

In addition, the working mechanism we propose is remi-
niscent of that utilized in liquid-crystalline networks, where
rod-like mesogens are embedded in a dense polymer network
[30]. For applications, these mesogens are usually functional-
ized with either a strong dipole moment [31] or an azobenzene
moiety [32,33]. In the former case, application of an alternat-
ing electric field induces mesogen reorientation, whereas in
the latter case exposure to irradiation of a suitable wavelength
induces trans-to-cis interconversion. Both are known to re-
sult in the generation of free volume [31,32]. Similar to the
above materials, we envision our approach contributing to the
realization of self-cleaning properties [34], pattern formation
[35–39], and transport of molecular cargo [40,41].

To achieve such functionality in a controlled manner, the-
oretical insight into the underlying mechanism of volume
generation is required. To achieve this, we take inspiration
from the field of active microrheology [42], which likewise
studies the driven motion of a colloid immersed in a vis-
coelastic environment albeit in a noninvasive manner. Since
the pioneering work of Batchelor [43–45], theoretical efforts
have primarily focused on relating the interactions between a
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“probe” colloid and the local microstructure to global material
properties [46–50]. In addition, the motion of the “probe”
particle itself, as it is driven through the polymer environment,
has also been studied extensively, where particular focus has
been given to the role of hydrodynamics [51,52], depletion in-
teractions [53–56], and viscosity [57]. Notwithstanding these
important contributions, our focus is instead on how the mo-
tion of such a colloid can perturb the local microstructure.
We use a considerably simpler model in the form of a driven
harmonic oscillator, extended to reflect its coupling to the vis-
coelastic environment, i.e., the cross-linked polymer gel with
viscous background fluid, into which the colloid is embedded.

We detail our theoretical model, based on a generalized
harmonic oscillator, in Secs. II-III. Following this, in Sec. IV,
we characterize the oscillation of the colloid by reporting
the amplitude as a function of the driving frequency. We
show numerically that the model exhibits clear scaling laws
in the low- and high-frequency limits, and a resonance at
intermediate driving frequencies. These can all be calculated
reasonably accurately by making simplifying assumptions.
Next, in Sec. V, we link the colloid oscillation to volume
expansion by investigating the steady-state cavity volume. For
this we likewise derive clear scaling laws and locate a dis-
tinct resonance that suggests volume expansion far exceeding
the length scale of the colloid is possible. Subsequently, in
Sec. VI, we investigate the effect of varying both the elas-
ticity of the polymer network, accessible via the gel’s elastic
modulus or cross-linking density, and the viscosity of the
background fluid. The former shifts both the position and the
magnitude of the resonance, whereas the latter mainly has a
dampening effect. Finally, we conclude by summarising our
most salient results and reflecting on their significance in view
of experiments, in Sec. VII.

II. THEORETICAL MODEL

We model the motion of a colloid embedded in a cross-
linked polymer gel, which is in turn immersed in a viscous
background fluid, by means of a generalized, driven harmonic
oscillator. As point of departure, we consider a colloid of
mass m and diameter 2a, which we assume is greater than
the distance between permanent crosslinks in the gel. The
colloid is driven through a viscoelastic environment that is
characterized by an elastic spring constant k and a viscous
damping coefficient c. For a gel, the latter is directly related
to the viscosity of the background fluid. Assuming a driving
force of magnitude F0 and driving frequency ω, the resulting
equation of motion for the colloid position x = x(t ) reads

mẍ + cẋ + kx = F0 sin ωt, (1)

where dots indicate derivatives with respect to time t . Note
that in writing Eq. (1), we assume Stokes-like drag with the
viscous background fluid, neglecting potential temperature-
driven diffusive motion. This is justified in the limit of dense,
cross-linked polymer networks, in which the motion of the
colloid is dominated by the external driving force and the
resisting polymer network. For the remainder of this paper,
we focus on this limit and assume that, initially, the colloid is
at rest and there is no residual stress in the network.

The philosophy of the model is that the colloid, through its
oscillatory motion, creates a microscopic cavity, containing
itself and the viscous background fluid, by displacing poly-
meric material. Figure 1 schematically shows this process.
From the first two panels, we see that, as the external field
is applied, the colloid perturbs the polymer network from
its initial, stress-free configuration by locally compressing it.
This compression is resisted by an elastic restoring force, and
the cavity that opens up in the wake of the colloid relaxes
viscoelastically. The third panel coincides approximately with
the change in sign of the oscillatory external field, marking
the turning point of the oscillation. Here, the elastic restoring
force, which is now directed parallel to the colloid velocity,
still applies and the viscoelastic relaxation of the cavity like-
wise continues. Following this, the fourth panel illustrates that
if the colloid separates from the cavity wall, no elastic force
acts on it, and both cavity walls relax viscoelastically. Finally,
the bottom panels show how the oscillation continues as the
colloid makes contact with the opposite cavity wall, and the
same steps are repeated. The colloid experiences friction with
the viscous background fluid at all of these stages.

For the sake of simplicity, we have tacitly assumed that
the polymer network does not screen the viscous friction of
the colloid with the background fluid in writing the above,
such that only the elastic force depends on whether the colloid
makes contact with the cavity wall. This transforms Eq. (1)
into

mẍ + cẋ + kx δcontact = F0 sin ωt, (2)

where we have introduced the “contact function,” δcontact,
which is unity if the colloid is in contact with a cavity wall and
zero otherwise (see Fig. 1). Note that our qualitative results in
this paper are robust even upon relaxing the assumption of no
screening, which we explore in Appendix A.

The above makes clear that physical contact between the
colloid and cavity wall is a crucial aspect of the model.
However, to realize its consistent implementation, we must
make a choice regarding the equilibrium configuration the
polymer network relaxes toward. Is all relaxation in our one-
dimensional description purely elastic, with any given cavity
wall only relaxing as far as its initial position, or can plastic
rearrangements also occur, where the cavity wall relaxes be-
yond its initial position to fill the microscopic cavity? In this
paper, we pursue the latter choice, as we intuitively expect a
unilateral displacement of the colloid to not give rise to any
lasting free volume. In addition, if we were to for the moment
consider the free-volume generation from a three-dimensional
perspective, not only the cavity walls but also the sides of
the cavity play a role. That is, even if the noncompressed
cavity wall is under no stress, the sides of the cavity expe-
rience extensional stresses that promote locally shrinking the
cross section of the cavity. Translated to our one-dimensional
picture, this again results in a relaxation of the cavity wall
that effectively goes beyond its initial position. Thus, in what
follows, we assume that the microscopic cavity relaxes vis-
coelastically until it fully collapses. Further below we explain
how we model this.

However, we first address a complication this choice car-
ries with it. Namely, if the cavity wall is allowed to relax
beyond its initial position via plastic rearrangements, we must
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FIG. 1. Schematic illustration of the colloid oscillation, including the direction of the velocity, forces, and polymer relaxation. The
significance of the functions δcontact, discussed in the main text, is also illustrated.

give careful thought to the rest position of the elastic force,
x0,wall(t ), and how it evolves with time; this rest position
is generally different for the different cavity walls, mean-
ing x0,left(t ) �= x0,right(t ). We cannot simply set x0,wall(t ) = 0,
since if the cavity wall in question relaxes beyond its initial
position x = 0, it would then not resist but instead accelerate
the motion of the colloid upon contact. Equating the rest
position, x0,wall(t ), with the colloid position, x(t ), at any time
that contact is established leads to different complications.
This approach would artificially and progressively weaken the
network in the case the external field repeatedly pushes the
colloid into the polymer network, which in turn rebuffs it; this
is a scenario we encounter in our numerical evaluation of the
model.

We reconcile the above concerns by, upon establishing
contact between colloid and cavity wall, only equating the rest
position with the colloid position if the colloid has moved
beyond the current rest position, i.e., if x(t ) > x0,left(t ) or
x(t ) < x0,right(t ). In essence, this means we assume relaxation
is effectively elastic until the cavity wall reaches its current
rest position. Beyond this point, relaxation occurs via plastic
rearrangements and thus continually increases the rest posi-
tion, until the cavity wall is again perturbed by the colloid.
We carry out this procedure separately for both cavity walls.
With this in mind, Eq. (2) becomes

mẍ + cẋ + k(x − x0,wall )δcontact = F0 sin ωt, (3)

where x0,wall = x0,wall(t ) depends crucially on the cavity wall
with which the colloid is in contact and the deformation
history of the network. A consequence of this choice is that
inversion symmetry along the x-axis is broken: applying an
external field ∝ ± sin ωt yields identical oscillations, but mir-
rored in x = 0. Thus, within this set of assumptions, the
transient stages of dynamics can have a lasting effect on the
eventual steady state that is reached: a direct consequence of
the occurrence plastic rearrangements. This we shall see when
we discuss our results in Sec. IV.

Finally, we link the colloid dynamics to that of the mi-
croscopic cavity by specifying the evolution of the cavity

volume. To this end, we propose that the colloid creates a
tubular cavity, with a cross section equal to that of the colloid,
during its oscillation. The corresponding increase in cavity
free volume v, i.e., the volume of the cavity in excess of the
colloid volume, then reads

v̇ = |ẋ|πa2 δcontact − v

tR
, (4)

where the first term, representing expansion, only applies
if the colloid is in contact with the polymer network. The
absolute sign implies that variation in cavity free volume
occurs at double the frequency of the colloid oscillation, as
free volume is generated upon both leftward and rightward
motion. The second term describes the relaxation of the mi-
croscopic cavity, with tR the typical relaxation time of the
cross-linked polymer gel. The underlying assumption here is
one of Rouse-like relaxation, where we take the dynamics
to be dominated by the lowest-order mode [58]. That is, we
assume the slowest mode that can be excited is on the order
of the distance between permanent crosslinks, which we as-
sociate with the relaxation time tR, and we neglect modes on
shorter length scales, which relax significantly faster. Looking
ahead, relaxation of deformations on longer length scales,
such as for relaxation of the bulk, can still occur on longer
timescales. However, as we shall see below, the system even-
tually achieves a steady state oscillation, such that, if given
enough time, the bulk can invariably adjust to any local
changes in density effected by the colloid.

This concludes the discussion of our theoretical model.
Before we investigate the resulting model dynamics, we first
scale the theory to make it dimensionless, reducing the num-
ber of variable parameters.

III. SCALING PROCEDURE

To scale Eqs. (3) and (4), we take tR as the typical timescale
of the host material, and identify L = F0tR2/m as its typical
length scale. This quantity is physically related to the distance
a force of magnitude F0 would pull the colloid of mass m in the
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FIG. 2. (Top) Scaled colloid position X (left) and the cavity volume V (right) as a function of the scaled time τ , corresponding to the scaled
driving frequency � = �0/

√
1 − 2B2/�2

0. (Bottom) Scaled steady-state amplitude A of the colloid oscillation (left) and the corresponding
cavity volume V (right) as a function of the scaled driving frequency �, on a logarithmic scale. The dashed red lines denote the low- and
high-frequency scaling laws Alow = 1/2�2

0 and Vlow = �/π�2
0, and Ahigh = 1/�2 and Vhigh = 2/�2, respectively. The zoomed-in inset is

indicated in grey; the dotted red curves in the insets correspond to the theoretical estimates of Eq. (7) (left) and Eq. (8) (right), respectively.
Parameter values used: �0 = 0.7, B = 0.05.

relaxation time tR, if we disregard the embedding matrix and
background fluid. Subsequently introducing the scaled time,
τ = t/tR, the scaled colloid position, X = x/L, and the scaled
cavity volume, V = v/Lπa2, the set of scaled governing equa-
tions becomes{

Ẍ + 2BẊ + �2
0(X − X0)δcontact = sin �τ,

V̇ = |Ẋ | δcontact − V.
(5)

Here, the derivatives are taken with respect to the scaled
time, and we have expressed the model in terms of the scaled
quantities

⎧⎪⎪⎨
⎪⎪⎩

B = ctR
2m ,

�0 =
√

k
m tR,

� = ωtR.

(6)

The above procedure reduces the number of model parame-
ters to two: the scaled damping ratio, B, and the scaled natural
frequency of the oscillator, �0. The most straightforward ex-
perimental link to the former is through the viscosity of the
background fluid, whereas the latter depends strongly on the
gel’s elastic modulus and its cross-link density. Also implicit

in the scaling is that our results can be tuned by varying the
mass and radius of the colloid, the relaxation time of the gel,
and the magnitude of the external driving force. The above
allows us to comprehensively scan the parameter space and
numerically find the steady-state solutions for a given scaled
driving frequency �. This we do by means of a standard
fourth-order Runge-Kutta scheme, adapted to account for the
contact function we use.

This establishes the scaled model we use for the remainder
of this paper. In order to provide an overview of the dynamical
response it gives rise to, we now present the ensuing colloid
dynamics for a range of driving frequencies.

IV. COLLOID DYNAMICS

Figure 2(a) shows a typical oscillation of the col-
loid position, corresponding to a driving frequency � =
�0/

√
1 − 2B2/�2

0 . This is the resonant frequency of the
“bare” harmonic oscillator, in the absence of the changes we
introduced to model the viscous cavity. From the figure we see
that, unlike what is expected for a simple harmonic oscillator,
the colloid traces out a trajectory that is asymmetric about
the origin. As foreshadowed, this is a direct consequence of
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allowing plastic rearrangements within the model, as opposed
to purely elastic deformations. Since which plastic rearrange-
ments occur is largely determined during the transient stages
of dynamics, the initial form of the external field matters for
the eventual steady state that is reached.

This also explains why we deliberately choose to apply a
sine function as the external field, rather than a cosine. The
initial “kick” provided by the latter would immediately induce
plastic rearrangements, which in turn affect the steady state.
This presents a counter-intuitive prediction—the distinctness
of the steady-state oscillations driven by sine and cosine fields,
especially at low frequencies—that could be straightforwardly
verified through experiments. In Appendix D, we work out
the corresponding differences and their origins, which we
expect to become more important for more densely packed
and cross-linked polymer networks. In this paper, however, we
shall err on the side of caution by focusing on external fields
that initially vary slowly, so as to prevent possibly spurious
plastic rearrangements. We return to this point at the end of
Sec. VII.

To investigate the dynamics of the colloid from a broader
perspective, Fig. 2(c) shows the scaled steady-state oscilla-
tion amplitude of the colloid, A, as a function of the driving
frequency of the external field, �. From this we primarily
conclude that the model obeys clear scaling laws in the low-
and high-frequency limits, as indicated by the dashed red
lines. In between these limits, at intermediate driving frequen-
cies, we find a pronounced resonance. This is clarified by
the zoomed-in inset, the boundaries of which are indicated
by the dashed grey lines. Here, the dotted red line represents
a theoretical estimate, which we shall discuss further below
[see Eq. (7)]. Finally, the model also exhibits a host of finer
features, including the resonance peak being split in two and
the emergence of multiple local optima in the low-frequency
regime. These features add to the depth of our model but are
not crucial to our message in this paper, hence we discuss
them in Appendix B.

We commence by rationalising the amplitude in the low-
frequency limit, where we expect only the elastic and driving
force in Eq. (5) to contribute meaningfully to the dynamics. As
a result, the two should balance at the turning point of the os-
cillation, where sin �τ = 1, yielding Alow = 1/2�2

0 (dashed
red line). From the figure it is apparent there is good agree-
ment with the numerical results (black curve). Conversely,
we expect the high-frequency limit to reflect a competition
between the inertial term and the driving force. Equating the
two and Fourier transforming the result shows that steady-
state solutions must take the form X (τ ) = sin �τ/�2, which
likewise agrees with the scaling law Ahigh = 1/�2 shown in
the figure (dashed red line).

Although neither of the above lines of reasoning translates
perfectly to intermediate driving frequencies, here we can
make headway by neglecting viscous friction and presuming
that the colloid maintains contact with the cavity wall until
reaching its turning point. This is reasonable for systems
dominated by elastic rather than viscous effects. If we fur-
thermore presume that the colloid leaves this turning point
with no significant residual velocity or acceleration, it follows
the same trajectory back to its starting position, from which
the oscillation continues identically. Under these assumptions,

the entire oscillation is effectively determined upon reaching
the first turning point, suggesting that its amplitude can be
deduced by computing said turning point. This we do by
setting δcontact = 1 and B = 0 = X0 in Eq. (5), which yields

Aintermediate = 1

2

� sin
( 2π�0

�+�0

) − �0 sin
(

2π�
�+�0

)
�2�0 − �3

0

. (7)

This equation is plotted as a dotted red line in the inset of
Fig. 2(c), from which good agreement with the numerical
results is apparent for the modest values of �0 and B used
here. Below, in Sec. V, we derive a similar equation for the
concomitantly generated free volume V .

The above estimate and scaling relations capture the overall
response of the colloid to the external field. Below, in Sec. V,
we discuss the overall cavity volume the colloid oscillation
gives rise to in the steady state.

V. CAVITY EXPANSION

Figure 2(b) shows the cavity free volume, i.e., the cavity
volume in excess of the colloid volume, resulting from the col-
loid oscillation shown in Fig. 2(a). The frequency of this curve
is twice as high as that of the colloid oscillation, since free
volume is generated upon both leftward and rightward motion.
In addition, the asymmetry between the bottom (sharp) and
the top (rounded) of the curve can be traced back to free
volume generation being tied directly to the colloid making
contact with the cavity wall.

To investigate how we might influence the cavity dynamics
through our choice of external actuation, Fig. 2(d) shows the
steady-state cavity free volume for a range of driving frequen-
cies. The figure is closely related to the steady-state oscillation
amplitude shown in Fig. 2(c), which can be interpreted as
an upper bound for free volume generation. The actual free
volume is lower due to the viscoelastic relaxation of the gel.

As before, the model exhibits distinct scaling laws in the
low- and high-frequency limits, indicated by the dashed red
lines. Here, the low-frequency behavior is markedly differ-
ent from that of the oscillation amplitude [Fig. 2(c)] due
to the aforementioned relaxation, tending to zero in the
low-frequency limit. The zoomed-in inset shown in the fig-
ure again highlights the resonance of the system, where the
dotted red curve denotes a theoretical estimate to which we
shall return further below [see Eq. (8) below]. We discuss the
finer features of the model in Appendix C.

Notably, Fig. 2(d) communicates that a steady-state expan-
sion of up to V ≈ 1, as measured on the system’s natural
length scale L, can be achieved. We argue that this consti-
tutes a significant expansion, which we support by means of
a rough estimate. If we assume a homogeneous, spherical
gold nanoparticle with a radius of a = 25 nm and a surface
charge density of −2 mC [59], subject to an electric field with
strength 1 V/m and immersed in a polystyrene network with
Rouse time tR = 1 cs [60], we find that the system’s typical
length scale equals L ≈ 1 mm. Given that the resonance peak
shown in Fig. 2(d) obeys V ≈ 1, measured on this length
scale, we conclude that volume increases far exceeding the
length scale of the colloid are in principle possible.
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FIG. 3. Scaled steady-state amplitude, A, of the colloid oscillation (left) and the corresponding cavity free volume V (right) as a function of
the scaled driving frequency �, on logarithmic scale. The curves correspond to �0 = 0.1 (silver), 1.0 (grey), and 10.0 (black), all for B = 0.05.
The dashed red lines denote low- and high-frequency scaling laws. The zoomed-in inset is indicated in grey; the dotted red curves in the insets
correspond to the theoretical estimates of Eq. (7) (left) and Eq. (8) (right), respectively.

Next, we validate the model through scaling relations in the
low- and high-frequency limits. For low driving frequencies,
we expect that the colloid is continually pushing against the
cavity walls, and that in the steady state the concomitant ex-
pansion is compensated exactly by the viscoelastic relaxation
of the gel [see Eq. (5)]. Thus estimating the average velocity
of the colloid as (1/�2

0)/(π/�) by using the low-frequency
estimate of the oscillation amplitude, we find Vlow = �/π�2

0,
as indicated by the left-most dashed red line in Fig. 2(d).

Conversely, for high driving frequencies we expect that
the cavity walls have no time to relax, suggesting that in the
steady state the extent of the cavity equals twice the oscillation
amplitude, Vhigh = 2/�2. This is shown by the right-most
dashed red line in Fig. 2(d), which again demonstrates good
agreement between the expected scaling relations and the
model.

Finally, for intermediate driving frequencies, we already
approximated the oscillation amplitude [Eq. (7)] by neglect-
ing viscous friction and presuming constant contact between
colloid and network. Consequently, we can estimate the
steady-state cavity volume using the same set of approxi-
mations by setting |Ẋ | ≈ 2Aintermediate/(π/�) in Eq. (5). This
yields

Vintermediate = �

π

� sin
( 2π�0

�+�0

) − �0 sin
(

2π�
�+�0

)
�2�0 − �3

0

, (8)

which is indicated by the dotted red line in the inset of
Fig. 2(d). The agreement with the full model is again good
for the used parameter values.

This establishes the general behavior of the expanding
cavity. We now investigate the effect of varying model param-
eters.

VI. VARYING MODEL PARAMETERS

The key parameters of interest are the (scaled) natural
frequency of the network, �0, closely related to the elastic
modulus and cross-linking density, and the (scaled) damping
ratio, B. Figure 3(a) shows the steady-state oscillation am-
plitude as a function of the driving frequency, for �0 = 0.1

(silver curve), 1.0 (grey curve), and 10.0 (black curve). All
curves correspond to the same damping ratio B = 0.05. Here,
we have taken care to scale the amplitude A�2

0 and the driving
frequency �/�0, such that the different lines collapse onto
a single curve in the low- and high-frequency limits. This
already implies that the position of the resonance can be
shifted by varying �0 and that, similarly, its amplitude scales
inversely with �0. That is, a greater elastic modulus both
speeds up the oscillation, and suppresses its amplitude. Any
additional features apparent from Fig. 3(a) are superimposed
on top of this dominating trend.

In particular, the inset of Fig. 3(a) shows that the behavior
of the resonance peak itself is more subtle than our introduced
scaling implies: here the different curves do not overlap. As it
turns out, the magnitude of this peak depends more strongly
on �0 than the ∝ �−2

0 dependence predicted by the theo-
retical estimate of Eq. (7), which is shown in the inset by
the dotted red curve. This dependence is already absorbed
into the chosen scaling. Although the qualitative agreement
with all curves is reasonable, this estimate only quantitatively
describes the grey curve, which corresponds to the (scaled)
natural frequency �0 = tR

√
k/m = 1.0. In other words, our

theoretical estimate for the resonance is quantitative if the nat-
ural timescale of the oscillation,

√
k/m, is comparable to the

relaxation time of the polymer gel, tR, and becomes qualitative
if one grows much larger than the other.

The above suggests that the assumptions we make in de-
riving Eq. (7) break down for exceedingly weak or strong
elastic moduli. For the former, the elastic restoring force no
longer dominates the viscous friction with the background
fluid, which in turn slows down the colloid and diminishes the
amplitude of the oscillation more than predicted theoretically.
For the latter, the elastic restoring force is sufficiently strong
such that the colloid does not leave the initial turning points
of its oscillation with negligible residual velocity. Instead, the
oscillation grows in amplitude over the first few periods before
settling to a steady state. As a result, the theoretical estimate
underestimates the steady-state amplitude in this case.

In a similar vein, Fig. 3(b) shows the concomitant cavity
volume in the steady state. Here, we employ the same scaling
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FIG. 4. Scaled steady-state amplitude A of the colloid oscillation (left) and the corresponding cavity free volume V (right) as a function of
the scaled driving frequency �, on logarithmic scale. The curves correspond to B = 0.01 (silver), 0.1 (grey), and 1.0 (black), all for �0 = 0.7.
The dashed red lines denote low- and high-frequency scaling laws. The zoomed-in inset is indicated in grey; the dotted red curves in the insets
correspond to the theoretical estimates of Eq. (7) (left) and Eq. (8) (right), respectively.

for the driving frequency, �/�0, but scale the cavity volume
V �0. This ensures universal behavior at low driving frequen-
cies, in good correspondence with the relevant scaling law,
shown by the dashed red line. The same universality applies
to the theoretical estimate of Eq. (8), which the chosen scaling
renders independent of �0, such that the dotted red curve
shown in the inset applies to all of the plotted curves. In
contrast, the plotted curves differ by a factor �0 in the high-
frequency limit, although they scale identically with �. This
cannot be scaled out without giving up the universality at low
and intermediate frequencies. Consequently, we again find
that, first and foremost, increasing �0 shifts the resonance,
and suppresses the generation of free volume in the low- and
intermediate frequency regimes. This effect vanishes in the
high-frequency limit, which is dominated by inertial effects.

Looking beyond these features, which are absorbed into
the chosen scaling, the more subtle effects of varying the
network’s natural frequency can once again be found around
the system’s resonance. One trend that is apparent from com-
paring Figs. 3(a) and 3(b) is that the resonance of the cavity
free volume is shifted to higher driving frequencies relative to
that of the oscillation amplitude. This stems from the cavity
relaxing viscoelastically as a function of time, which biases
the results, both in magnitude and in position, toward faster
actuation. This effect becomes more pronounced if the natural
timescale of the oscillation,

√
m/k, is large relative to the

relaxation time of the polymer gel, tR. Hence the effect is
most apparent from the silver curve, corresponding to �0 =
tR

√
k/m = 0.1.

Following this, the effect of varying the damping ratio, i.e.,
the friction coefficient of the viscoelastic medium in which the
colloid is embedded, follows a very similar trend, as Fig. 4
shows. Here, the different curves correspond to B = 0.01
(black), 0.1 (grey), and 1.0 (silver), and we set �0 = 0.7.
Since the value of B has no effect on the scaling laws and
theoretical estimates we use, varying the damping ratio solely
affects the form of the resonance peak, as highlighted by the
insets. First and foremost, we see that the resonance in terms
of both amplitude [Fig. 4(a)] and cavity volume [Fig. 4(b)]
is suppressed upon increasing the damping ratio, as expected.

Perhaps more interestingly, we find that for small values of
the damping ratio, where the theoretical estimates of Eqs. (7)
and (8) are most suitable, the resonance peak splits in two.
We expect that this stems from the interplay between purely
elastic interactions and the external field, since increasing B
suppresses this split. The same is true for the finer model
features apparent in the low-frequency regime, which are, like
the split resonance peak, discussed in Appendices B and C.

VII. CONCLUSION

In summary, we have investigated the dynamics of a driven
colloid embedded in a cross-linked polymer gel, immersed
in a viscous background fluid, as a mechanism for rendering
such materials responsive. Through a relatively simple, yet
nontrivial, model derived from the harmonic oscillator, we
show that the oscillatory motion of the colloid can induce a
microscopic cavity of a size far exceeding the length scale of
the colloid in the steady state. As a function of the driving
frequency, we find that the oscillation is well described by
simple scaling laws in the low- and high-frequency limits, and
we propose closed-form theoretical estimates to describe the
resonance that occurs at intermediate frequencies. These esti-
mates qualitatively describe the dependence of the resonance
on model parameters, and become quantitative for strongly
underdamped systems.

In particular, we conclude that the model dynamics is
primarily governed by an interplay between the elastic prop-
erties of the network and the external field, with the local
friction mainly having a suppressing effect. Specifically,
we report that increasing the elastic restoring force acting
throughout the network, accessible through the gel’s elastic
modulus or cross-link density, increases the resonant driving
frequency, and diminishes the resonant amplitude and steady-
state cavity volume for low and intermediate frequencies;
this effect vanishes in the high-frequency limit. Finally, the
model also exhibits a variety of finer features, which we ra-
tionalize in the Appendix by considering various simplifying
assumptions.
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Our work provides a proof of concept for effecting local
free-volume generation, and with it responsivity, in cross-
linked polymer gels. We note, however, that the same model
considerations could be tailored to describe polymer melts. In
that case, there is no longer a direct link between the viscosity
of the background fluid and the friction coefficient, which then
instead derives from the melt itself behaving like a liquid on
long timescales.

Although in this paper we focused on the oscillation of a
single colloidal particle embedded in a cross-linked polymer
gel, we expect our main findings to also be applicable to larger
numbers. This is because we expect at least a linear superpo-
sition of the individual responses, possibly amplified by their
mutual interactions mediated by the polymer network [61].
Such an amplification can be explored further by considering
shrewdly placing the colloids, e.g., on a lattice, rather than
dispersing them randomly in the gel. Regardless of place-
ment, the interactions should be relevant even for relatively
small colloid densities, e.g., on length scales far exceeding the
cross-link spacing, since such network-mediated interactions
decay algebraically in space as 1/r. Thus our approach can be
interpreted as a lower bound for such systems, in which we
effectively describe a small volume element of the material
in which a single colloid is embedded, and disregard possi-
ble network-mediated interactions. This presents a first step
toward rendering arbitrary cross-linked polymer networks
suitable for, e.g., self-cleaning purposes, pattern formation,
and transport of molecular cargo.

Importantly, our findings can be directly verified through
experiments or computer simulations by embedding colloidal
particles into a dense, cross-linked polymer network or melt
during the synthesis. If the colloids are provided with a suf-
ficiently strong coupling to the external field of choice, e.g.,
electric, we expect oscillatory actuation to give rise to appre-
ciable changes in volume and porosity. This claim is supported
qualitatively by recent viscosity experiments on aqueous solu-
tions of polyethylene glycol [29], where a quartz tuning fork
oscillating at nanoscopic amplitudes demonstrates significant
free-volume generation.

The same is true for the liquid crystal networks discussed
in the introduction, where reorientation or cis-to-trans iso-
merization of rodlike molecules gives rise to the free-volume
generation. Our findings suggest that the expansion reported
for these materials upon actuation need not be inherently
linked to the molecules being grafted to the polymer network
[31,33] but can instead follow purely from reorientation inside
the polymer matrix. This puts our work in broader perspective.

Finally, a possible extension of our work concerns the
assumption of plastic rearrangements occurring in the cross-
linked polymer gel. In this work, we assumed, for the sake of
simplicity, that both elastic relaxation and plastic rearrange-
ments occur on the same timescales. It would be interesting,
however, to probe how varying the timescale corresponding to
plastic rearrangements, which we expect to be slower than that
of elastic relaxation in practice, influences the steady state.
Specifically, such an extension may render the model, and
in particular the steady state it predicts, less sensitive to the
transient stages of dynamics.
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APPENDIX A: SELECTIVE FRICTION

In writing the dynamical equations (1)–(6) in the main
text we assume that the polymer network does not screen
the viscous friction of the colloid with the background fluid.
Here, we investigate the effects of relaxing this assumption
and instead considering a friction coefficient that explicitly
depends on whether the colloid is in contact with the cavity
wall or not. To this end, we rewrite our governing set of
equations, Eq. (6) in the main text, as

{
Ẍ + 2BẊ [1 − (1 − ϕ)δfront contact] + �2

0(X − X0)(δfront contact + δrear contact ) = sin �τ,

V̇ = |Ẋ | δfront contact − V.
(A1)

Here, we have replaced the contact function used in the main
text, δcontact, by two functions: δfront contact and δrear contact. The
former applies if the velocity of the colloid is directed to-
ward the cavity wall it is in contact with, whereas the latter
applies if the velocity of the colloid is directed away from
said wall. This distinction allows us to only adapt the fric-
tion coefficient if the colloid is moving into the polymer
network, and not if it is moving away from it. In addition,
we have recast the viscous term using a factor 1 − ϕ, which
we use to compare the cases of complete screening (ϕ = 0),
no screening (ϕ = 1), and reinforced friction (ϕ = 2). The
steady-state oscillation amplitude and cavity volume corre-
sponding to these cases are represented in Fig. 5 by the solid,
dashed, and dotted curves, respectively. For this, we use the

same parameter values as in the main text, �0 = 0.7 and
B = 0.05.

From the figure we find that the general trends of our
clear scaling laws in the low- and high-frequency limits, with
a pronounced resonance at intermediate frequencies (theo-
retical estimates not shown here), persist upon relaxing the
assumption of complete screening. The decrease in resonant
amplitude upon increasing ϕ is expected, as this effectively
makes the role of viscous friction more significant. In corre-
spondence with out findings in the main text, this does not
change the scaling laws in the low- and high-frequency limits.

In addition, we see that the finer features of the model, such
as the resonance peak being split in two and the emergence of
multiple local optima in the low-frequency regime, are sup-
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FIG. 5. Scaled steady-state amplitude A of the colloid oscillation (left) and the corresponding cavity volume V (right) as a function of the
scaled driving frequency �, on logarithmic scale. The different curves correspond to ϕ = 0 (solid), 1 (dashed), and 2 (dotted). The zoomed-in
inset is indicated in grey. Parameter values used: �0 = 0.7 and B = 0.05.

pressed upon increasing ϕ. This is likewise in line with what
we reported in the main text upon varying the damping ratio
B, and so supports the qualitative picture sketched above. That
is, rendering viscous friction nonselective, or even modeling
reinforced friction, does not fundamentally change the model
features but can be interpreted in a similar vein as tuning the
system’s viscosity.

APPENDIX B: COLLOID DYNAMICS: FINE FEATURES

Figure 6 presents an analog of Fig. 2 in the main text,
with the finer model features numbered one through six. For
the sake of illustration, here we set ϕ = 0, which renders the
finer model features more pronounced without fundamentally
altering them.

We start by investigating the points indicated in Fig. 6(a),
which shows the steady-state oscillation amplitude. The first
point of interest corresponds to a driving frequency � =
3.0, which significantly exceeds the natural frequency of

the network, �0 = 0.7. The first panel of Fig. 7 shows the
corresponding colloid oscillation, from which a competition
between the driving frequency (individual oscillations) and
the network’s natural frequency (enveloping oscillation) is
clear. The significant mismatch between the two results in
an oscillation that settles to a modest amplitude in line with
the high-frequency scaling relation discussed in the main
text.

Following this, the second point of interest in Fig. 6(a)
corresponds to a local maximum in amplitude, at � = 0.73;
the inset more clearly displays this feature. This marks the
first of multiple resonant driving frequencies, which in this
case tunes into the natural frequency of the network to rapidly
achieve a steady-state oscillation, as illustrated by the second
panel of Fig. 7.

If we further decrease the driving frequency we find a dip
in the oscillation amplitude in Fig. 6(a). The onset of this dip
roughly coincides with the network’s natural frequency, since
for � < �0 the turning point of the oscillation occurs before

FIG. 6. Scaled steady-state amplitude A of the colloid oscillation (left) and the corresponding cavity volume V (right) as a function of the
scaled driving frequency �, on logarithmic scale. The dashed red lines denote the low- and high-frequency scaling laws explained in the main
text and we use the numbers (1) through (6) to indicate points of interest in the diagram. The zoomed-in inset is indicated in grey; the dotted
red curves in the insets correspond to the theoretical estimates of Eq. (7) (left) and Eq. (8) (right) in the main text, respectively. Parameter
values used: �0 = 0.5, B = 0.1.
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FIG. 7. Scaled colloid position X as a function of the scaled time τ . (1) through (6) correspond to the scaled driving frequencies � =
3.0, 0.73, 0.59, 0.48, 0.10, and 0.010, respectively in Fig. 2. Parameter values used: �0 = 0.7, B = 0.05.

the applied field changes sign. This means that the colloid
is briefly slowed down by the applied field after turning,
suppressing the oscillation amplitude. This is shown by the
third panel of Fig. 7, which corresponds to the dip minimum,
at � = 0.59. From the figure, it is apparent that the oscillation
amplitude decays as a function of time, as can be seen by
comparing with the dashed black lines that show the initial
amplitude. The reason the dip in the resonance curve does
not extend further is because for sufficiently low driving fre-
quencies the field repeatedly pushes the colloid back into the
cavity wall, which in turn pushes back. In that case, the elastic
restoring force compensates the field-induced slowing-down
effect.

Upon decreasing the driving frequency further still, we dis-
cover a second resonant driving frequency, � = 0.48, which
marks the fourth point of interest in Fig. 6(a). The inset shows
that this resonance corresponds well with the theoretical esti-
mate of Eq. (7) in the main text (dotted red line), suggesting
the assumptions of constant contact prior to the turning point
and negligible residual velocity and acceleration at the turning
point are justified in this regime. It then follows that this reso-
nance coincides with the driving frequency that maximizes the
position of the first turning point, as the oscillation continues
identically from the point onward.

If we look at the inset of Fig. 6(a) for even lower driv-
ing frequencies, we find that an array of resonances steadily
decreasing in magnitude emerges. The first of these peaks
corresponds to the fifth point of interest, which no longer
lies on the dotted red line of Eq. (7) in the main text. This
is because for driving frequencies that are sufficiently slow
compared to the network’s natural frequency, the colloid un-
dergoes multiple minor oscillations (on the network’s natural
timescale) before reaching its eventual turning point. The fifth

panel in Fig. 7 illustrates this feature, which is not specific to
our model but can be derived identically from a simple, driven
harmonic oscillator.

Based on the above, it should come as no surprise that
subsequent, smaller peaks in Fig. 6(a), at even lower driv-
ing frequencies, correspond to an increasing number of these
minor oscillations, n = 1, 2, 3, . . . The onset of these peaks
follow the higher-order harmonics � = �0/(1 + 4n). Finally,
in the low-frequency limit, the trajectory of the colloid ap-
proaches a continuous curve, as shown in the sixth panel
of Fig. 7, which agrees well with the low-frequency scaling
relation discussed above.

This concludes the discussion of the colloid dynamics,
from which we find that many of the finer model features can
only be understood by considering the full dynamics, rather
than solely the steady-state amplitude; this does not alter our
message in the main text, however. Next, we discuss the fine
features apparent from the concomitant volume expansion of
the microscopic cavity.

APPENDIX C: CAVITY EXPANSION: FINE FEATURES

The finer features superimposed on the steady-state cavity
free volume resonance curve, as indicated by the numbered
points in Fig. 6(b), follow the same trends as discussed in
Sec. B. That is, for high driving frequencies [point (1)] the
mismatch between driving and natural frequency leads to an
erratic expansion of the microscopic cavity before it settles
on its steady state, as the first panel of Fig. 8 shows. We
reiterate that the frequency with which the cavity volume
oscillates is twice that of the colloid oscillation, as the cav-
ity volume is expanded upon both leftward and rightward
motion.
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FIG. 8. Scaled cavity volume V as a function of the scaled time τ . (1) through (6) correspond to the scaled driving frequencies � =
3.0, 0.73, 0.59, 0.48, 0.10, and 0.010, respectively [see Fig. 6(b)]. Parameter values used: �0 = 0.7, B = 0.05.

Following this, the primary resonance in terms of volume
expansion is located at the same driving frequency as the
highest-frequency resonance discussed in Sec. B (point 2).
This is not surprising, as the viscoelastic relaxation of the
cavity biases the results toward faster actuation. The second
panel of Fig. 8 shows the corresponding expansion of the
cavity volume.

Next, point 3 coincides with the dip that separates the two
major resonance peaks of the model. In Sec. B, we argued
that this results from to the incommensurability of the driv-
ing frequency and the network’s natural frequency. The third
panel of Fig. 8 shows the corresponding cavity volume, which
decays in a manner similar to the colloid position in the third
panel of Fig. 7.

Point 4 then marks the second resonance of the system,
which is well described by the theoretical estimate of Sec. C
[see the inset of Fig. 6(b)]. The fourth panel of Fig. 8 shows
the corresponding evolution of the cavity volume, which does
not exhibit the distinct decay as a function of time we dis-
cussed above.

Finally, the low-frequency limit is again characterized by
the colloid undergoing multiple minor oscillations on top of
the one imposed by the driving force. The fifth panel of
Fig. 8 indicates that if the colloid undergoes only one such
oscillation, the expansion of the cavity volume splits in two
distinct stages: before and after. This is because at the point of
the minor oscillation the colloid’s motion is almost completely
arrested, and so the cavity volume relaxes.

The sixth panel of Fig. 8 illustrates how this feature gen-
eralizes to many minor oscillations, in which case the cavity
volume approaches a continuous curve. The resonance peaks

corresponding to these features in Fig. 6(b) are much less
pronounced than for the oscillation amplitude due to the vis-
coelastic relaxation of the gel.

APPENDIX D: EXTERNAL FIELD: SINE VERSUS COSINE

As discussed in the main text, the fact that we allow plas-
tic rearrangements to occur causes the eventual steady state
to depend nontrivially on the transient stages of dynamics.
This is because in these stages plastic rearrangements occur.
Accordingly, driving the colloid with an external field in the
form of a cosine yields distinct results from actuation by a sine
field, since the initial “kick” provided by the former can have
a large effect on which plastic rearrangements occur. Figure 9
compares the steady states achieved by an external field in the
form of a sine (grey curve) and an external field in the form
of a cosine (black curve). Here we use ϕ = 0, as in the main
text.

The most distinctive feature apparent from Fig. 9(a) is that
the black curve (cosine actuation) lies markedly lower than the
grey curve (sine actuation) in the low-frequency limit. This
is because the initial “kick” provided by the cosine external
field immediately induces significant plastic rearrangements.
In essence, this translates the colloid to a new rest position,
from which slower oscillations, like those induced by a sine
external field, can subsequently take place. The key differ-
ence, however, is that this new rest position is not stress
free, since elastic stresses were incurred when the colloid
displaced the cross-linked polymer gel to this new reference
configuration. These stresses only relax once the external field
varies sufficiently to force the colloid away from its new
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FIG. 9. Scaled steady-state amplitude A of the colloid oscillation (left) and the corresponding cavity volume V (right) as a function of
the scaled driving frequency �, on logarithmic scale. The different curves correspond to an external field sin �τ (grey) and an external field
cos �τ (black). The dashed red lines denote the low-frequency scaling laws discussed in the text and the zoomed-in inset is indicated in grey.
Parameter values used: �0 = 0.7 and B = 0.05.

reference configuration. Since any ensuing oscillation must
occur against the backdrop of these residual stresses, their
corresponding amplitude becomes smaller.

Mathematically, turning on a cosine external field initiates
a swift translation on the network’s natural timescale, 1/�0. In
this case, inertia cannot be neglected. Instead ignoring viscous
friction, and approximating cos �τ ≈ 1, we find

X (τ ) = 1

�2
0

(1 − cos �0τ ). (D1)

The colloid follows this trajectory during its initial oscillation,
freeing up a cavity of unoccupied volume in its wake. The
model states that this cavity shrinks exponentially via plastic
rearrangements. Subsequently, the motion of the colloid is
arrested if, after passing the turning point of its oscillation, it
encounters the cavity wall that is closing in due to plastic re-
arrangements. By using the dynamical equation for the cavity
volume, we estimate this to occur at

X0 = 2

�2
0

− 1

2

1 + e−π/�0

1 + �2
0

. (D2)

Since we assume plastic rearrangements, the colloid main-
tains the rest position estimated above until the external field
changes direction and forces it away. In the low-frequency
limit, this process occurs gradually, justifying us neglecting
inertia and friction henceforth. Following the line of rea-
soning put forth in the main text, a balance of the elastic
force and and the external field then suggests that the col-

loid is perturbed from its rest position by |X − X0| = 1/�2
0.

Since the rest positions of the cavity walls are given by
X0 = 0 and Eq. (D2), respectively, the steady-state amplitude
becomes Alow = 1

2 (1 + e−π/�0 )/(1 + �2
0), in good correspon-

dence with Fig. 9(a) (dashed red line).
Comparing with Fig. 9(b) shows that the same discrep-

ancy holds for the steady-state cavity free volume in the
low-frequency limit. In the main text, we already argued that
in this regime we expect the free volume generated by col-
loid motion to be exactly compensated by the viscoelastic
relaxation of the polymer gel in the steady state. Thus, using
the estimate for the steady-state amplitude derived above,
we find Vlow = �

π
(1 + e−π/�0 )/(1 + �2

0), in good correspon-
dence with Fig. 9(b) (dashed red line).

Figure 9 shows that the discrepancy between the grey and
the black curves shrinks as we increase the driving frequency
and finally vanishes completely in the high-frequency limit.
This is because the main feature distinguishing the two is
the initial “kick” provided by the cosine external field, and
the concomitant plastic rearrangements. As the oscillation
of the external field is increased this effect becomes increas-
ingly minor, becoming negligible for sufficiently high driving
frequencies.

The final feature distinguishing the black curve (cosine
actuation) from the grey curve (sine actuation) in both panels
of Fig. 9 is that the dip splitting the resonance into two peaks
is significantly more pronounced. This indicates that also the
fine model features can be altered nontrivially by the plastic
rearrangements that occur during the transient stages of actu-
ation, though which features occur remains unchanged.
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