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Holographic analysis of colloidal spheres sedimenting in horizontal slit pores
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The mobility of a colloidal particle in a slit pore is modified by the particle’s hydrodynamic coupling to the
bounding surfaces and therefore depends on the particle’s position within the pore and its direction of motion. We
report holographic particle tracking measurements of colloidal particles’ diffusion and sedimentation between
parallel horizontal walls that yield the mobility for motions perpendicular to the walls, including its dependence
on height within the channel. These measurements complement previous studies that probed colloidal mobility
parallel to confining surfaces. When interpreted with effective-medium theory, holographic characterization
measurements yield estimates for the sedimenting spheres’ densities that can be compared with kinematic values
to draw insights into the spheres’ compositions. This comparison suggests, for example, that the silica spheres
used in this study are slightly porous, but that their pores are too small for water to penetrate.
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I. INTRODUCTION

Colloidal particles are coupled to each other and to
the walls of their containers by hydrodynamic interactions.
Hydrodynamic coupling modifies how colloidal particles re-
spond to external forces and collectively contributes to their
dispersions’ rheological properties. Developing analytical ex-
pressions for colloidal particles’ mobility is impractical for all
but the simplest systems. Here, we revisit one such archetypal
system comprised of a single colloidal sphere confined to the
gap between two rigid horizontal planar walls.

Previous experimental studies have used dynamic light
scattering [1], multiple light scattering [2], and conventional
video microscopy [3–5] to measure the mobility of col-
loidal spheres confined by parallel walls. Light scattering
techniques, however, average over the height of the chan-
nel and so do not probe how the particle’s mobility varies
with its position in the channel. The limited depth of focus
of conventional microscopy similarly has prevented particle-
tracking studies from assessing the full position dependence
of the mobility [4,5]. Dynamic stereo microscopy has been
used to track micrometer-scale colloidal spheres sediment-
ing onto a single horizontal surface [6]. The particles’ radii
in such imaging measurements are estimated indirectly by
analyzing thermal fluctuations or are treated as adjustable
parameters. The resulting lack of precision in particle size
limits how much information can be extracted about the
particles’ coupling to the surrounding fluid and bounding
surfaces.

The present study rounds out the experimental literature on
this canonical system by measuring how a sphere’s mobility
perpendicular to the parallel walls of a rectangular channel
depends on its height within the channel. These measurements
use holographic video microscopy to track individual spheres’
three-dimensional motions with nanometer-scale precision as
they freely sediment from the top wall of the channel to the
bottom. Spheres are reproducibly positioned at the top wall
using holographic optical traps.

We interpret the results of these measurements with an
implicit formulation of the sphere’s trajectory in the linear
superposition approximation. The result is parametrized by
the sphere’s radius relative to the channel depth and by the
sphere’s buoyant mass density. Holographic tracking has the
advantage over other techniques of directly measuring the
sphere’s radius with nanometer precision. The wall separation
consequently can be inferred from the measured trajectory.
Holographic microscopy therefore provides a kinematic es-
timate for the sedimenting sphere’s density.

Holographic characterization also yields the sphere’s
refractive index with part-per-thousand precision. Effective-
medium theory then provides an independent estimate of
the sphere’s density. Comparisons between kinematic and
holographic density estimates offer useful insights into the
sphere’s composition while also serving to validate the
effective-sphere interpretation of holographic characterization
data [7,8].

II. LORENZ MIE MICROSCOPY

Figure 1(a) schematically represents the measurement
system. A beam of collimated laser light with vacuum wave-
length λ and frequency ω illuminates a colloidal particle
dispersed in a fluid medium of refractive index nm. The elec-
tric field of this beam may be modeled as a plane wave
polarized along x̂ and propagating along the vertical ẑ axis,

E0(r) = u0 eikze−iωt x̂. (1)

Here, u0 is the beam’s amplitude and k = 2πnm/λ is the wave
number of light in the medium. Our implementation uses a
fiber-coupled diode laser (Coherent Cube) operating at λ =
447 nm. The 10 mW beam is collimated at 3 mm diameter,
which more than fills the input pupil of an objective lens
(Nikon Plan Apo, 100×, numerical aperture 1.4, oil immer-
sion). In combination with a 200 mm tube lens, this objective
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FIG. 1. Schematic representation of the holographic sedimenta-
tion measurement. (a) A colloidal sphere with radius ap is confined
to a channel of width H . The sphere is illuminated with a collimated
laser beam as it moves through the channel in three dimensions.
(b) Light scattered off of the sphere interferes with the rest of the
illumination to produce a hologram. This hologram may be inter-
preted with Lorenz-Mie theory to yield simultaneous measurements
of ap, the sphere’s axial position, zp, and the sphere’s refractive index,
np. (c) The sphere’s hydrodynamic mobility μ depends on its axial
position zp according to Eq. (7) due to hydrodynamic coupling to the
walls.

relays images to a gray scale camera (FLIR Flea3 USB 3.0)
with a 1280 pixel × 1024 pi pixel × el sensor, yielding a sys-
tem magnification of 48 nm/pixel.

A colloidal particle located at rp relative to the center of
the microscope’s focal plane scatters a small proportion of the
illumination to position r in the focal plane of the microscope,

Es(r) = E0(rp) fs(k(r − r0)). (2)

The scattered wave’s relative amplitude, phase, and polar-
ization are described by the Lorenz-Mie scattering function,
fs(kr), which generally depends on the particle’s size, shape,
orientation, and composition. For simplicity, we model the
particle as an isotropic homogeneous sphere, so that fs(kr)
depends only on the particle’s radius, ap, and its refractive
index, np [9–11].

The microscope magnifies the interference pattern formed
by the superposition of incident and scattered waves and the
camera records its intensity. Each snapshot in the camera’s
video stream constitutes a hologram of the particles in the
observation volume. The image in Fig. 1(b) shows a typical
hologram of a colloidal silica sphere recorded at λ = 447 nm
with a system magnification of 48 nm/pixel.

The distinguishing feature of Lorenz-Mie microscopy is
how it extracts information from recorded holograms. Rather
than using diffraction integrals to reconstruct the volumetric
light field responsible for the recorded hologram, Lorenz-Mie
microscopy instead treats the analysis as an inverse problem,
modeling the hologram as [12]

I (r) = u2
0 |x̂ + e−ikzpfs(k(r − rp))|2 + I0, (3)

where I0 is the calibrated dark count of the camera. Fit-
ting Eq. (3) to a measured hologram yields the particle’s
three-dimensional position, rp = (xp, yp, zp), as well as its
radius, ap, and its refractive index, np, at the imaging

wavelength. Lorenz-Mie measurements on micrometer-scale
spheres typically yield tracking and characterization results
with exceptionally good precision [7]. The uncertainties in
the in-plane coordinates are σxp = σyp = 2 nm over a field of
view extending to 100 μm. The vertical coordinate is less well
resolved, with an uncertainty of σzp = 5 nm over a range of
100 μm. The uncertainty in the radius is typically σap = 2 nm
and the uncertainty in the refractive index is σnp = 0.001.

III. HOLOGRAPHIC OPTICAL TRAPPING

We position colloidal spheres reproducibly within the
channel with optical tweezers and then release them to track
their motions. Our traps are created with the holographic op-
tical trapping technique [13] using the microscope’s objective
lens to focus computer-generated phase-only holograms into
the sample. The trapping system is powered by a fiber laser
operating at a vacuum wavelength of 1064 nm (IPG Photonics
YLR-10-LP) and uses a liquid-crystal spatial light modulator
(Holoeye Pluto) to imprint holograms on the light’s wave
fronts. The modified beam is relayed into the objective lens
with a dielectric multilayer dichroic mirror (Semrock), which
permits simultaneous holographic trapping and holographic
imaging.

Figure 2 presents the results from a typical holographic
analysis of a silica sphere’s sedimentation. This sphere is
drawn from a commercial sample with a nominal radius of
ap = 0.75 μm (Duke Standards, catalog no. 8150) and is dis-
persed in water. The sample is confined to the gap between
a glass microscope slide and a glass no. 1.5 coverslip whose
edges are bonded to the slide with optical adhesive (Norland
NOA68). The separation between the inner glass surfaces is
set to roughly H ≈ 20 μm by capillary forces before the cell
is sealed.

Figure 2(a) shows the sphere’s axial position as a function
of time, measured at 24 framess−1. Fluctuations in zp(t ) reflect
the sphere’s Brownian motion; measurement errors are too
small to see at the scale of the plot. The discrete points in
Fig. 2(b) reflect values for the sphere’s radius and refractive
index obtained at each time step and are colored by the density
of observations, P(ap, np). The mean value for the refrac-
tive index, np = 1.433(9), is consistent with expectations for
slightly porous silica [14]. We use the trajectory-averaged
radius, ap = 0.814 ± 0.007 μm, to interpret the results. For
example, the plateaus in zp(t ) at the beginning and end of the
trajectory correspond to the particle being pressed against the
upper wall of the channel by the optical tweezer and sitting
against the lower wall due to gravity, respectively. Given the
measured particle radius, we therefore can estimate the posi-
tions of the upper and lower walls of the channel, which are
indicated by the horizontal dashed lines in Fig. 2(a).

IV. CONFINED SEDIMENTATION

A small dense sphere sediments through a viscous fluid
under the influence of gravity at a rate

dzp

dt
= −μ(zp) �mp g (4a)
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FIG. 2. Simultaneous holographic measurements of (zp, ap, np) for a 1.5 μm diameter silica sphere as it sediments between two walls.
(a) The particle’s trajectory zp(t ) (black) is fitted to Eq. (12) to obtain the red curve and hydrodynamic estimates for the positions of each wall,
z0 = 6.1 μm, H = 16.9 μm, as well as the buoyant mass of the particle, �mp, which may be interpreted to determine its hydrodynamic density,
ρH = 2.05(3)e3 kg/m3, using holographic estimates of its radius. (b) Measurements of ap and np at each time step yield trajectory-averaged
values of ap = 0.814 ± 0.007 μm and np = 1.433(9). Applying effective-medium theory to these values yields an independent estimate for
the particle’s density, ρp = 2.06(4)e3 kg/m3, assuming the particle’s pores to be empty.

that depends on its position-dependent mobility, μ(zp), the
acceleration due to gravity, g, and the sphere’s buoyant mass,

�mp = 4
3πa3

p (ρp − ρm), (4b)

where ρp and ρm are the mass densities of the particle and the
medium, respectively. Equation (4a) neglects inertial effects
under the assumption that the motion is overdamped, which is
reasonable for micrometer-scale colloidal spheres in water.

The mobility of a sphere moving through an unbounded
fluid with viscosity η is given by the Stokes formula,

μ0 = 1

6πηap
. (5)

Confining the sphere within a channel reduces its mobility
through hydrodynamic coupling to the walls. The mobility
depends both on the sphere’s height, zp, within the channel
and also on the direction of motion. The mobility for a sphere
moving toward a rigid horizontal surface is well approximated
by Faxén’s result [15]

μ(h)

μ0
= 1 − 9

8

ap

h
+ 1

2

a3
p

h3
+ O

{
a4

p

h4

}
, (6)

where h = zp − z0 is the sphere’s height above a wall located
at z0 along ẑ.

Coupling to a pair of parallel walls is far more complicated
because of the need to satisfy no-flow boundary conditions
on both rigid surfaces [16]. Provided the sphere does not fill
too large a proportion of the channel’s wall-to-wall separation,
H , the mobility can be approximated with Oseen’s linear
superposition approximation [4,8,15],

μ(zp)

μ0
≈ 1 − 9

8

ap

zp − z0
− 9

8

ap

H − zp + z0
. (7)

This functional form is plotted in Fig. 1(c). Equation (7) has
been found to agree quantitatively with numerical solutions to
the Navier-Stokes equation for ap/H � 0.1 [17].

Using Eq. (7) for the confined sphere’s mobility, Eq. (4a)
can be recast into dimensionless form,

dζ

dτ
= α2 − ζ 2

1 − ζ 2
, (8)

by defining the dimensionless position,

ζ = 2
zp − z0

H
− 1, (9)

the dimensionless time,

τ = μ0 �mp g
2

H
(t − t0), (10)

relative to the time, t0, that the particle reaches the midplane
of the chamber, and a geometric parameter,

α =
√

1 − 9

2

ap

H
. (11)

The particle begins its trajectory at ζ = 1 − 2ap/H and de-
scends to height ζ (τ ) by time

τ (ζ ) =
(

α − 1

α

)
arctanh

(
ζ

α

)
− ζ , (12)

which is obtained by integrating Eq. (8). The arrival time
diverges when α � 0 or ap � 0.22H , which sets the domain
of validity for Eq. (12). The former limit requires that the
sphere be more dense than the medium. The latter is consistent
with the linear superposition approximation for the mobility.
For ap/H = 0.15, corrections to μ(zp) of order (ap/H )3 con-
tribute a 10 % correction to τ (ζ ).

The smooth (red) curve superimposed on the trajectory
data in Fig. 2(a) is a three-parameter fit to Eq. (12) for the posi-
tions of the two walls of the chamber and the sphere’s buoyant
mass. The sphere’s density is obtained from the buoyant mass
using the holographically measured radius. Taking the density
of water to be ρm = 997 kgm−3, the hydrodynamic estimate
for the density of the sphere is ρH = 2.05(3)e3 kgm−3. This
value is slightly smaller than the density of amorphous silica,
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FIG. 3. Trajectories for three sizes of silica spheres sedimenting in three different channels. (a) Ten trajectories from each particle type:
ap/H = 0.03 (green), ap/H = 0.06 (blue), and ap/H = 0.12 (red). Trajectories from each particle type are shifted along t for readability.
(b) Data collapse in the linear superposition approximation. The master curve from Eq. (15) is plotted as a dashed (white) curve superimposed
on the data.

ρ0 = 2.2 × 103 kgm−3 [14,18], which suggests that the sphere
is slightly porous.

Effective medium theory

The refractive index of a porous particle reflects properties
of both the particle’s base material and also the material filling
its pores. Given a base material with refractive index n0, and
assuming the pores are small, evenly dispersed throughout the
particle, and filled with a material of refractive index n1, the
porous particle’s effective refractive index, np, is related by
Maxwell Garnett effective-medium theory [19] to n0 and n1

by [20,21]

L
( np

nm

)
= φ L

( n0

nm

)
+ (1 − φ) L

( n1

nm

)
, (13a)

where φ is the volume fraction of base material in the particle
and where

L(m) = m2 − 1

m2 + 2
(13b)

is the Lorentz-Lorenz function.
Equation (13) can be used to estimate the particle’s volume

fraction, φ, from the holographically measured value of np

together with a priori knowledge of n0 and n1. This approach
has been validated through studies on nanoporous colloidal
spheres [7,20,21], fractal protein aggregates [22], fractal
nanoparticle agglomerates [23,24], and dimers of spheres
[25]. For the present study, n0 = 1.465 is the refractive index
of amorphous silica at λ = 447 nm [26] and n1 = nm = 1.340
if the pores are filled with water [27]. Alternatively, if the
pores are too small or inaccessible to imbibe water [14] then
n1 = 1.

Given the volume fraction of the particle, its mass density
follows from

ρp = ρ0φ + ρ1(1 − φ), (14)

where ρ1 is the mass density of the material in the pores.
For a silica sphere dispersed in water, ρ0 = 2.2 × 103 kgm−3

[14,18] and ρ1 = ρm = 997 kgm−3 if water permeates its
pores. Alternatively, ρ1 = 0 if the pores are empty.

Applying this result to the holographic characteriza-
tion data in Fig. 2(b) yields an optical estimate for the
sphere’s mass density of ρp = 1.90(9)e3 kgm−3 if the pores
are saturated with water. This value increases to ρp =
2.06(4)e3 kgm−3 if we assume instead that the pores are
empty. The hydrodynamic estimate agrees with this value only
if the pores are assumed to be empty. This is consistent with
independent measurements performed with spin-echo small
angle neutron scattering [28] and with helium and Gay-Lussac
pycnometry [14], both of which suggest that the pores in
Stöber-condensed silica spheres are too small or inaccessible
for water to penetrate.

V. RESULTS

Figure 3(a) presents results from holographic sedimenta-
tion measurements on three different sizes of silica spheres
in channels of different heights. The smallest spheres (green)
have a nominal radius of ap = 0.84 μm (Duke Standards,
catalog no. 8150) and are dispersed at a volume fraction of
10−7 particlesm−1L in a channel of height H = 25μm, so that
ap/H = 0.03, which falls within the valid range for the linear
superposition approximation. The intermediate-sized spheres
(blue) at ap = 1.19 μm (Bangs Laboratories, catalog no.
SS05000) are confined in a channel with H = 19 μm, yield-
ing ap/H = 0.06. The largest spheres (red) at ap = 1.54 μm
(Bangs Laboratories, catalog no. SS05001) are confined in the
narrowest channel, H = 13 μm. These particles fill a large
enough fraction of the channel, ap/H = 0.12, for deviations
from the linear superposition approximation to become ap-
parent. Each of the three data sets includes two independent
experiments on each of five different spheres. The largest
trajectory fluctuations are seen in the smallest spheres and can
be ascribed to Brownian motion. Each data set is fit to Eq. (12)
for �mp, z0, and H , using the holographically measured value
of ap to compute the geometric factor, α, using Eq. (11).
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FIG. 4. Comparison of the estimates for hydrodynamic density,
ρH , and optical density, ρp, for a representative particle from each of
the three particle types. Limiting values of ρp are plotted for empty
pores (circles: n1 = 1, ρ1 = 0) and filled pores (triangles: n1 = nm,
ρ1 = ρm). The dashed (black) line represents the identity ρp = ρH .

To the extent that the approximations underlying Eq. (7)
are valid, trajectories of sedimenting spheres should fall on a
master curve obtained by rearranging Eq. (12):

ζ

α
= tanh

( α

α2 − 1
(ζ + τ )

)
. (15)

Figure 3(b) shows that all three data sets from Fig. 3(a)
collapse onto the master curve when recast in this form.
Brownian fluctuations cause sizable random deviations for the
smallest particles (green). The trajectories of the most strongly
confined particles (red) deviate systematically from the mas-
ter curve near contact with the walls at ζ = ±α because of
higher-order corrections to the spheres’ hydrodynamic cou-
pling to the walls.

Fitting to the hydrodynamic model yields an estimate, ρH ,
for the density of each sphere. Values of ρH are compared in
Fig. 4 with optical estimates, ρp, obtained with Eqs. (13) and
(14) assuming either that water is imbibed into the spheres’
pores or not. The two estimates based on empty and filled
pores represent the upper and lower bounds, respectively,
of the mass density that can be inferred for these particles
based on holographic characterization alone. Errors in the
optical estimates are propagated from uncertainty in the re-
fractive index of the spheres, while errors in the hydrodynamic
estimates are dominated by uncertainty in the radii, which
also are measured holographically. The dashed line in Fig. 4
represents agreement between hydrodynamic and optical esti-
mates for the mass density. For this selection of silica spheres
dispersed in water, the hydrodynamic density agrees most
closely with the limiting case in which the pores are empty.
This conclusion is consistent with independent measurements
on similar systems performed with orthogonal measurement
techniques [14,28]. This agreement serves to validate (1) the
precision and accuracy of single particle characterization by
holographic microscopy, (2) the reliability of the effective-
medium interpretation of holographic characterization data,

and (3) the proposal that holographic characterization can
be used to infer particles’ mass densities without requiring
dynamical measurements.

Success of the all-optical density measurement also vali-
dates the analytic result introduced in Eq. (12) for the trajec-
tory of a sphere sedimenting in a horizontal slit pore. Specifi-
cally, the model yields reliable values for a particle’s buoyant
mass, and therefore its density, despite corrections to the mo-
bility due to hydrodynamic coupling to the walls of the chan-
nel. As anticipated, the model accounts for this coupling for
ap/H < 0.1. The largest and most strongly confined spheres
in our study fall outside that limit and therefore yield less
satisfactory agreement between hydrodynamic and optical es-
timates for the density. We propose therefore that holographic
particle characterization is a viable platform for single-
particle densitometry and single-particle pycnometry, and that
it complements conventional techniques because it can be
applied to dissimilar particles in heterogeneous samples.

VI. DISCUSSION

Single-particle tracking by holographic microscopy pro-
vides the precision, range, and time resolution needed to
study colloidal sedimentation in confined geometries such
as slit pores. Reproducible measurements on selected parti-
cles are made possible by combining holographic microscopy
with holographic optical trapping for noninvasive microma-
nipulation. We have used these capabilities to measure the
mobility of individual micrometer-scale colloidal spheres in
the direction perpendicular to plane parallel walls in a rect-
angular channel. These measurements complement previous
experimental studies, which did not have access to individual
particles’ axial coordinates across the entire channel [3–5].

We interpret measurements of single-particle sedimenta-
tion with a model that incorporates hydrodynamic coupling to
the walls through Faxén’s lowest-order single-wall modifica-
tion to the mobility together with Oseen’s linear superposition
approximation. This simplified model admits an analytic ex-
pression for a confined particle’s trajectory that compares well
with measurements, even for spheres that fill a substantial
fraction of the channel. Fitting to the model yields an esti-
mate for the particle’s buoyant mass despite the influence of
confinement.

In addition to three-dimensional tracking, holographic mi-
croscopy also measures the size and refractive index of each
particle in the field of view. Precise holographic measure-
ments of a particle’s size can be used to estimate its mass
density from its sedimentation velocity. When interpreted
with effective-medium theory, a particle’s holographically
measured refractive index can be used to obtain an indepen-
dent estimate for its mass density.

Comparing hydrodynamic measurements with optical esti-
mates offers insights into the composition of the sedimenting
particle. In the case of aqueous dispersions of silica spheres,
this comparison suggests that the spheres are slightly porous
but that the pores do not imbibe water, perhaps because they
are too small or are not simply connected. This can be con-
trasted with the behavior of nanoporous silica spheres and
branched fractal aggregates, whose pores are permeated with
the surrounding fluid medium [21].
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