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Anomalous phase behavior of quasi-one-dimensional attractive hard rods
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We study a two-state model of attractive hard rods using the transfer matrix method, where the centers of the
particles are confined to a straight line, but the orientations of the rods can be parallel or perpendicular to the
confining line. The rods are modeled as hard rectangles with length L and width D and decorated with attractive
sites at both ends of the rectangles. We find that the particles align parallel to the line and form long chains
at low densities, while they turn out of the line and form a Tonks gas at high densities. With increasing the
stickiness between the rods, the structural change between parallel and perpendicular states becomes stronger
and the pressure vs density curve becomes almost a horizontal line at the transition pressure. We show that such
a behavior is reminiscent of the first-order phase transition. This manifests in the validity of the lever rule of the
phase transitions for very sticky cases.
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I. INTRODUCTION

The rodlike particles exhibit special ordering behavior in
confining geometries, which makes them the potential appli-
cants for nanodevices and nanosensors [1]. Such particles are
the carbon nanotubes and the gold nanowires with special
electronic and optical properties. A big issue in the practical
use of these particles is to increase the surface coverage,
create large monodomains, and enhance the orientation order
on flat surfaces [2–5]. To give theoretical guidance in this
direction, it is important to understand the ordering behavior
of rodlike particles in several confining geometries such as
circle, square, stripe, and line [6–14].

A special class of the confined systems is the
one-dimensional (1D) fluid, where the centers of the particles
are forced to move on a straight line. The thermodynamic
and structural properties have been determined exactly for
several 1D fluids [15–18], where short-range attractions are
added to the hard-core interactions. The common feature of
these 1D systems is the lack of thermodynamic singularity,
which excludes the possibility of first-order phase transitions
[19]. However, the absence of phase transition can be proved
rigorously only for a class of 1D fluids, which is based on
the Perron-Frobenius-Jentzsch theorem [20]. The well-known
exception is the 1D van der Waals fluid, where the attraction’s
range (strength) goes to infinity (zero). In this system a
first-order vapor-liquid phase transition emerges, which can
be described with the famous van der Waals equation of state
[21,22]. It is more difficult to predict the phase behavior of the
system if some out-of-line orientational and positional free-
dom is added to the 1D system, which is usually called quasi-
one-dimensional (q1D) system. The out-of-line orientational
freedom gives rise to structural change in the orientational
ordering in the system of hard nonspherical particles [23–25].
If the particles are placed on 1D lattice and allowed
to overlap with some cost, first-order phase transitions
can occur easily [26]. It has been shown recently in Ref. [27]

that the free energy has an infinite number of singularities
as a function of density in the q1D system of soft needles.
Kantor and Kardar reported the jamming behavior of the
q1D system of nonspherical particles in the vicinity of
close-packing density, where the particles are free to rotate
in a plane [28,29]. In addition to these, the kinetics of the
domain walls and the glassy behavior of q1D systems with
rotational freedom are studied [30,31]. In the system of freely
rotating associating particles, which is related to our work,
it is beneficial to use 1D spatial confinement to enhance the
association and induce orientational order within the clusters
[32–35]. The out-of-line positional freedom complicates
further the phase behavior of the particles, because very
complicated tilted and even chiral close-packing structures
emerge, which depends on both the shape and the extent
of the out-of-line freedom [36–38]. For example, the hard
disks form a zigzag close-packing structure in very narrow
q1D channels, where only first-neighbor interactions are
allowed [39–41]. Finally, we note that the phase behavior of
q1D systems of hard disks is still a hot topic because of the
emerging jamming, glass formation, and caging phenomena
[42–50]. These results show that our knowledge of the
ordering mechanism of q1D systems is far from complete.

In this study we examine the possibility of first-order phase
transitions in q1D systems, where both the repulsive and at-
tractive interactions are present. For the sake of simplicity,
the centers of the particles are fixed to a horizontal line and
only the horizontal and vertical orientational states are taken
into account. To induce a competition between parallel and
perpendicular orientational ordering, the shape of the particle
is anisotropic and both ends of the particle are decorated
by attractive patches. Such models enable us to examine the
competition between the association energy and the entropy,
because the association favors the horizontal ordering, while
the entropy favors the vertical one. The energy minimum
corresponds to a perfect horizontal order, where all particles
are in bonds and they form an infinitely long chain. In contrast
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FIG. 1. A two-state model of quasi-one-dimensional attractive
rods. A hard rectangle with length L and width D is shown in the
horizontal (left) and the vertical (right) states. The center of the
particle is restricted to the x axis. The range of the square-well
attraction is controlled by δ. The overlap between the gray regions of
any two particles is forbidden, while attraction can take place if the
pink regions overlap between two particles. The attraction between
two neighboring particles is feasible only if both are parallel to the x
axis.

to this, the close-packed structure is vertically ordered, i.e.,
the entropy must destabilize the horizontal order with in-
creasing density. In general, the entropy tries to maximize the
available microstates through the competition of orientational
and packing entropy terms. The orientational entropy favors
the random orientational order, while the packing one gives
rise to orientational and positional ordering. In this regard,
the hard-rod model is the famous example, which undergoes
an isotropic-nematic phase transition with increasing density.
In hard-rod models, the orientational entropy stabilizes the
isotropic phase, while the packing one is responsible for the
nematic one [51,52]. In the present model of hard rectangles
with attractive sites, we show that the energy gain is responsi-
ble for the horizontal order at low densities, while the packing
entropy gain gives rise to vertical order at high densities.
The competition between the horizontal and vertical ordering
can be enhanced with increasing the stickiness between the
particles, which can terminate into a phase transition. Here,
we show that even a first-order phase transition can occur in
the presence of extreme conditions even if the system is q1D.

II. ATTRACTIVE RECTANGLE MODEL AND THE
TRANSFER MATRIX METHOD

We consider a system of rectangular particles with their
centers confined to a straight line (see Fig. 1). The particles
are allowed to move freely on the line, but the orientational
freedom is restricted to a horizontal (−) and a vertical state
(|). In this two-state model both hard-body repulsion and
square-well attractions are present, i.e., the hard rectangles
with length L and width D are not allowed to overlap, but
they can attract each other in the horizontal states. Therefore,
the pair potential (u) is the well-known square-well potential
if both particles are oriented along the confining line, i.e.,

u−−(x) =

⎧⎪⎨
⎪⎩

∞, 0 � x � L

−ε, L < x � L(1 + δ)

0, x > L(1 + δ)

, (1)

where x is the distance between two particles, ε is the well
depth, and δ is the range of attraction. If one or both of the
particles are not in horizontal states, the interaction potential
is hard repulsive. Therefore, the pair potential for other pairs
of orientations is given by

u−|(x) = u|−(x) =
{∞, 0 � x � L+D

2

0, x > L+D
2

, (2)

and

u||(x) =
{∞, 0 � x � D

0, x > D
. (3)

At this point it is worth introducing the stickiness pa-
rameter (τ ), which connects the Baxter adhesive or sticky
hard-body fluids with the square-well one [53–55]. In the case
of 1D square-well pair potential, this can be written as

τ := 1/[(exp (βε) − 1) δ]. (4)

This equation comes from the equality of the second virial
coefficients of 1D square-well and sticky-pair potentials. The
adhesive limit of square-well potential can be obtained by
taking the δ → 0 and ε → ∞ limits with a condition that
the stickiness parameter remains finite. Note that a smaller
(higher) τ corresponds to a stronger (weaker) attraction be-
tween particles. It is also accepted that τ plays a role similar
to that of temperature. In the following we study square-well
and sticky fluids, where only nearest-neighbor interactions are
present. This condition delimits the range of the attraction into
0 < δ < 1. Firstly we study the strictly 1D case, where the
orientation of the rectangle is always horizontal. To determine
the thermodynamic properties of 1D fluids with short-range
attractions, the isobaric ensemble proved to be the best [18].
In this ensemble the Gibbs free energy (G) of strictly 1D fluids
can be determined from

g := βG

N
= − ln(K−−), (5)

where β = 1
kBT is the inverse temperature, N is the number

of particles, and K−− can be obtained from the horizontal-
horizontal pair potential (u−−(x)) as follows:

K−− =
∫ ∞

0
exp(−βu−−(x)) exp(−βPx) dx, (6)

where P is the horizontal pressure. It will turn out later that
this integral is one of the elements of a transfer matrix, which
is used for the two-state model. From the Gibbs free energy
it is easy to derive the equation of state using the standard
thermodynamic relationships. From G we can get the inverse
of the 1D number density (ρ) as follows:

1

ρ
= 1

β

∂g

∂P
. (7)

Inserting Eq. (1) into Eq. (6) and using Eq. (4), we get that

K−− = exp(−βPL)

βP

(
1 + 1 − exp (−βPLδ)

τδ

)
. (8)

Note that βε dependence is replaced with τ in Eq. (8). With
this trick we can connect the sticky fluid with the square-well
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one, because the sticky limit (δ → 0 and ε → ∞, while τ is
constant) simplifies Eq. (8) as follows:

K−− = exp(−βPL)

βP

(
1 + βPL

τ

)
. (9)

Substituting Eq. (8) into Eq. (7), we can obtain the exact
equation of state of 1D square-well fluid if 0 < δ < 1. Note
that van der Waals loop cannot occur in this system as the
density always increases with the pressure, i.e., there is no true
vapor-liquid phase transition. However, it can be proved that a
first-order vapor-liquid phase transition occurs in the δ → ∞
and ε → 0 limits, where all particles interact with all particles
[21,22].

The above formalism can be generalized for particles with
orentational degrees of freedom, too, using the transfer matrix
method [26]. In our two-state model, we must generalize
Eq. (6) as follow:

Ki j =
∫ ∞

0
exp(−βui j (x)) exp(−βPx) dx, (10)

where i, j = − and | describe the horizontal and vertical
orientational states, respectively. The K−− element is given
by Eq. (8), while the cross terms and the out-of-line terms can
be obtained from Eq. (10) using Eqs. (2) and (3), respectively.
One can easily show that

K|− = K−| = exp(−βP(L + D)/2)

βP
, (11)

and

K|| = exp(−βPD)

βP
. (12)

According to the transfer matrix theory, the largest eigen-
value of the 2 × 2 Ki j transfer matrix is related to the Gibbs
free energy, while the corresponding eigenvector can be used
to determine the fraction of particles at a given orientation
[24–26]. The eigenvalue equation is given by

∑
i=|,−

Ki jψ j = λψi, (13)

where λ and (ψ−, ψ|) are the eigenvalue and eigenvector of
the transfer matrix, respectively. The solution of Eq. (13) for

the eigenvalue comes from the following determinant:∣∣∣∣K−− − λ K−|
K|− K|| − λ

∣∣∣∣ = 0. (14)

As the determinant corresponds to a quadratic equation for
the eigenvalue, we get two solutions: λ1 and λ2. The largest
eigenvalue, which is given by λ = max(λ1, λ2), is related to
the Gibbs free-energy density:

g = − ln(λ). (15)

Using this formula for g, one can determine the equation of
state from Eq. (7) as before. The eigenvector of the largest
eigenvalue coming from Eq. (13) provides the fraction of
particles in “−” and “|” orientations. Using the normalized
solution of Eq. (13) for ψ− and ψ|, where the normalization
condition is prescribed by ψ2

− + ψ2
| = 1, the fractions of the

particles in horizontal and vertical directions are given by

x− = ψ2
− and x| = ψ2

| . (16)

From these mole fractions, it is easy to determine the
nematic order parameter, which measures the extent of ori-
entational ordering, since

S = x− − x|. (17)

We can see that S = 0 in the isotropic phase, S = 1 for
perfect horizontal, and S = −1 for perfect vertical order.
Therefore, we can distinguish three different structures with
this order parameter. Finally, we note that we use D to make
the pressure and the density dimensionless in the following
way: P∗ = βPD and ρ∗ = ρD.

III. RESULTS

In this section, we start with the 1D reference system,
where all particles are parallel to the x axis (see Fig. 1) and
behave as a 1D square-well fluid. In this case the equation of
state is analytical and exact for δ < 1. Using Eqs. (5), (7), and
(8) one can find that

1

ρ∗ = L

D
+ 1

P∗ − 1

α

exp(−P∗δ L/D) L/D

τ
, (18)

where α = 1 + (1− exp(−P∗δ L/D))/(δτ ). It goes without
saying that Eq. (18) becomes identical with the ideal-gas law
at very low pressures (P∗ = ρ∗) and ρ∗ goes to D/L in the
limit of P∗ → ∞, which corresponds to the close-packing
density of the system. Note that Eq. (18) provides the density
as a function of pressure. In the sticky limit (δ → 0) it is even
possible to express the pressure as a function of density in the
following form:

P∗ = 2ρ∗

1 − ρ∗L/D +
√

(1 − ρ∗L/D)2 + 4ρ∗L/D (1 − ρ∗L/D)/τ
. (19)

In Fig. 2 we show the equation of state for several values
of the stickiness parameter (τ ) at L/D = 5. On can see that
the maximum value of ρ∗ is 0.2, which corresponds to the
close-packing density. At this value of density the pressure

must diverge for any value of τ . It can be shown that Eq. (19)
becomes identical with the Tonks equation of state of hard
rods in the τ → ∞ limit, where P∗ = ρ∗/(1 − ρ∗L/D). We
can also see in Fig. 2 that the contribution of the attraction
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FIG. 2. Equation of state of one-dimensional sticky hard rods in
pressure (P∗ = βPD) vs density (ρ∗ = ρ D) plane. All particles are
oriented along the x axis and L/D = 5. The curves are the results of
Eq. (19).

does not result in a loop in the equation of state, i.e., true phase
transition cannot occur in the fluid of sticky hard rods. The
effect of attraction is that the pressure can be lowered with
decreasing τ , but the shape of the curve does not change. This
happens in the fluid of square-well particles [see Eq. (18)],
too, where only nearest-neighbor interactions take place.

We now continue with the two-state system, where the
vertical-horizontal and the vertical-vertical interactions are
purely repulsive [see Eqs. (2) and (3)]. We can see in Fig. 3
that adding the vertical orientational freedom to the system
changes the phase behavior dramatically. To understand this
unusual behavior, we start with the case of weak attraction
(τ > 1), where the hard-body interactions are dominant. In
the hard-body limit, i.e., α = 1, the transfer matrix method
results in a generalized Tonks equation of state of 1D hard
rods, where the packing fraction (η) depends on the pressure.

FIG. 3. Equation of state of quasi-one-dimensional sticky hard
rods in the pressure (P∗ = βPD) vs density (ρ∗ = ρ D) plane. The
inset shows the nematic order parameter (S) as a function of pressure.
For all curves: L/D = 5.

It is easy to show using the transfer matrix method that the
equation of state of the two-state hard rectangle model is given
by

βP∗ = ρ∗

1 − η
, (20)

where η = ρ∗(x−L/D + x|) is the packing fraction along the
line. The fraction of rectangles along the horizontal and verti-
cal directions can be obtained from

x− = exp(−P∗L/D)

exp(−P∗L/D) + exp(−P∗)
, and

x| = exp(−P∗)

exp(−P∗L/D) + exp(−P∗)
. (21)

At very low pressures, Eq. (21) shows that x| = x−, i.e.,
the phase is isotropic in the ideal-gas limit. With increasing
pressure, it becomes more and more favorable to stay in the
vertical state if L/D > 1, because the occupied length of a
single particle is L-D distance lower in the vertical state than
in the horizontal one. In the close-packing limit, when the
pressure is extremely high, all particles orient perpendicularly
to the confining line as Eq. (21) gives x| = 1 and x–– = 0.

Regarding the attractive rods, the transfer matrix method
does not provide simple equations for the equation of state,
x| and x− fractions, but they simplify to Eqs. (20) and (21)
in the limit of τ → ∞. Our results for the equation of state
and the order parameter are presented in Fig. 3 for the sticky
case (δ → 0). We can see that the vertical ordering starts at
relatively low pressures (P∗ ∼ 1) for L/D = 5 even if the at-
tractive forces are against the vertical order. In this phase, the
system behaves like a gas of hard rods with length D, where
the pressure is given by βP∗ = ρ∗/(1 − ρ∗) for any value of
τ . Note that we can get this result if x| = 1 and x− = 0 are
inserted into Eq. (20). In the case of τ > 1, the nematic order
parameter (S) is decreasing monotonically, because the ener-
getic gain is not enough to compensate the packing entropy
loss. In contrast to this, the energy plays a crucial role at low
and intermediate densities for τ < 1, where the energy gain
stabilizes the horizontal order and S saturates at 1. Due to the
strong attraction, the particles stay parallel to the x axis up to
the close-packing density of the horizontal phase, where the
pressure would diverge without the out-of-line orientational
freedom. This divergence happens at ρ∗ = D/L. Note that
even the equation of state of sticky rods [Eq. (19)] can be
applied when S ≈ 1. We can see that the pressure range of
horizontal order and the validity range of Eq. (19) extends
with decreasing τ , which is due to the strengthening attraction.
Above the horizontal close-packing density, the particles must
change orientation as the vertical close packing density is al-
ways 1. In the case of L/D = 5, we can accommodate 5 times
more particles in the vertical state than in the horizontal one.
Therefore, it is entropically beneficial to undergo a structural
change from the horizontal to the vertical phase. We can see
in Fig. 3 that the structural change is accompanied with a
sudden change of ρ∗ and S with increasing pressure for τ < 1.
As τ decreases, this change happens between almost-perfect
horizontal and vertical phases as S changes from 1 to −1. In
addition to this the equation of state becomes very flat and
widens with decreasing τ . This reminds us of a first-order
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FIG. 4. Equation of state of quasi-one-dimensional sticky hard
rods in the pressure (P∗ = βPD) vs density (ρ∗ = ρ D) plane for
several shape anisotropies (κ), where κ = L/D. For all curves: τ =
10−3.

phase transition, where the coexisting densities are connected
with horizontal tie line at the transition pressure. It is also
interesting that the width of the flat region of the equation of
state widens with decreasing τ . We found that the flat region
extends up to D/L < ρ∗ < 1 with τ → 0, but the pressure
of the flat region diverges logarithmically. Therefore, the flat
region of the equation of state extends to the whole density
range for needles (L/D → ∞) if τ → 0. The dependence of
the structural change on L/D at τ = 10−3 is shown in Fig. 4,
where the lower bound of the horizontal-to-vertical structural
transition occurs approximately at ρ∗ = D/L, which corre-
sponds to the close-packing density of the horizontal phase.
However, we can see that the upper bound of ρ∗ has a very
strong dependence on both L/D and τ . If τ goes to zero, the
upper bound of the structural transition must go to the close-
packing density of the vertical phase, i.e., ρ∗ = 1, because the
transition pressure diverges. We can also see that the density
gap vanishes in the L/D → 1 limit; therefore, the structural
transition disappears for square particles.

To get a deeper insight into the phase behavior of the sys-
tem, it is useful to examine the role of matrix elements of the
transfer matrix. We know that the phase behavior of horizontal
order can be described with K− − element, while K|| accounts
for the vertical one. The role of off-diagonal (K−|) element is
to link the low- and high-density structures and to produce ex-
act results in the ideal-gas limit. If this element is neglected in
the matrix, which is called a level-crossing approximation, we
can examine the competition between the horizontal and verti-
cal structures. In this approximation, the eigeinvalue of 2 × 2
diagonal matrix can be obtained from λ = max(K− −, K||)
and the corresponding mole fractions x− = 1(x− = 0) if K− −
is higher (lower) than K||. In Fig. 5 we compare the ex-
act results coming from Eqs. (14) and (15) with the results
of level-crossing approximation for the Gibbs free energy
and the equation of state. We can see that g = − ln(K−−)
and g = − ln(K||) curves cross each other and overestimate
slightly the exact Gibbs free energy. With lowering pressure

FIG. 5. The effect of the level-crossing approximation on the
Gibbs free energy (upper panel) and the equation of state (lower
panel). The curves in the figure: g = − ln(λ) (continues), g =
− ln(K−−) (green dashed-dotted), and g = − ln(K||) (red dashed-
dotted). The vertical blue dashed line connects the coexisting phases.
The corresponding equation of states come from 1/ρ = dg/d (βP).
For all curves: L/D = 5 and τ = 10−3. The quantities are dimension-
less: ρ∗ = ρ D, P∗ = βPD, and g = βG/N .

g = − ln(K−−) merges with the exact g, while g = − ln(K||)
does the same with increasing pressure. The poorest agree-
ment occurs where the two curves cross each other. This cross
point corresponds to a first-order phase transition on the level
of approximation, because the pressures and the chemical po-
tentials of the horizontal and vertical structures are the same.
From K−− = K|| condition, which occurs at the cross point,
we get the transition pressure in the following form:

P∗
−| = ln α

L/D − 1
. (22)

Using this pressure, we can obtain the coexisting den-
sity of the horizontal structure from Eq. (18) and that of
the vertical one from the equation of state of the Tonks
gas given by βP∗ = ρ∗/(1 − ρ∗). As the transition pressure
diverges with τ → 0, the transition densities go to the close-
packing densities of horizontal and vertical structures, i.e., the
phases with ρ∗

− = 1
L/D and ρ∗

| = 1 are in phase coexistence in
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the limit of τ → 0. Since the agreement between the level-
crossing approximation and the exact results improves with
decreasing stickiness parameter, a first-order phase transition
occurs between the horizontal and the vertical structures in
the limit of τ → 0. As the first-order phase transitions satisfy
the so-called lever rule, the present sticky-rod system should
obey it in the limit of τ → 0, too. Let us assume that N−
particles in the volume V − coexist with N | particles in the
volume V |, where ─ and | denote the horizontal and vertical
phases, respectively. We mention that both phases are allowed
to have particles with horizontal and vertical orientations.
Therefore, in general we can only say that the majority of
the particles are horizontal in ─ phase, and vertical in | one.
Moreover, the total number of particles (N) and the volume
of system (V ) satisfy N = N− + N | and V = V − + V | [56].
Then, the volume ratios v− = V −/V and v| = V |/V must
obey ρ = ρ−v− + ρ+v+, where ρ = N/V is the total number
density, and ρ− = N−/V − and ρ| = N |/V | are the densities
of coexisting phases. This is the so-called lever rule. Using
v− + v| = 1 we can express v− as a function of ρ as follows:

v− = (ρ − ρ|)/(ρ− − ρ|), (23)

where ρ− � ρ � ρ|. This shows that the volume ratio is lin-
early dependent on density. A similar formula can be derived
for the number ratio of the coexisting phases as

x− = (1/ρ − 1/ρ|)/(1/ρ− − 1/ρ|), (24)

where x− = N−/N is the fraction of particles in the phase
─. In this case x− depends linearly on 1/ρ. In the case of
level-crossing approximation, Eqs. (23) and (24) are fulfilled
exactly because there is no pressure value where ρ is between
ρ− and ρ|. In the exact transfer matrix calculations, we can
assume that the coexisting densities are identical with the
coexisting densities coming from the level-crossing approx-
imation. Moreover, it is quite feasible that the horizontal and
vertical particles do not mix for ρ− � ρ � ρ|, i.e., x− ≈ x−
is a reasonable approximation of the reality. To check the
validity of the above assumptions, we determine x− as a
function of 1/ρ, where x− and 1/ρ are the exact results of
the transfer matrix method. As the volume fraction can be ex-
pressed as v− = ρx−/ρ−, v− can be obtained in the biphasic
region using x− ≈ x−, where ρ− is the result of level-crossing
approximation. To check the validity of the lever rule, we
plot v− (x−) as a function of ρ (1/ρ) for sticky hard rods in
Fig. 6. To see the deviation from the lever rule, Eqs. (23) and
(24) are also presented using the level-crossing approximation
results for ρ− and ρ|. We can see that transfer matrix results
get closer to the lever-rule curves with decreasing τ . As the
agreement between them is already very good at τ = 10−3,
the collapse of lever-rule curves and the transfer matrix results
must happen in the limit of τ → 0. As an additional check of
the lever rule, we calculated the fraction of interfacial regions
(x−| + x|−), where a horizontal particle is the neighbor of a
vertical particle [57]. We can see in Fig. 6 that number of
horizontal and vertical neighbors goes to zero with decreasing
stickiness parameter, i.e., x−| → 0 with τ → 0. This finding
validates our assumption that x− ≈ x−.

It is a well-known fact that the stickiness parameter of
the sticky particles can be replaced with the second virial
coefficient (B2). In the system of 1D sticky hard rods, it can

FIG. 6. The check of the lever rule for the horizontal to the
vertical structural transition of sticky hard rods. The volume ratio
of the horizontal order (v− = V −/V ) as a function of density is
shown in the upper panel, while the fraction of horizontal particles
(x−) and the fraction of horizontal and vertical pairs (x−| + x | −) are
presented as a function of inverse density in the lower panel. The
dashed curves correspond to the exact results, while the dotted black
ones come from the level-crossing approximation. The dashed-dotted
curves represent the fraction of horizontal and vertical pairs. For all
curves: L/D = 5.

be shown that

B∗
2 = B2/L = 1 − 1/τ. (25)

Therefore, the equation of state of sticky particles can be
expressed as a function of packing fraction (η = ρL) and B∗

2,
i.e., βPL = f (η, B∗

2 ). In three dimensions, it is found that the
above results for hard spheres with short-range attraction is
also valid if the range of the attraction does not exceed about
10% percent of the particle’s diameter [58,59]. In addition to
this, the resulting vapor-liquid binodal is universal in B∗

2 vs
η plane, i.e., the binodals of different systems collapse into a
single master curve for very short-range attractions [60]. This
is the so-called extended law of corresponding states (ELCS).
We check whether our attractive rod systems follows the
ELCS or not if B∗

2 is kept fixed, but the range of the attraction
(δ) is varied. Our transfer matrix results using Eqs. (8), (11),
and (12) for the equation of state are shown in Fig. 7. We
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FIG. 7. The equation of state and the level-crossing phase dia-
gram of the two-state attractive rods. For all curves: L/D = 5 and
τ = 10−3. The quantities are dimensionless: ρ∗ = ρ D and P∗ =
βPD.

can see that the increasing δ does not change the shape of the
curves, but it lowers the pressure of the structural transition
between horizontally and vertically ordered structures. Re-
garding the equation of state, we can see that it is independent
of δ in the vertical ordering as the high-density phase behavior
depends on the K|| matrix element, which does not depend on
δ. However, this is not true in the horizontal structure, because
K−− determines the phase behavior, which depends on δ [see
Eq. (8)]. Therefore, it is not surprising that the equation of
state depends on δ, too. In the strict sense, this means that
the ELCS is not valid for 1D square-well fluid, because the
effect of δ cannot be built into B∗

2 and βPL = f (η, B∗
2, δ). The

δ dependence of the pressure changes the horizontal-vertical
phase coexistence curve coming from the level-crossing ap-
proximation. This can be seen clearly in Fig. 7, where the
phase diagram is presented in τ vs η plane. The lack of the
collapse of the curves indicates that B∗

2 vs ρ∗ does not form a
master curve for 1D particles with short-range attractions. We
can say that the details of short-range pair interactions cannot
be built into the second virial coefficient to describe the phase

behavior of 1D systems. However, the difference between the
curves is quite small when δ < 0.05.

IV. CONCLUSIONS

We have studied the equilibrium phase behavior of the q1D
system of hard rectangles with two attractive sites at the ends.
Due to the presence of first-neighbor interactions only, the
transfer matrix method provides exact results for the ordering
properties and the equation of state. Using this method, the
well-known Tonks equation can be reproduced for 1D hard
rods without attractive sites and vertical orientational freedom
[15]. Adding attractive sites to the rectangles, the phase be-
havior is changed as the particles associate and form chains.
However, the short-range interactions cannot produce vapor-
liquid phase separation in accordance with the van Hove
theorem [19,20]. The situation changes dramatically with the
inclusion of one extra out-of-line orientational freedom, i.e.,
when the particle’s orientation can be both horizontal and ver-
tical, because the entropy favors the vertical ordering, while
the association energy favors the horizontal one. The com-
petition between the energy and the entropy gives rise to a
structural change between horizontally and vertically ordered
phases, which becomes more pronounced as the attraction is
stronger. The contribution of the attraction can be controlled
by the stickiness parameter τ , which is inversely proportional
to the attractive part of the second virial coefficient, i.e., τ →
0 corresponds to an infinitely strong attraction. It is found in
the limit of τ → 0 that the horizontal structure survives up
to the close-packing density of the horizontal order, which is
in phase coexistence with a vertical structure. Moreover, the
purely vertical structure exists only in the close-packing limit,
where the pressure is infinite. It is important to emphasize that
the horizontal and vertical particles do not mix in the two-
phase region as the lever rule becomes exact and the fraction
of neighboring particles with different orientations goes to
zero if τ → 0. Moreover, the density gap between the hori-
zontal and vertical structures widens with increasing aspect
ratio of the rectangle. In the limit of L/D → ∞ and τ → 0,
the horizontal order exists only at the vanishing density, while
the vertical one exists at the close-packing one. Therefore, the
validity range of the lever rule extends for the whole density
range in this special limit. Note that the van Hove theorem
is only violated in the limit of τ → 0, where the off-diagonal
elements of the transfer matrix become negligible with respect
to the diagonal ones. It is interesting that there is no true phase
transition at any nonzero value of τ , but a structural change
happens from the horizontal ordering to the vertical one with
increasing density. This structural change is reminiscent of a
first-order phase transition as the pressure has a very weak
density dependence in the density region, which is bounded by
the level-crossing coexisting densities. The limiting first-order
phase transition is not terminated by a critical point, which
suggests that the nature of this phase transition is different
from the vapor-liquid one. Therefore, it may be related to
fluid-solid transitions occurring in higher dimensions, where
the fluid-solid transition never terminates in a critical point.

We have also tested the validity of the extended law of
corresponding state in our q1D system, since this law was de-
vised originally for three-dimensional spherical particles with
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short-range attractions [60]. In contrast to three-dimensional
systems, where no exact results are available to check this
empirical law, the equation of state can be determined ex-
actly in 1D systems with short-range attractions. We have
found that horizontal rectangles with two attractive sites do
not obey this law, because the equation of state depends on
the range of the attraction at given values of the density and
the second virial coefficient. The deviation in the pressure vs
density curves can be quite big in the vicinity of the horizontal
close-packing densities as the attraction range is increased.
This can be the reason why this law can be used only for
vapor-liquid phase transition in higher dimensions. However,
this law can be applied in one dimension, too, if the density
is low. This can be also seen in the level-crossing phase
diagram of our system, where the phase boundaries move
with the range of the attraction. Generally speaking, we can
say that the extended law of corresponding state is approxi-
mate in all physical dimensions and valid only in the sticky
limit [55].

Even though, our study is restricted to the two-state ori-
entational model, which may exaggerate the change of the
nematic order parameter upon increasing the pressure, the
competition between the association energy and the entropy
survives in the continuum limit of the orientation, which
results in a horizontal-to-vertical structural transition. For ex-
ample, the hard needles prefer the ordering along the vertical
direction with increasing pressure and exhibit weaker nematic
ordering in the continuum limit than in the two-state model

[25]. No doubt, this is due to the randomizing effect of the
orientational entropy, which has higher contribution in the
continuum limit. Therefore, it is quite feasible that the struc-
tural change occurs at higher pressure in the case of freely
rotating rectangles, because both the orientational entropy and
association energy are against the vertical orientational order.

We believe that our model system is not only interesting for
its equilibrium phase properties, but it may serve as a good
toy model to study the jamming properties and the glassy
behavior of q1D systems. For example, the system of freely
rotating hard rectangles exhibit jamming at the close packing
because the orientational correlation length is diverging [29].
The two-state model of hard rectangles in the presence of
aligning external field shows a hysteresis in the equation of
state and a two-step decay is observed in the orientational
persistence, which are typical glassy behaviors [31]. As both
the attractive sites and the aligning external field force the
rectangles to be horizontal, we expect similar glassy behavior
in the attractive hard-rectangle model, too. We leave the issues
of jamming and glass formation of the present system for
future studies.
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