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Passive objects in confined active fluids: A localization transition
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We study how walls confining active fluids interact with asymmetric passive objects placed in their bulk. We
show that the objects experience nonconservative long-ranged forces mediated by the active bath. To leading
order, these forces can be computed using a generalized image theorem. The walls repel asymmetric objects,
irrespective of their microscopic properties or their orientations. For circular cavities, we demonstrate how this
may lead to the localization of asymmetric objects in the center of the cavity, something impossible for symmetric
ones.
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I. INTRODUCTION

Active matter describes systems comprising individual
units that exert propelling forces on their environment [1–3].
Examples extend across scales, from molecular motors [4,5]
to animals [6,7], including both biological [8,9] and artificial
systems [10,11]. Active systems have attracted a lot of interest
recently due to their rich collective behaviors [1,12,13] and
to their nontrivial interactions with passive boundaries and
objects [14–20]. Unlike in equilibrium settings, asymmetric
objects generically induce long-ranged currents in active flu-
ids, which, in turn, mediate long-range interactions between
inclusions [21,22]. These currents have been shown to play
an important role in the context of motility-induced phase
separation [13] where random obstacles placed in the bulk of
a system suppress phase separation in d < 4 dimensions [23].
Surprisingly, disordered obstacles localized on the boundaries
also destroy phase separation in d < 3 dimensions [24], some-
thing impossible in equilibrium.

In this article, we study another surprising role of bound-
aries. In Fig. 1 we show numerical simulations of an active
fluid confined in a circular cavity in which a mobile asymmet-
ric object has been inserted. Depending on the parameters,
the object is either localized close to the cavity walls or in
the middle of the cavity. As we show below, this is a direct
consequence of the ratchet current induced by the object in the
active bath and its interactions with the cavity walls. Note that,
on general symmetry grounds, an isotropic object cannot be
localized in a diffusive fluid. Indeed, the sole symmetry break-
ing field in the vicinity of an isotropic object is the gradient of
the fluid density, ∇ρ. The force F exerted on the object thus
satisfies F ∝ ∇ρ. If the fluid is diffusive, it satisfies ∇2ρ = 0
in the steady state so that ∇ · F = 0 [25]. In analogy to Earn-
shaw’s theorem in electrostatics, this rules out the possibility
of a stable equilibrium for the passive tracer. In contrast,
an asymmetric polar object introduces a symmetry-breaking
vector along which it generically generates a ratchet current

[14–17,21]. This current is directly related to the nonvanishing
mean force p exerted by the object on the surrounding fluid
[26]. Due to Newton’s third law, one thus generically expects
a contribution to F along −p, which opens up the possibility
of a localization transition. Figure 1 shows that this is indeed
the case.

To uncover the mechanism behind this localization tran-
sition, we study the influence of boundaries on the coupling
between asymmetric objects and active fluids. We start in
Sec. II A by considering the case of an asymmetric polar
object in the presence of a flat confining boundary. We show
that the latter alters the far-field current and density modula-
tion induced by the polar object, and that this effect can be
rationalized using a generalized image theorem. As we show
in Sec. II B, this leads to a repulsive force, which decays as a
power law, between the object and the wall. In Sec. III we then
generalize our approach to the case of a polar object confined
by a circular cavity. Finally, in Sec. IV, we consider a mobile
object and show the existence of a localization transition. We
note that our results could be tested experimentally by adapt-
ing a recent setup in which a symmetric object was immersed
in a circular cavity confining active colloids [20]. In this case,
as expected on symmetry ground, no localization transition
was observed and the interaction between the object and the
wall is short ranged. We predict that employing a polar object
should lead to rich physics. All derivations below are pre-
sented in two space dimensions but can easily be generalized
to higher dimensions.

II. AN ASYMMETRIC OBJECT NEXT TO A FLAT WALL

We start by studying the influence of an infinite flat wall at
x = 0 on an asymmetric object embedded inside the system
in the neighborhood of r0= (d, 0) (see Fig. 2). We first de-
termine in Sec. II A how the presence of the wall influences
the ratchet current and the density modulation induced by
the asymmetric object in the active bath. Then in Sec. II B,
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FIG. 1. Probability density of a semicircular mobile object
surrounded by N = 103 noninteracting run-and-tumble particles con-
fined to a circular cavity of unit diameter. Particle speed and tumbling
rate are set to v = 10−2 and α = 1, respectively. The diameter of
the semicircular object is equal to the particle persistence length
�p = 10−2. The dynamics of the object is an overdamped Brownian
motion at zero temperature with translational mobility set to unity
and rotational mobility set to γ = 102 (a) and γ = 105 (b). The gray
lines show typical trajectories of the object. The latter is displayed in
black and enlarged by a factor of six. See Appendix A for numerical
details.

we show how the density modulation translates into a net
nonconservative force exerted on the object. We characterize
the force in the far field limit and show its magnitude to
depend on the distance from the wall and on the orientation
of the object.

In most of what follows, we focus on a dilute active bath.
We thus solve for a single active particle that interacts with the
obstacle and the boundaries. The average density for a bath
comprising N active particles is then simply ρN (r) = Nρ(r)
where ρ(r) is the probability density of finding the active
particle at position r. For the flat-wall case discussed in this
section, our results are generalized to particles interacting via
pairwise forces in Appendix B.

To proceed, consider the master equation for the prob-
ability density Pa(r, θ ) to find an active Brownian particle
(ABP) or a run-and-tumble particle (RTP) at r = (x, y) with

FIG. 2. An asymmetric passive object in an active fluid next to
a flat wall at x = 0. The object is located at r0 = (d, 0). Due to its
asymmetric shape, it experiences a force −p from the active bath
and thus exerts the opposite force p on the active medium, whose
orientation we denote by φ.

orientation u(θ ) = (cos θ, sin θ ):

∂t Pa(r, θ ) = −∇ ·[−μPa∇U + vuPa−Dt∇Pa]

+ Dr∂
2
θ Pa − αPa + α

2π

∫
dθ ′ Pa(r, θ ′). (1)

Here v is the self-propulsion speed of the active particle, μ

its mobility, and Dt a translational diffusivity. The particle
undergoes random reorientations with a (tumbling) rate α and
rotational diffusion with an angular diffusivity Dr . The object
is described by the external potential U (r). In what follows
we denote by τ = 1/(Dr + α) and �p ≡ vτ the particle’s per-
sistence time and length, respectively. The hard wall at x = 0
imposes a zero-flux condition:

−μPa∂xU + v cos θPa − Dt∂xPa = 0. (2)

Integrating Eq. (1) over θ leads to a conservation equa-
tion for the density field ρ(r) = ∫

dθ Pa(r, θ ):

∂tρ = −∇ · J, (3a)

J = −μρ∇U + vm − Dt∇ρ, (3b)

where m = ∫
dθ u(θ )Pa(r, θ ) is the polarization of the active

particle and J is the particle current in position space. The
boundary condition (2) then translates into Jx(x = 0, y) = 0.

The dynamics of m is then obtained by multiplying Eq. (1)
by u(θ ) and integrating over θ , which gives

τ∂t m = μ

v
∇ · σa − m, (4)

where we have introduced the active stress tensor σa

[18,27–30]:

σ a
i j = −v2τ

2μ
ρδi j + 
i j, (5a)


i j = −vτ

μ
[vQi j − (μ∂ jU + Dt∂ j )mi]. (5b)

Here Qi j = ∫
dθ (uiu j − δi j/2)Pa(r, θ ) is the nematic tensor

and we have singled out the contribution of the ideal gas
pressure v2τρ/(2μ) in the active stress tensor.

To determine the steady-state density profile, we first note
that, on large length scales and long times, far from both
the confining wall and the asymmetric object, the motion
of the active particle is diffusive with a diffusion coefficient
Deff = Dt + v2τ/2. The corresponding probability current is
then given by J � −Deff∇ρ. As one moves closer to the
object or the wall, this behavior is modified, which motivates
us to define a residual field: the deviation J from a diffusive
current [24]

J ≡ J + Deff∇ρ. (6)

Using Eqs. (3) and (4) in the steady state where ∇ · J = 0, one
finds that the density ρ satisfies

Deff∇2ρ = ∇ · J , (7a)

Ji = −μρ∂iU + μ∂ j
i j . (7b)

The zero-flux boundary condition on the current at x = 0 then
reads

Jx(x = 0, y) = (Jx − Deff∂xρ)|x=0 = 0. (8)
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A. Density profile and current

In the absence of the obstacle, the solution ρFW(r) to Eq. (7)
with the boundary condition (8) is a homogeneous bulk of
density ρb complemented by a finite-size boundary layer near
the wall where active particles accumulate on a scale compa-
rable to the persistence length �p [31]. In what follows, we
denote by J FW the corresponding source term in Eq. (7b) and
by �FW the contribution (5b) to the active stress. By itself,
determining ρFW is already a difficult problem, whose exact
solution is not known [32–37]. To proceed, we thus work in
the far field limit away from both the wall and the object,
which is itself assumed to be far from the wall.

We first decompose the density field as ρ(r) = ρFW(r) +
δρ(r) [38]. Due to the linearity of Poisson’s equation (7), δρ

satisfies

Deff∇2δρ = ∇ · δJ , (9a)

δJi = −μρ∂iU + ∂ jδ
i j, (9b)

where we have defined δJ ≡ J − J FW, and δ� ≡ � − �FW.
Note that all δ quantities remove contributions which are
already present in the absence of the object, hence singling
out its contribution. The corresponding boundary conditions
read

Deff∂xδρ|x=0 = δJx(0, y). (10)

Equations (9) and (10) describe the density modulation cre-
ated by the asymmetric object on the density profile induced
by a flat wall. To solve for δρ(r), we introduce the Neumann-
Green’s function in the right half-plane:

GN (r; r′) = − 1

2π

[
ln

|r − r′|
�p

+ ln
|r⊥ − r′|

�p

]
. (11)

Here the term involving r⊥ = (−x, y) can be interpreted as
a mirror image created on the other side of the wall. Note
that the Neumann-Green’s function (11) does not satisfy the
boundary condition specified by Eq. (10), since its x deriva-
tive vanishes on the boundary. Using Green’s second identity
[39,40], this means that the solution δρ also includes a surface
integral to enforce the correct boundary condition. All in all,
it reads

δρ(x, y) = − 1

Deff

∫ ∞

0
dx′

∫ ∞

−∞
dy′ GN (x, y; x′, y′)∇′ · δJ ′

−
∫ ∞

−∞
dy′ GN (x, y; 0, y′)∂ ′

xδρ
′|x′=0

= − μ

Deff

∫ ∞

0
dx′

∫ ∞

−∞
dy′ ρ ′∇′U · ∇′GN (x, y; x′, y′)

(12a)

− μ

Deff

∫ ∞

0
dx′

∫ ∞

−∞
dy′ GN (x, y; x′, y′)∂ ′

i∂
′
jδ


′
i j

(12b)

− μ

Deff

∫ ∞

−∞
dy′ GN (x, y; 0, y′)∂ ′

jδ

′
x j |x′=0, (12c)

where primed derivatives are taken with respect to x′ and y′.
To obtain Eq. (12) we use Eqs. (9) and (10) and an integration

by parts. As we now show, the leading-order contribution
to δρ in the far field is given by (12a). Noting that ∇′U is
localized at r0 = (d, 0), we approximate the Green’s function
as ∇′GN (x, y; x′, y′) � ∇′GN (x, y; x′, y′)|x′=d,y′=0 in the first
integral. In the far field, where |r − r0|, d 	 a, �p with a the
size of the object, this leads to

ρ(r) �ρb + μ

2πDeff

[
p · (r − r0)

|r − r0|2
+ p⊥ · (r − r⊥

0 )

|r − r⊥
0 |2

]

+ O(|r − r0|−2, d−2), (13)

where p⊥ = (−px, py) and we have used both that ρFW � ρb

far from the wall and that u · v = u⊥ · v⊥. In Eq. (13), p is a
force monopole defined by

p = −
∫

dr ρ∇U . (14)

It measures the force exerted on the active fluid by the object
in a system without a wall, whose exact value depends on
microscopic details of U . Going back to Eq. (12), we show
in Appendix C that (12b) and (12c) are indeed negligible
compared to (13). Intuitively, this relies both on the extra
derivatives in Eq. (12b) and on the fact that we can use self-
consistently the far-field approximation to δ� far away from
the object.

The far-field currents can then be obtained from the above
result. We first note that, outside the object, J is negligible
compared to the diffusive current −Deff∇ρ [see Eq. (6)]. One
thus has that J = J − Deff∇ρ � −Deff∇ρ so that, to leading
order:

J �
|r−r0|,d	a,�p

μ

2π |r − r0|2
[

2[(r − r0) · p](r − r0)

|r − r0|2 − p
]

+ μ

2π |r⊥ − r0|2
[

2[(r − r⊥
0 ) · p⊥](r − r⊥

0 )

|r⊥ − r0|2 − p⊥
]
.

(15)

In summary, to this order of the multipole expansion, the
problem of finding the steady-state density in the far field is
reduced to a much simpler problem

Deff∇2ρ = μ∇ · [pδ(r − r0)], (16a)

∂xρ|x=0 = 0, (16b)

which amounts to Eqs. (9) and (10) with J � μpδ(r − r0).
In the far field of both the object and the wall, the object
thus appears as a force monopole p at position r0 driving the
fluid while the wall is equivalent to an image monopole p⊥ at
position r⊥

0 , as can be read directly in Eq. (13) (see Fig. 3).

B. Nonconservative force induced on the object

According to Newton’s third law, the object experiences
a force −p from the active fluid. Equation (14) shows p to
depend on the local density of active particles ρ(r), which in
turn depends on the distance d from the wall through Eq. (13).
It is thus convenient to decompose p as

p ≡ pb − F, (17)
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FIG. 3. The asymmetric object and the flat wall shown in Fig. 2
generate density modulations and currents in the active medium, far
away from both the object and the wall, equivalent to those generated
by two force monopoles p and p⊥ placed symmetrically with respect
to the x = 0 plane.

with pb defined as the value of p when d → ∞. Then F
measures the change in the force due to the presence of the
wall. Namely, F is the force induced on the object by the wall,
which is mediated by the active bath.

Since the interaction with the wall is equivalent, to leading
order, to the interaction with an image object, we can use
the results of Refs. [21,22] to derive F. In the setting con-
sidered there, two objects, referred to as object 1 and object
2, are placed at positions r1 and r2, with r12 ≡ r1 − r2. When
|r12| → ∞ the objects experience forces −p1 and −p2 from
the fluid, respectively. When |r12| is finite the force experi-
enced by object 1 is −p1 + F12, with F12 the force exerted
on object 1 due to the presence of object 2. In [21], it was
shown that, to leading order in the far field, the interaction
force arises due to a density modulation �ρ(r1) near object 1
due to object 2. This nonreciprocal interaction force takes the
form

F12 = −�ρ(r1)

ρb
p1, (18)

with

�ρ(r1) = μ

2πDeff

r12 · p2

|r12|2 + O(|r12|−2). (19)

Here r12 = (2d, 0) and p2 = p⊥
b (see Fig. 3), leading to

F = μ

2πDeffρb

pb,x

2d
pb + O(d−2). (20)

Denoting by φ the orientation of pb relative to the x axis then
leads to

F = μp2
b

8πDeffρbd

(
1 + cos(2φ)

sin(2φ)

)
+ O(d−2), (21)

with pb = |pb|. Note that this result implies that the wall
always repels the object, irrespective of its orientation φ. It is
easy to check that ∂xFy − ∂yFx �= 0, except when φ ∈ {0, π},
so that the interaction force is not conservative [41].

Finally, an asymmetric object may also experience a torque
from the surrounding active fluid [16,17] (see Fig. 4). In two
dimensions this torque is given by

τ =
∫

�

dr ρ(r)(r − rCM) × ∇U, (22)

FIG. 4. A τ-shaped object generically experiences a nonzero
self-torque τb.

where rCM is the object’s center of mass. Denoting the magni-
tude of τ when d → ∞ as τb and using the image object along
with the results of Refs. [21,22], we find that the interaction
torque M due to the wall, defined through τ = τb + M, is
given by

M = μpb

4πDeffρb

cos(φ)

d
τb + O(d−2). (23)

Note that when the object is not chiral, τb vanishes and
there is no torque to order O(d−1). Higher order contributions
are, however, expected from symmetry considerations: the
density modulation along x̂ due to the presence of the wall
indeed breaks the chiral symmetry when p is not along x̂.

The above results can be generalized to higher dimensions
using the Neumann-Green’s function in dimension D. This
changes the way different quantities decay with the distance
from the wall and the object. For example, the force F on the
object [see Eq. (21)] now decays as d1−D.

III. A OBJECT INSIDE A CIRCULAR CAVITY

In the previous section, we showed that, far from the object
and away from a boundary layer created by a flat wall, the
steady-state distribution and current of active particles are
equivalent to those induced by two force monopoles placed
symmetrically with respect to the plane of the wall. In turn,
we showed that the object interacts with its mirror image,
with an interaction force given by Eq. (20). We now con-
sider a different setup of an asymmetric object placed in a
circular cavity (see Fig. 5). We first determine in Sec. III A
the long-ranged density modulation and current induced by
object. Then, in Sec. III B, we compute the contribution of the
force experienced by the object due to the circular confining
boundary.

A. Density profile and current

Consider a passive asymmetric object placed inside an
active fluid confined by a circular cavity of radius R. To make
progress we assume that the far-field density modulation is
given, to leading order, by the solution of Eq. (16) together
with the Neumann boundary condition r̂ · ∇ρ(r)||r|=R = 0.
The Neumann-Green’s function in this geometry can be ob-
tained in several ways, for example, by using conformal
transformations or by using the polar symmetry of the domain.
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FIG. 5. An asymmetric passive object in an active fluid placed
inside a circular cavity of radius R. The object is located at r0 at an
angle θ0 relative to the x̂ axis. The corresponding force monopole p
is directed along ψ = φ − θ0 relative to r̂.

It is given by [39]

Gdisk
N (r; r0) = − 1

2π
[ln (|r − r0|/�p)

+ ln (|r − r̃0|/�p) + ln (r0/�p)], (24)

with r̃0 ≡ (R/r0)2r0. Again, we write ρ = ρb + δρ, with ρb

the average density in the cavity. The leading order density
modulation δρ(r) is then given in the far field by

δρ � − μ

2πDeff

[
(r − r0) · p

|r − r0|2
− (r − r̃0) · p̃

|r − r̃0|2
]

+ μ r0 · p
2πDeffr2

0

,

(25)

where p̃ ≡ (R/r0)2 pu(2θ0 − φ). The diffusive current is then
obtained using J � −Deff∇ρ, leading to

J � μ

2π

[
1

|r − r0|2
(

2[(r − r0) · p](r − r0)

|r − r0|2 − p
)

− 1

|r − r̃0|2
(

2[(r − r̃0) · p̃](r − r̃0)

|r − r̃0|2 − p̃
)]

. (26)

Again, the current in Eq. (26) is equivalent to that generated
by the force monopole and an image monopole p̃ placed at
r̃0. The same applies to the density modulation, which also
experiences an additional uniform contribution that enforces
mass conservation.

We verified our predictions using numerical simulations of
RTPs which are shown in Fig. 6. Both density modulations
and currents are well described by Eqs. (25) and (26).

B. Interaction force

Next we turn to derive the force induced on the object by
the circular wall. To do this we first note that the presence of
the wall leads to a density modulation

�ρ(r0) ≈ μ

2πDeff

[
r0

r2
0

· p + (r − r̃0) · p̃

|r − r̃0|2
]∣∣∣∣

r=r0

, (27)

FIG. 6. Density and current profiles surrounding an asymmetric
object inside a circular cavity. The object, shaped as a semicircular
arc of diameter darc = �p, is located at r0 = (0.45R, 0) with an ori-
entation making an angle φ = 0.6π with the x̂ axis. The object is
displayed in orange and enlarged by a factor of six. (a) Steady-state
density modulation relative to the bulk density, δρ/ρb, compared
with the analytical expression (25) in gray. (b) Streamlines of the
steady-state current. The measurement (in light blue) is compared
with the theory (in gray), for the same parameters as in (a). In both
panels, the parameters were set as follows: N = 105 RTPs travel with
speed v = 10−4 and tumble at rate α = 10−2. See Appendix A for
details.

when compared to the situation in an infinite space. The force
due to the presence of the wall is then given by Eq. (18), which
leads to

F ≈ − μp2
b

2πDeffρb

r0 cos(φ − θ0)

R2 − r2
0

(
cos(φ)

sin(φ)

)
, (28)

with pb the magnitude of the force monopole measured either
in the center of the cavity or equivalently for r̃0 → ∞. As
in the case of a flat wall, the force always repels the object
away from the wall, as can be seen by setting θ0 = 0. Figure 7
shows a collapse of the force measured on the object for var-
ious orientations and distances from the wall, showing good
agreement with the theory (28).
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FIG. 7. Collapse of the interaction force exerted on the object.
The data displayed here show magnitude of the interaction force (28)
divided by its angular dependence cos(ψ ) = cos(φ − θ0 ) relative to
the strength of the force monopole p. The solid black line shows the
theoretical prediction with no parameter fitting. Note that the devia-
tion from the theory near the walls is expected, due to higher-order
interactions.

Finally, as in the case of the flat wall, we can compute the
interaction torque M acting on the object, which is given by

M ≈ μpb

2πDeffρb

r0 cos(φ − θ0)

R2 − r2
0

τb, (29)

where τb is the object’s self-torque measured at r0 = 0.

IV. DYNAMICS OF AN ASYMMETRIC OBJECT INSIDE
A CIRCULAR CAVITY

In the previous section, we computed the density modu-
lation and current induced by a polar object held fixed in a
circular cavity. The presence of confining walls leads to a
renormalization of the force felt by the object which depends
on its position and orientation. When the object is mobile,
it is thus endowed with a nonuniform propulsion force. In
this section we use a toy model to capture the corresponding
dynamics and characterize its steady-state distribution. We
find that the interaction with the wall leads to a transition
between two distinct behaviors: the object is localized either
in the center of the cavity or near the edges, as observed in
Fig. 1.

To lighten the notations, we drop the subscript “0” when
referring to the object so that its position reads r = ru(θ ) and
its orientation makes an angle φ with x̂. We model the object’s
dynamics as an effective Langevin equation:

ṙ = μ0 pu(φ) + μ0F(r, θ, φ) + √
2De

t η(t ), (30a)

φ̇ = √
2De

rξ (t ), (30b)

where μ0 is the mobility of the object, which is, in general,
different from the mobility of the active particles μ, p is the
magnitude of −pb, De

t and De
r are effective translational and

rotational diffusivities, and ηi(t ) and ξ (t ) are Gaussian white

noises of zero mean and unit variance. For simplicity, we
consider a symmetric object whose self-torque is zero.

We now use the explicit expression of F given in Eq. (28)
and the angle ψ = φ − θ between the object and r̂ (see Fig. 5)
to rewrite Eq. (30) as a dynamics for r, θ , and ψ . Since r =
r · r̂, Itō calculus implies that ṙ = ṙ · r̂ + De

t /r. Similar to the
case of a particle in a harmonic well [42], the equations for r
and ψ decouple from the dynamics of θ , and read

ṙ = μ0 p cos ψ

[
1 − qrR cos(ψ )

R2 − r2

]
+ De

t

r
+ √

2De
t ηr (t ),

(31a)

ψ̇ = −μ0 p sin ψ

r

[
1 − qrR cos(ψ )

R2 − r2

]

+
√

2
(De

t

r2
+ De

r

)
ξψ (t ) , (31b)

where ηr and ξψ are Gaussian white noises of zero mean
and unit variance and q = μp/(2πDeffρbR) is a dimensionless
parameter.

Solving for the steady-state probability distribution P(r, ψ )
remains a hard task. Instead, we study the dynamics (31) in
two limits: first when the object reorients so quickly that it is
no longer persistent, De

r → ∞, resulting in an effective equi-
librium dynamics, and second, in the opposite limit, De

r → 0,
when the object is highly persistent. These two regimes lead
to very different behaviors that explain the transition observed
in Fig. 1.

A. Effective equilibrium limit

In the large De
r limit, the dynamics of ψ is dominated by

the rotational diffusion, which leads to P(r, ψ ) � P(r)/(2π ).
Taking the average of Eq. (31a) with respect to ψ then leads
to

ṙ = − μ0 pqrR

2(R2 − r2)
+ De

t

r
+ √

2De
t ηr (t ). (32)

The steady-state distribution of r is then given by

P(r) ∝ r

(
1 − r2

R2

) μ0 pqR
4De

t

, (33)

where P(r) is normalized as
∫ R

0 dr P(r) = 1. Going back to
the original r variable, one thus gets

P(r) ∝
(

1 − |r|2
R2

) μ0 pqR
4De

t

, (34)

whose normalization in two dimensions reads
∫

dr P(r) = 1.
Importantly, as can be seen in Fig. 8, the distribution is peaked
around r = 0 and perfectly matches microscopic simulations
of Eq. (31). Note that the larger μ0 pqR

4De
t

the sharper the localiza-
tion in the center. The result is reminiscent of the steady-state
distribution of a run-and-tumble particle in a harmonic well in
one space dimension [43,44].

Finally, we note that this effective equilibrium regime
allows for the localization of the object in the bulk of a
nonequilibrium diffusive fluid. As mentioned in the introduc-
tion, this would be impossible for a symmetric object (or in
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FIG. 8. Steady-state probability distribution P(r) of the dynam-
ics (31) in the large De

r limit. Direct simulations of the Langevin
dynamics (31) (blue dots) agree perfectly with the analytic prediction
of Eq. (34) (orange solid line).

equilibrium) due to Earnshaw’s theorem. Here, when going
from Eq. (31) to Eq. (32), the “bare” self-propulsion force of
the object has canceled out and we are only left with the con-
tribution from its image. The reason why the latter does not
lead to a vanishing contribution is the strong anticorrelation
between p and its image.

B. Large-persistence regime

We now consider the opposite limit of a very small rota-
tional diffusivity and set, for simplicity, De

t = 0. In this limit,
the dynamics (31) reduce to

ṙ = μ0 p cos ψ

[
1 − qrR cos(ψ )

R2 − r2

]
, (35a)

ψ̇ = −μ0 p sin ψ

r

[
1 − qrR cos(ψ )

R2 − r2

]
. (35b)

Following [42], we expect that, in this noiseless limit, the
object’s position and orientation remain close to the stable
fixed points of the dynamics (35), found by requiring ∂t r =
∂tψ = 0. Direct inspection shows that all fixed points (r∗, ψ∗)
satisfy

1 − qr∗R cos(ψ∗)

R2 − (r∗)2
= 0. (36)

There is thus a continuous line of fixed points, which can be
parameterized as r∗ = r∗(ψ∗):

r∗(ψ∗) = R

2
(
√

(q cos ψ∗)2 + 4 − q cos ψ∗), (37)

with ψ∗ ∈ [−π/2, π/2]. The minimal value of r∗(ψ∗) cor-
responds to ψ∗ = 0 and r∗(0) = R

2 (
√

q2 + 4 − q) > 0. This
demonstrates that, in the steady state, the object is positioned
at a finite distance from the origin, unlike in the effective
equilibrium limit. By changing the rotational diffusion of the
object, one can thus shift its most probable localization from
the center of the cavity to its periphery. Note that Eq. (35)

relies on the far-field approximation, which is valid only far
from the walls of confining boundaries. Ultimately, the only
stable position of the object is at a distance close enough to the
boundary that the modulation of the density of active particles
is of order of ρb.

While the above discussion already proves the existence of
the localization transition, we characterize, for completeness,
the stability of the line of fixed points of the large persistence
regime. As a first step, we linearize the dynamics (35) about
r∗(ψ∗). This yields a dynamical system that can be written as

∂t

(
δr
δψ

)
= M(ψ∗)

(
δr
δψ

)
+ O(δr2, δψ2, δrδψ ), (38)

for δr ≡ r − r∗(ψ∗) and δψ ≡ ψ − ψ∗, where

M11 = −μ0 p

2qR
[4 + q cos ψ∗

× (
√

(q cos ψ∗)2 + 4 + q cos ψ∗)], (39a)

M12 = μ0 p sin ψ∗, (39b)

M21 = mu0 p

2qR2
[2 tan ψ∗√(q cos ψ∗)2 + 4 + 4q sin ψ∗

+ q2

2
sin(2ψ∗)(

√
(q cos ψ∗)2 + 4 + q cos ψ∗)],

(39c)

M22 = −2μ0 p

R

sin ψ∗ tan ψ∗√
(q cos ψ∗)2 + 4 − q cos ψ∗ . (39d)

Note that the matrix M depends on the value of ψ∗. For
a given value of ψ∗, M can be diagonalized. Its eigenvectors
point in two different directions: v1(ψ∗) is tangent to the curve
r∗(ψ∗) and corresponds to a zero eigenvalue λ1 = 0; v2(ψ∗)
points in a different direction and is associated to a negative
eigenvalue λ2, given by

λ2(ψ∗) = −μ0 p

2qR

(
4 + q2 + q

√
(q cos ψ∗)2 + 4

cos ψ∗

)
. (40)

The direction along the line of fixed point is thus, as expected,
marginally stable, whereas the transverse direction is linearly
stable. To find the most probable value of ψ∗ and r∗, we thus
need to go beyond the linear stability analysis and consider
the nonlinear dynamics of the perturbation along the line of
fixed points.

To do so, we expand the evolution of δψ , given by
Eq. (35b), to second order in δr and δψ . Imposing a pertur-
bation tangent to the curve r∗(ψ∗) then couples δr and δψ .
This leads to a closed dynamics for δψ given by

∂tδψ = �(ψ∗)δψ2, (41)

where �(ψ∗) is given in Appendix A. Figure 9 shows that
�(ψ∗) and ψ∗ have opposite signs so that ψ∗ = 0 is the sole
stable fixed point.

Finally, one can argue self-consistently that since r∗ is
large at the fixed point, the corrections due to an additional
small diffusive coefficient De

t does not modify the results; see
Eq. (31a).

In the steady state, we thus expect the object to point to-
wards the wall, with ψ = 0, at a distance r = R

2 (
√

q2 + 4 − q)
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FIG. 9. �(ψ∗) as a function of ψ∗, for q = 0.5. The exact ex-
pression is given in Appendix A. For ψ∗ > 0, any perturbation δψ

causes ψ∗ to decrease. For ψ∗ < 0, the opposite happens, leading to
ψ∗ = 0 as the sole stable fixed point.

from the center of the cavity. Small deviations from this solu-
tion are expected mainly along the line of fixed points r∗(ψ∗).
This behavior is verified by a direct numerical simulation of
Eq. (31) presented in Fig. 10.

Note that the analysis above can be extended to higher
dimensions. In three dimensions, for instance, the force on the
object becomes proportional to

FD ∝
[(

1

1 − ( r0
R

)2

)2

− 1

]
cos(φ − θ0)

r0
, (42)

where the angles are define as before. Namely, φ − θ0 is the
object’s orientation relative to the radial vector r̂ and by sym-
metry the expression only depends on these two angles. This
again can be shown to lead to a localization transition using
the methods described above. The full analysis, together with
its numerical verification, is beyond the scope of the present
study.

All in all, the two limits of large and small rotational
diffusivity show that there is a localization transition from a
distribution where the object is localized close to the walls
of the cavity to a distribution where the object is localized in
its center. The latter occurs when the rotational diffusivity is
large. Figure 11 shows the probability distributions of a polar
object in a bath of active particles, measured numerically for
the two regimes illustrated in Fig. 1, which indeed exhibits the
corresponding transition.

V. CONCLUSION

In this paper we have considered the influence of bound-
aries on the motion of an asymmetric tracer in an active
bath. Specifically, we have shown that the tracer experiences
a nonconservative force mediated by the active medium,
whose magnitude depends on the object’s orientation. We
then demonstrated how this force can be used to control the
position of the object far in the bulk of the system.

To leading order, we have shown that the interaction with
the walls can be accounted for using a generalized image
theorem, which states that the passive object experiences long-

FIG. 10. Steady-state behavior of the object in the small De
r limit

(with De
t = 0). (a) The probability distribution P(r, ψ ) measured by

direct simulations of the Langevin dynamics (31). The dotted orange
line corresponds to the line of fixed points r∗(ψ∗) given in Eq. (37).
(b) The corresponding marginal probability density P(r). The dotted
orange line marks the expected position of the object when De

r = 0:
r = r∗(ψ = 0).

range forces from its image. This holds despite the nontrivial
boundary condition for the active fluid near the boundary.
Using this result, we showed that, inside a circular cavity,
two regimes can be observed depending on the parameters:
either the object is confined in the center of the cavity or it
is localized close to its boundaries. All the results above are
in sharp contrast to the case of a symmetric object where no
stable minima can be found.

From a broader point of view, numerous mechanisms were
suggested in the past to localize objects in the center of closed
domains. This was studied extensively [45–48], in particular
in the context of cell division [49,50]. Our work offers a
simple and generic mechanism to localize a passive object in
the center of a circular region without requiring any exotic
interactions. While simplistic in nature, this robust mechanism
might play a role in such processes. It is tempting to search
for additional applications of these forces, for instance, to
engineer passive objects that could be controlled by modifying
the boundaries of the confining system. Finally, it would be
interesting to generalize our approach to domains of arbitrary
shapes. The only nontrivial step seems to be the calculation
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FIG. 11. Comparison between the probability density of the ob-
ject’s position P(r) and a uniform distribution PU (r) = 1/(πR2)
distribution. The two panels differ by the object’s rotational mo-
bility γ = 102 in (a) and γ = 105 in (b). The panels correspond to
Figs. 1(a) and 1(b), respectively. The shaded region indicates scales
smaller than the object’s diameter, where the sampling is expected to
fail. See Appendix A for numerical details.

of the Green’s function, whose form can be derived using
conformal mappings. This, however, is harder than it might
seem since the Neumann boundary condition may introduce
fictitious sources through the conformal mapping. A full gen-
eralization of our approach to general domains thus remains
an open challenging problem.

ACKNOWLEDGMENTS

Y.B.D. and Y.K. are supported by Israel Science Founda-
tion Grant No. 2038/21. Y.B.D., Y.K., and M.K. are supported
by NSF5-BSF Grant No. DMR-170828008. J.T. acknowl-
edges the financial support of ANR grant THEMA.

APPENDIX A: NUMERICAL METHODS

1. Numerical simulations of run-and-tumble dynamics
with fixed obstacle

Since we consider noninteracting particles, their dynamics
can be ran sequentially. Each particle propagates ballistically
between the tumbles whose occurrence are drawn from an
exponential distribution. The dynamics of the particle is time-
stepped and we use dt = 1 and v = 10−4. The collisions with
walls and obstacles are then resolved exactly: when a particle
displacement leads to a collision, the dynamics is integrated

FIG. 12. Trajectories of active particles modified by interactions,
computed using the simulation. For clarity, the trajectories disregard
tumble events, and so the particles are assumed to have constant
velocities. A particle colliding with the outer, convex side of the
semicircle (in blue) slides along the semicircle until it reaches its end.
Afterwards, it continues with its original velocity. Particles colliding
with the inner, concave side of the semicircle can have two different
types of trajectories, depending on their orientation. One option (in
purple) is that the particle slides along the inner side of the semicircle
until it reaches its end. Then the particle continues its motion with its
original velocity in the bulk of the cavity. Another option (in orange)
is that the particle gets trapped inside the semicircle, stopping when
its velocity is normal to semicircle. Trajectories similar to the latter
occur also when the particle collides with the outer walls of the
cavity.

until the collision, and the particle then follows the boundary
tangentially until the end of the time step or of the collision.
Since we use (semi-)circular shapes for boundaries, this can
be done analytically. Figure 12 illustrates the interactions of
the particles with the object and the walls and shows typical
trajectories obtained from the simulation. The force and the
torque exerted by the particles on the object during their mo-
tion can also be derived analytically. For the force, the velocity
component normal to the object is integrated over the duration
of the particles’ sliding motion.

2. Numerical simulations of run-and-tumble dynamics
with moving object

The dynamics of the run-and-tumble particles are now
computed in parallel. We also determine the torque exerted
by the particles and set the object’s axis of rotation to be at
the midpoint between the two arc ends. In addition, the object
now moves according to

r(t + dt ) = r(t ) + μ0fdt,

φ(t + dt ) = φ(t ) + γ τdt, (A1)

where r and φ are the positions and orientations of the object,
and the integrated force and torques exerted by the particles
during the time step dt are noted fdt and τdt , respectively.

3. Figures 1 and 11

To construct Fig. 1, the object’s position was measured
every 103 time steps, binned in a 103 × 103 histogram, which
was averaged over 500 realizations. The data were then
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smoothed using a Gaussian filter of width σG = 1.5 × 10−2R
with R the radius of the cavity. Typical trajectories of the
objects (in black, enlarged by a factor of 6 for legibility) are
displayed in gray. In Fig. 1(a), the simulations ran for t f =
5 × 107. In Fig. 1(b), the simulations ran for t f = 2.2 · 108.

Figure 11 shows the radial probability distribution corre-
sponding to the measurement shown in Fig. 1. The Cartesian
two-dimensional distribution P(x, y) was averaged over rings
r �

√
x2 + y2 < (r + �r) of constant thickness �r ≈ 4 ×

10−2R = 2�p. Below the scale set by the object size we en-
counter standard undersampling problems due to the polar
coordinates.

4. Figures 6 and 7

The data shown in the figures were averaged over 10 re-
alizations, each running for a duration of t f = 5 × 107. All
measurements were carried out after an initial transient of
t = 106 time steps. Both figures were obtained using the same
parameters.

To construct Fig. 6, the active particles’ positions were
stored and binned in a 400 × 400 histogram. In addition, their
displacements during each time step, divided by the time-step
duration dt , were logged separately for the displacements
along x̂ and ŷ on similar arrays. The data were then smoothed
using a Gaussian filter of width σG = 1.5 × 10−2R with R the
radius of the cavity.

In Fig. 6(a), the density field was then fitted using Eq. (25)
to extract the bulk density ρb, the position of the equivalent
force monopole r0 and its value p. The figure shows the
measured density relative to the fitted bulk density ρb, in units
of ρb. Gray and black solid lines show comparisons between
predicted and measured isodensity lines. For clarity, the object
is shown in orange, enlarged by a factor of 6.

Figure 6(b) shows streamlines of the measured current den-
sity in blue obtained using the Matlab tool streamslice. Using
the measured strength and position of the force monopole we
compare them with the predictions from Eq. (25) in gray.

In Fig. 7, to measure the force F induced by the wall
on the object, we first measured pb by time averaging the
force exerted on an object placed at r0 = 0, where F = 0, by
symmetry.

We then measure the total force −p exerted on objects
placed at various distances r from the center of the cavity, with
different orientations ψ . We then added pb to this total force
to extract the contribution F from the wall, using Eq. (28).

Data measured for different values of ψ were collapsed by
dividing F by cos ψ . Furthermore, the data are normalized by
pb. Our measurement of pb agrees quantitatively with the fit
done in Fig. 6. Finally, the solid black curve shows the depen-
dence according to Eq. (28), obtained using the measurements
of μp and ρb, measured in Fig. 6(a).

5. Figures 8 and 10

To produce the figures, the Langevin dynamics (31) were
simulated using Euler time stepping with dt = 10−1.

For Fig. 8, the steady-state distribution was obtained by
binning r in 100 bins and dividing by the Jacobian r to get
P(r). The latter was then compared in the figure with the

prediction of Eq. (34). Parameters: μ0 p = 10−4, De
t = 10−6,

De
r = 10, q = 0.5. Data were averaged over a total time of

t f = 109.
For Fig. 10 the steady-state distribution P(r, ψ ) was done

by binning the values of both r and ψ in a 100 × 64 array. P
was again divided by the Jacobian r. Parameters: μ0 p = 10−4,
De

r = 10−5, q = 0.5. The simulation was carried for a duration
of t f = 108.

6. Figure 9

The dynamics of δψ along the line of fixed points is given,
to second order in δψ by:

∂tδψ ≡ �(ψ∗)δψ2

= − δψ2

4R
tan ψ∗[2q(64 + 38q2 + 5q4)

+ q(256 + 112q2 + 15q4) cos ψ∗

+ 6q3(6 + q2) cos(4ψ∗) + q5 cos(6ψ∗)

− 4
√

(q cos ψ∗)2 + 4 cos ψ∗{32 + 3q2(4 + q)

+ 4q2(7 + q2) cos(2ψ∗) + q4 cos(4ψ∗)}]
× [(q cos ψ∗)2 + 4]−1

× [
√

(q cos ψ∗)2 + 4 − q cos ψ∗]−4. (A2)

APPENDIX B: FAR-FIELD DENSITY PROFILE OF
PAIRWISE-INTERACTING ACTIVE PARTICLES

In this Appendix, we generalize the proof of Sec. II to
pairwise-interacting particles, showing they exhibit density
and current profiles with the same functional form as noninter-
acting particles in the far field of both the object and the wall.

We start by considering the Langevin dynamics of the ith
active particle, located at ri with an orientation θi

dri

dt
= vu(θi )−μ∇

[
U (ri ) +

∑
j �=i

u(|ri − r j |)
]

+
√

2Dtηi(t ),

(B1a)

dθi

dt
=

√
2Drξi(t ). (B1b)

Here, on top of the dynamics in the dilute limit leading to
Eq. (1), we add an isotropic inter-particle interaction potential
u(|ri − r j |). The particle’s motion is subject to translational
and rotational noises, ξi(t ) and ηi(t ) respectively, which are
assumed to be Gaussian, centered and of unit variances.

Using Itō calculus, one can derive the evolution equation of
the empirical distribution �(r, θ, t ) ≡ ∑

i δ
(2)(r − ri )δ(θ −

θi ) of the active particles starting from dynamics (B1) [51].
Then the evolution of the mean density ρ(r, t ) ≡ 〈ρ̂(r, t )〉 =
〈∑i δ

(2)(r − ri )〉 can be derived, leading to a continuity equa-
tion in the steady state, similarly to Eqs. (3)–(5) in the dilute
limit [22,29,52]:

∂tρ = −∇ · J = 0, (B2a)

J = −μρ∇U + μ∇ · σ, (B2b)

σi j = −Deff

μ
ρδi j + 
i j + σ P

i j + σ IK
i j . (B2c)
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Here � reads


i j = −vτ

μ
[vQi j − (μ∂ jU + Dt∂ j )mi], (B3)

where mk (r, t ) ≡ 〈m̂k (r, t )〉 = 〈∑i uk (θ )δ(2)(r − ri )〉 and
Qi j (r, t ) ≡ 〈∑k[ui(θ )u j (θ ) − δi, j/2]δ(2)(r − rk )〉, σP is the
tensor

σP(r) = �p

∫
d2r′ ∇u(|r − r′|)〈m̂(r)ρ̂(r′)〉, (B4)

and σIK is the Irving-Kirkwood stress [53,54]

σIK(r) = 1

2

∫
d2r′ r′r′

|r′| u
′(r′)

×
∫ 1

0
dλ 〈ρ̂[r + (1 + λ)r′]ρ̂[r + (1 − λ)r′]〉.

(B5)

As in the dilute limit derived in Sec. II, it is thus helpful to
introduce a residual current

J σ ≡ J − μ∇ · σ. (B6)

Using the steady-state equation ∇ · J = 0 then leads to

μ∂i∂ jσi j = −∂iJ σ
i . (B7)

Furthermore, the no-flux boundary condition across the wall
leads to

Jx(0, y) = (
μ∂ jσx j + J σ

x

)∣∣
x=0 = 0. (B8)

Summation over repeated indices is implied henceforth. From
there, we generalize for the stress tensor σ what we did for the
density field in the main text.

We first employ a Helmholtz-Hodge decomposition for the
stress-tensor’s divergence

∇ · σ ≡ −∇� + ∇ × �, (B9)

where � ≡ ẑ� is a vector potential and � – a scalar poten-
tial. With this, the tensor equation (B8) reduces to a Poisson
equation, describing the scalar field �

μ∇2� =∇ · J σ ,

μ∂x�|x=0 =(
J σ

x + μ∂y�
)|x=0, (B10)

similar to Eqs. (7) and (8) in the dilute limit.
In the absence of the object U = 0, the solution �FW(r)

to the boundary-value problem (B10) is uniform in the bulk
of the system, with a finite-sized boundary layer close to the
wall. We denote the quantities associated with this solution by
�FW, �FW, J σ

FW, and ρFW.
We now use the solution �FW(r) to obtain the far-field

behavior of the full solution �(r) in the presence of the object.
To this end, we decompose � as �(r) ≡ �FW(r) + δ�(r) to
find

μ∇2δ� = ∇ · δJ σ , (B11a)

δJ σ
i = −μρ∂iU, (B11b)

μ∂xδ�|x=0 = (
δJ σ

x + μ∂yδ�
)∣∣

x=0 = μ∂yδ�|x=0.

(B11c)

Here δJ σ ≡ J σ − J σ
FW and δ� ≡ � − �FW, due to the lin-

earity of Poisson’s equation. Equations (B11) describe the
modulation δ� created by an asymmetric object on top of the
solution �FW induced by the flat wall.

We can now readily use the Neumann-Green’s function of
the half-plane, given in Eq. (11), to solve the boundary value
problem (B11). The solution reads

μδ�(r) = −
∫ ∞

0
dx′

∫ ∞

−∞
dy′ GN (x, y; x′, y′)∇′ · δJ σ ′

−
∫ ∞

−∞
dy′ GN (x, y; 0, y′)μ∂ ′

xδ�
′|x′=0. (B12)

Then, using Eq. (B11b) and performing an integration by
parts, we get

μδ�(r) = −
∫ ∞

0
dx′

∫ ∞

−∞
dy′ μρ ′∇′U · ∇′GN (x, y; x′, y′)

(B13a)

−
∫ ∞

−∞
dy′ GN (x, y; 0, y′)μ∂ ′

yδ�
′|x′=0. (B13b)

We now turn to evaluate this solution in the far field of
both the object and the wall, where (r − r0), d 	 a, �p. As we
show below, to leading order in the far field, δ� is dominated
by the integral (B13a) so that

δ�(r) �
|r−r0|,d	a,�p

1

2π
·
[

p · (r − r0)

|r − r0|2
+ p⊥ · (r − r⊥

0 )

|r − r⊥
0 |2

]

+ O(|r − r0|−2, d−2), (B14)

where the force monopole p has the same expression as in
the dilute limit (14). As detailed in Ref. [22], it is possi-
ble to show that δ� is of higher order compared to δ�,
namely, of order O(|r − r0|−2, d−2). Then, to leading or-
der, σi j � σFW,i j + δi jδ�. Furthermore, in the far field of
the object, the stress tensor satisfies a local equation of
state:

σ(r) = σ(ρ(r)) + O(∇ρ). (B15)

Denoting P = − 1
2 Trσ leads to P ′(ρb)δρ = δ�, with P ′ =

∂P/∂ρ so that

δρ(r) �
|r−r0|,d	a,�p

p
2πP ′(ρb)

·
[

r − r0

|r − r0|2
+ r⊥ − r0

|r⊥ − r0|2
]

+ O(|r − r0|−2, d−2). (B16)

APPENDIX C: VALIDITY OF THE MULTIPOLE
EXPANSION

Here we show that Eqs. (12b) and (12c) are indeed negli-
gible compared to (12a) in the far field of both the object and
the wall. For legibility, we recall here the full expression of
the integral:

δρ(x, y) = − μ

Deff

∫ ∞

0
dx′

∫ ∞

−∞
dy′ ρ ′∇′U · ∇′GN (x, y; x′, y′)

(C1a)
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FIG. 13. Regions �o, enclosing the object, and �c
o.

− μ

Deff

∫ ∞

0
dx′

∫ ∞

−∞
dy′ GN (x, y; x′, y′)∂ ′

i∂
′
jδ


′
i j

(C1b)

− μ

Deff

∫ ∞

−∞
dy′ GN (x, y; 0, y′)∂ ′

jδ

′
x j |x′=0.

(C1c)

The main difficulty of the argument stems from the nonlo-
cal structure of δ� which is nonvanishing across the entire
space accessible to the active fluid. To proceed, we divide
the half-plane in three regions: �1 is a disk of radius R1

centered on the object, �3 is a disk of radius R3 centered on
the position r where the density field is evaluated, and �2 is
the complement to �1 ∪ �3 (see Fig. 13). For reasons that will
become clear later on, we set R3 = ε|r − r0|, with ε a constant
less than 1/2. We also set R1 to be large enough that all fields
outside �1 can be evaluated using their far-field multipolar
expressions.

Integrating by parts Eq. (C1b) first cancels the contribution
of Eq. (C1c). A second integration by parts leads to

− μ

Deff

∫ ∞

0
dx′

∫ ∞

−∞
dy′ ∂ ′

i∂
′
jGN (x, y; x′, y′)δ
′

i j . (C2)

The lack of any other boundary term is due to the boundary
conditions on the Green’s function and on δ�.

We start by discussing the region �1 enclosing the object
and its contribution to Eq. (C2). As �1 is closed and finite,
one can treat δ� in this region as a localized source density. It
is thus possible to perform a multipole expansion to compute
its contribution to the density modulation and current at a
position r in the far field. The integral over �1 has one more
derivative—and is hence of a higher order—than the contribu-
tion of Eq. (C1a).

Before we turn to the regions �2 and �3, we note that
Eq. (5b) implies that δ� is given by

δ
i j

∣∣∣∣
r∈�c

1

= −vτ

μ
[vδQi j − Dt∂ jδmi] (C3)

in the region �c
1 = �2 ∪ �3. By construction, in this region,

δm and δQ take their far-field forms. Then Eqs. (1) and (4)
show that δm ∼ ∇ρ and δQ ∼ ∇∇ρ. Using the density pro-

file (13) self-consistently, we thus find

δ�

∣∣∣∣
r∈�c

1

∼ 1

|r − r0|3 , (C4)

to leading order in the far field. Note that the contributions for
the image object follow the same scaling.

Let us now turn to the region �3. There, an apparent singu-
larity at r = r′ requires some care. We thus integrate by parts
Eq. (C2) to get

− μ

Deff

∫
∂�3

d2r′∂ ′
jGN (x, y; x′, y′)δ
′

i j, (C5)

+ μ

Deff

∫
�3

d2r′∂ ′
jGN (x, y; x′, y′)∂ ′

iδ

′
i j . (C6)

Let us first look at the boundary term. On ∂�3,
|r′ − r0| > |r − r0|/2 so that |δ
′

i j | decays asymptotically as
O(|r − r0|−3). Furthermore, the gradient of the Green’s func-
tion scales as |∂ ′

i GN | ∼ R−1
3 . Overall, the boundary integral

can thus be controlled as∫
∂�3

d2r′∂ ′
jGN (x, y; x′, y′)δ
′

i j = O

(
P(�3)

R3

1

|r − r0|3
)

,

where P(�3) = 2πR3 is the length of ∂�3. This integral is
thus negligible compared to the contribution of Eq. (C1a).

To estimate Eq. (C6), we note that it can estimated as∫
�3

d2r′ [∂ ′
jGN (r; r′)][∂ ′

iδ

′
i j] ∼

∫
�3

d2r′

|r − r′|
1

|r′ − r0|4 .

(C7)
To show that there is no divergence at r = r′ we change
variable to u ≡ r − r′. With this, Eq. (C7) becomes∫

�3

ududγ

u

1

|r − r0 − u|4 , (C8)

with u = |u| and tan γ = uy/ux, showing that the u → 0 limit
is regular. The |r − r0|4 scaling then shows the contribution
of Eq. (C7) to be negligible compared to Eq. (C1a).

We are finally left with the integral over region �2, which
scales as∫

�2

d2r′ [∂ ′
i∂

′
jGN (r; r′)]δ
i j ∼

∫
�2

d2r′

|r − r′|2
1

|r′ − r0|3 .

(C9)
Since, in this region, |r − r′| > R3, this integral is smaller than

1

R2
3

∫
�2

d2r′

|r′ − r0|3 . (C10)

The last integral can then be extended over the complementary
to �1 in R2, leading to a contribution smaller than∣∣∣∣

∫
�2

d2r′ [∂ ′
i∂

′
jGN (r; r′)]δ
i j

∣∣∣∣ � 1

R1R2
3

. (C11)

Since R3 = ε|r − r0|, this final contribution is also negligible
compared to Eq. (C1a). This concludes our demonstration that
Eq. (C1a) is, self-consistently, the dominating contribution to
the density modulation.
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