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Aperiodic (quasicrystalline) tilings, such as Penrose’s tiling, can be built up from, e.g., kites and darts, squares
and equilateral triangles, rhombi- or shield-shaped tiles, and can have a variety of different symmetries. However,
almost all quasicrystals occurring in soft matter are of the dodecagonal type. Here we investigate a class of
aperiodic tilings with hexagonal symmetry that are based on rectangles and two types of equilateral triangles.
We show how to design soft-matter systems of particles interacting via pair potentials containing two length
scales that form aperiodic stable states with two different examples of rectangle-triangle tilings. One of these
is the bronze-mean tiling, while the other is a generalization. Our work points to how more general (beyond
dodecagonal) quasicrystals can be designed in soft matter.
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I. INTRODUCTION

In the “game” of arranging tiles in a plane, one of the more
fascinating and striking things to emerge are quasicrystals
(QCs), which lack the usual spatial periodicity of “simple”
tilings. The classic example is the Penrose tiling, formed, e.g.,
of rhombi with 36◦ and 72◦ corner angles [1]. Such patterns
have long been of interest due to their aesthetic and mathemat-
ical beauty. Shechtman’s 1982 discovery [2], confirmed and
built upon now in a sizable body of work, shows that in nature,
atoms, molecules, nanoparticles, and polymeric soft matter
are capable of self-assembling into such structures [3–12]. A
characteristic feature of QCs and of aperiodic tilings is that
they have sharp Bragg peaks in their diffraction patterns, or
equivalently, their Fourier transforms are point spectra. They
often also have unusual (e.g., icosahedral, ten- or twelvefold)
rotation symmetries that preclude spatial periodicity.

Recently, Dotera et al. [13] discovered another striking
aperiodic tiling but with sixfold rotation symmetry. It is
known as the bronze-mean (BM) tiling and is formed from
rectangles and two different sizes of equilateral triangles (see
Fig. 1). They also showed how particles having a hard core
and a repulsive shoulder can self-assemble into this struc-
ture. Soft-matter systems have also been observed to form
structures that can be described by rectangle-triangle tilings
[9–12]. There is rich geometry and beauty in the BM tiling.
It is the third member of a family of “metallic mean” tilings
that are associated with the irrational roots of the quadratic
x2 − mx − 1 = 0, where m is a positive integer. The Pen-
rose tiling [1,14], with fivefold symmetry, features the golden
mean (GM), 1

2 (1 + √
5) ≈ 1.618, as a characteristic ratio in
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the m = 1 case. The Ammann-Beenker tiling [1], with eight-
fold symmetry, has the silver mean (SM), 1 + √

2 ≈ 2.414,
for m = 2. The m = 3 bronze mean is 1

2 (3 + √
13) ≈ 3.303,

and the BM tiling has sixfold rotational symmetry, but like
all QCs, no spatial periodicity. The three aperiodic tilings
just mentioned all have Fourier spectra exhibiting primary
peaks distributed around a circle, with ten peaks in the GM
(Penrose) case, eight in the SM case, and twelve in the
BM case. However, the full spectra are dense, i.e., there
are Bragg peaks arbitrarily close to any point in Fourier k
space.

Associating the average position of thermal particles with
locations in each of these tiles provides a natural way
to describe the structure of quasicrystalline materials. The
(probability) density distribution ρ(x) of these particles is a
continuous field, and the Fourier transform of ρ(x) in a QC
exhibits the same features: a dense set of Bragg peaks and the
same rotation symmetries.

This provides a link to applying the methods of pattern
formation theory (PFT) to these tiling-generated structures.
Here, starting from the BM tiling spectrum and the idea that
having two length scales can stabilize quasicrystals [15], we
identify relevant circles in the Fourier spectrum and develop
a soft-core particle model that has a stable QC density profile
with the BM structure. Building this bridge between tilings
and PFT gives insight into other related tilings, one of which,
related to the family of tilings introduced in Nakakura et al.
[16], we present and investigate here.

The central objects of study in PFT are usually partial
differential equations (PDEs), and there are many powerful
ideas, such as nonlinear mode interactions, for understanding
the emergence and stability of patterns in a wide range of
problems [17,18]. The (integro-)PDEs we consider here come
from statistical mechanics, in particular dynamical density
functional theory (DDFT) [19–22], which is a theory for the
time evolution of ρ(x).
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FIG. 1. Subdivision schemes of the BM (a)–(c) and EDRT (e)–
(g) tilings. Rectangles are yellow, small triangles are purple, and
large triangles are green. The colored tiles that protrude from the
inflated tiles overlap when the larger tiles are joined. In the BM tiling
(d), the diagonal across two large triangles (red line) is longer than
the diagonals across the small (or large) triangles and the rectangle
(blue lines). In the EDRT tiling (f), these diagonals (magenta lines)
are equal.

This paper is arranged as follows: In Sec. II we describe
the bronze-mean and equidiagonal rectangle-triangle tilings,
illustrate the inflation rules for constructing them, and the cor-
responding Fourier power spectra that we then use to bridge
between these tilings and PFT. Then in Sec. III we briefly ex-
plain how PFT allows us to identify two circles on the Fourier
spectra and to determine which Fourier modes are needed to
form the tiling structures. In Sec. IV we describe how to go
from the Fourier spectrum for each tiling to determine in each
case a soft-particle model with pair interactions that make the
corresponding tilings stable. We use DDFT to obtain density
profiles ρ(x) and to demonstrate that the resulting structures
are stable. However, these profiles are local minima of the
free energy and not the global minima of the free energy, so
they are not thermodynamically stable, only metastable states.
We also show how to match a subset of the maxima in ρ(x)
with the vertices of the corresponding tiling. In Sec. V we
give further details of how to calculate the density profiles,
in particular, showing what size of box in which to calculate
ρ(x). Since QCs have no unit cell, often one must resort to
calculating ρ(x) on a finite-size domain with periodic bound-
ary conditions, thus actually obtaining an approximant to the
true QC. We show how to select the box size so as to minimize
errors from working with a finite-size piece of the QC. We also
discuss how this approach is related to some other possible
approaches to constructing periodic approximants. In Sec. VI
we describe some of the key characteristic properties of the
equidiagonal rectangle-triangle tiling, including the inflation
factor, numbers of the different tiles, and the projection win-
dow. Finally, in Sec. VII we make a few concluding remarks.

II. BRONZE-MEAN AND EQUIDIAGONAL
RECTANGLE-TRIANGLE TILINGS

In Figs. 1(a)–1(c) we illustrate the set of three tiles from
which the BM tiling is built up: a rectangle and two equi-
lateral triangles whose sides are the lengths of the two
sides of the rectangle. The ratio of the sides of the rectan-
gle is 1

6 (
√

3 + √
39) ≈ 1.330. The aperiodic tiling is created

FIG. 2. A single rectangle is inflated twice using the rules in
Fig. 1, where (a) is the BM case and (b) the EDRT.

using an inflation rule [illustrated in Fig. 2(a)], as described
in [13,16]. The inflation scaling factor is the bronze mean,
1
2 (3 + √

13) ≈ 3.303.
In the BM tiling, there are two lengths that are almost

the same: the diagonal across two large triangles, and the
diagonal across the small (or large) triangle and the rectangle
[see Fig. 1(d), red and blue lines]. We change the ratio of
the sides of the rectangle slightly, to (

√
3 + √

11)/4 ≈ 1.262,
to make these two diagonals equal in length [see Fig. 1(h),
magenta lines], which leads to an aperiodic tiling with tiling
subdivision rule shown in Figs. 1(e)–1(g) and the inflation
illustrated in Fig. 2(b), with a much larger inflation factor
of 2

√
3 + √

11 ≈ 6.781. We refer to this as the equidiago-
nal rectangle-triangle (EDRT) tiling. As can be seen from
Fig. 2(b) [see also Figs. 1(e)–1(g)], the larger inflation factor
corresponds to a much larger number of tiles in each inflated
tile. Note also the patches of large triangles are bigger in this
striking structure and also that the rectangles rotate by 90◦
after each inflation, leading to a non-Pisot inflation factor.

In Figs. 3(a) and 3(c) we show the Fourier power spectra of
the BM and the EDRT tilings, respectively. These are obtained
by forming the tiling as a projection from a four-dimensional
periodic structure and then calculating the Fourier transform
of a large but finite portion of this projection, displaying only
peaks with intensity greater than 0.0045 times that of the
central peak. Further information about these tilings and their
Fourier spectra are given in Sec. VI; see also Ref. [13].

III. PATTERN FORMATION THEORY

We next call on ideas from PFT to select two circles in
Fourier space: these correspond to two length-scales that we
build into the pair interaction potentials between soft particles.
Stabilizing patterns in continuum models involves nonlinear
interactions between density waves acting to reinforce each
other [23–29]. Two modes interact with a third when the
wave vectors add up, as illustrated in Figs. 3(b) and 3(d),
and typically, in problems of minimizing a free energy, having
more three-wave interactions leads to an enhancement of the
stability of the structure containing all these waves [25].
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FIG. 3. (a), (c) Power spectrum of aperiodic tiling and (b), (d)
wave vectors, with (a), (b) BM and (c), (d) EDRT. The short vectors
are of length k1 = 1 while the longer have length k2 ≈ 2.252 (BM)
and k2 ≈ 2.186 (EDRT). Pairs of the long vectors add to give the
small ones. Making such Fourier triangles energetically favorable in
the particle systems aids in stabilizing these structures.

The choice of circles is not unique, and we used three crite-
ria to select the circles. First, the peaks lying on the two circles
should be among the strongest in the power spectrum of the
tiling, so the resulting pattern should stand a good chance
of resembling the tiling. Second, there should be three-wave
interactions: two vectors on one of the circles should add up to
a vector on the other, required for stabilizing the quasiperiodic
pattern. And third, the ratio between the two radii should be
greater than 2, which implies that the three-wave interaction
must be two long vectors on the outer circle adding up to a
small vector on the inner. In the simplest cases of hexagonal
symmetry, this criterion also implies that there should be 12
vectors (with uneven spacing) on the outer circle and six on
the inner. The reason for this third criterion is that it simplifies
the possible three-wave interactions: with a radius ratio less
than 2, two vectors on the inner circle could add up to a
vector on the outer, which would result in the complication
of competition between two types of patterns [26,29].

The pairs of circles we select are displayed in Figs. 3(a)
and 3(c). In the EDRT tiling, the six peaks just off the outer
circle in the BM spectrum have moved onto the outer circle,
making a total of 18 peaks.

In the following section we discuss systems of interacting
soft particles, treated using DDFT, thus allowing us to incor-
porate these ideas from PFT to tune the interactions between
particles so that they are stable in either the BM or EDRT
structures.

Note also that to calculate the density field ρ(x) from
DDFT for a QC a periodic approximation is necessary. The
considerations required to do this are discussed in Sec. V.

IV. DYNAMICAL DENSITY FUNCTIONAL THEORY

Having found the specific favorable wave numbers and
Fourier modes for forming these structures, we can then iden-
tify the soft-matter systems in which the interactions between
the particles leads to these modes being prominent in ρ(x),
i.e., where the free energy is lowered by modes on these two
circles having a large amplitude. As mentioned, DDFT is a
theory for the time evolution of ρ(x), with the dynamics given
by [19–22]

∂ρ

∂t
= ∇ ·

[
�ρ∇ δF [ρ]

δρ

]
, (1)

where � = D/kBT , D is the diffusion coefficient, T is the
temperature, and kB is Boltzmann’s constant. Also, F [ρ] is
the Helmholtz free energy functional from equilibrium density
functional theory (DFT) [21,30],

F [ρ] = kBT
∫

dx ρ[ln �dρ − 1] +
∫

dx Uρ + Fex[ρ]. (2)

The first term is the ideal-gas contribution (� is the thermal de
Broglie wavelength and d is the dimensionality of the system),
the second is the contribution from any external potential U (x)
(here U = 0), and the last term is the contribution from the
interactions between the particles. For soft particles interact-
ing via a pair potential v(r) that is finite for all interparticle
distances r, the following simple approximation is rather ac-
curate [31–33],

Fex[ρ] = 1

2

∫
dx

∫
dx′ρ(x)ρ(x′)v(|x − x′|), (3)

and so is used here. This can be rewritten as the Fourier space
integral

Fex[ρ] = 1

2(2π )d

∫
dk|ρ̂(k)|2v̂(k), (4)

where ρ̂(k) = ∫
dxρ(x)e−ik·x is the Fourier transform of the

density profile, and v̂(k) is the Fourier transform of the pair
potential, with k = |k|. From Eq. (4) one can see that modes
ρ̂(k) that correspond to minima in v̂(k) decrease Fex and so
are likely to be favorable. By performing a linear stability
analysis of the full equation (1) for the uniform liquid of
density ρ̄, one can determine the dispersion relation, which
gives the growth or decay rate of modes with wave number
k and also provides a measure of the relative contributions
of the energetic Fex[ρ] and the entropic (ideal-gas) parts to
the free energy. The resulting criterion for marginal stability
at wave number kc is 1 + ρ̄βv̂(kc) = 0, where β = (kBT )−1

[27,28,34].
Thus our approach here is to construct pair potentials v(r)

so that the liquid is marginally stable at the two wave numbers
k1 and k2 (radii of the two Fourier space circles in Fig. 3),
identified from our analysis of the tilings, as described in
Sec. III. We scale lengths so that the smaller wave number is
k1 = 1, and then for the BM tiling the larger wave number is
k2 ≈ 2.252 and for the EDRT tiling, k2 ≈ 2.186. We achieve
this by using the following pair potential,

v(r) = εe− 1
2 σ 2r2

(1 + C2r2 + C4r4 + C6r6 + C8r8), (5)
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FIG. 4. (a) Interaction potential v(r) and (b) its Fourier transform
v̂(k) for the BM tiling (blue) and EDRT tiling (red) cases. The min-
ima in the v̂(k) curves occur at k1 = 1 (both cases) and at k2 ≈ 2.252
(BM) and k2 ≈ 2.186 (EDRT).

that was originally proposed by Barkan et al. [35]. Note that
other soft-core systems also form QCs [27,36–39]. Soft-core
potentials arise as the coarse-grained effective potentials be-
tween polymeric macromolecules in solution, such as star
polymers, dendrimers, or block copolymers [31]. The pa-
rameter ε in Eq. (5) controls the overall strength of v(r),
while the others P = {σ,C2,C4,C6,C8} can be chosen to
determine the location and sharpness of the two minima in
v̂(k). Choosing ρ̄ = 10 and βε = 1, and requiring that the
liquid be marginally stable at k = k1 and k = k2, results in
four relations between the five parameters P . In practice, we
choose the value of σ and find the other four parameters using
these relations. A similar approach is discussed in Ref. [28]
(see also [35,40]).

The choice of σ is not entirely straightforward, since for
the desired structures to be stable, one must at the same

time make sure that the value of v̂(k) is sufficiently high at
other wave numbers k corresponding to competing crystal
structures [28]. We determined σ largely by trial and error,
using insight from the rate of convergence (or divergence) of
the Picard-iteration algorithm used to solve the DDFT [41].
We find P = PBM ≡ {0.95,−2.3455, 1.2638,−0.206 67,

0.010 136} leads to a stable BM structure. Similarly,
P = PEDRT ≡ {0.85,−1.4516, 0.690 75,−0.098 040,

0.004 454 8} leads to a stable EDRT structure. The potentials
v(r) and their Fourier transforms v̂(k) are displayed in Fig. 4.

In Fig. 5 we display portions of equilibrium density profiles
obtained for both the BM and EDRT systems. Superimposed
on two-thirds of the images are the corresponding tilings
created by identifying all points xm that are maxima in the
density profiles with ρ(xm)/ρm > c, where c = 0.967 (EDRT)
or c = 0.953 (BM), and where ρm is the largest of all ρ(xm)
values, and then joining neighboring xm points with straight
lines and paring excess vertices and edges. The tiles have been
colored in just the left-hand third of the figures. We have con-
firmed that these density profiles correspond to local minima
of F but are not the global minima. The hexagonal crystal is
the global minimum state and is the phase that typically forms
from random initial conditions. The equilibrium QC density
profiles are calculated using Picard iteration starting from
an initial guess constructed in Fourier space by setting the
amplitudes of ρ̂(k = 0) and all the points on the two circles
displayed in Fig. 3 to have a large value, while all others are
given a small randomly chosen value. The domain on which
we calculate ρ(x) is rectangular, of size Lx × Ly, with periodic
boundary conditions. We choose the side lengths Lx and Ly so

FIG. 5. Grayscale plots of density profiles for the BM (top) and EDRT (bottom) systems, where black corresponds to maxima, where
ρ ≈ 25, while white corresponds to minima, where ρ ≈ 2. Superimposed on each is the corresponding tiling. In the BM case, the short and
long edges are of length 8.36 and 11.61, while in the EDRT case, these lengths are 8.72 and 11.95. We display here only small portions
of profiles calculated on domains of size 172π × 172π/

√
3 (BM) and 236π × 236π/

√
3 (EDRT). The full profiles are displayed below in

Figs. 10 and 11 together with the corresponding tilings. The data for the profiles are available at [42].
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that the resulting (now periodic) profile is a good approximant
for the true QC, with the values used chosen following the
approach of Refs. [43,44]. Further details are given on this
below in Sec. V.

Note that in Fig. 5 not all density peaks correspond to cor-
ners of the superimposed tiles, and in fact the tiles all contain
multiple density peaks, as is common in this approach to tiling
density fields. Moreover, it is interesting to note that the man-
ner in which the peaks decorate the tiles varies quantitatively
between instances. The total average particle densities in these
two systems are ρ̄ = 9.6 (BM) and ρ̄ = 9.4 (EDRT). Since
the radii of the particles R ≈ 2π , these densities correspond
to each particle overlapping with ρ̄πR2 ∼ 103 other particles
on average, which justifies the use of the mean-field approxi-
mation for Fex[ρ] in Eq. (3). Note also that these high densities
make particle-based simulations of these systems difficult,
requiring simulations of millions of particles if systems of the
size shown in Fig. 5 are to be achieved.

In Fig. 6 we display the Fourier transforms of the density
profiles displayed in Fig. 5. In both cases, the power spectra
are dense (up to the limit imposed by the periodic domain) and
have sixfold rotation symmetry. Comparing these to the power
spectra in Fig. 3 and allowing for the fact that the density
profiles are periodic approximants to the quasicrystals, we see
that the primary peaks are the same, i.e., for the BM case,
the six peaks on the inner circle and twelve on the outer are
the same. Similarly, for the EDRT case, the six on the inner
circle and eighteen on the outer are the same. In terms of the
locations of the peaks off the two circles, the corresponding
tiling and DDFT Fourier spectra are the same, though the
strengths of the peaks differ. In particular, the DDFT spectra
have far more easily visible peaks outside of the outer circle
due to the small-scale structures decorating the tiles in the
DDFT system, which are not present in the tilings.

V. PERIODIC APPROXIMANTS

A fundamental property of QCs is that they are not formed
from any periodically repeating unit cell: they have no trans-
lational ordering, though they do have rotational ordering.
However, one must generally work with finite-sized portions
of such structures in most practical calculations such as those
presented here. To do this we must then either (i) deal with the
complex boundary conditions that arise for finite-size portions
of a QC or (ii) we must construct periodic approximants to
the true QC, which then have simple (periodic) boundary
conditions. A third possible approach (iii) is to note that
QCs can be formed from projections of periodic structures in
higher dimensions [1,47]. The simplest two-dimensional QCs
can generally by formed by projecting from four-dimensional
periodic structures. Option (ii) is the one we pursue here,
though we discuss the four-dimensional nature of the EDRT
tiling in Sec. VI.

There are several ways to construct the periodic approxi-
mants that we consider. Since we are taking a PFT approach,
it is natural to focus on the wave vectors and make small
alterations to their orientations and/or lengths to make the
resulting pattern periodic, as discussed, for instance, in [43].
Since the quasicrystals have sixfold symmetry, we choose
(as explained in detail below) wave vectors on a hexagonal

FIG. 6. Power spectra (i.e., Fourier transforms) of the density
profiles displayed in Fig. 5. The upper plot is for the BM system and
the lower for the EDRT. The radius of each dot is set by the strength
of the peak, with the radius going a step smaller for every factor of
10 decrease in the strength of the peak in the Fourier spectrum. The
inner circle in each case is k = 1, and the outer circles are k = 2.252
(BM) and k = 2.186 (EDRT). The Fourier mode amplitudes con-
tinue at reasonably large amplitude out to about k = 10, though the
equivalent power spectra for ln ρ drop off at smaller wave numbers,
consistent with the arguments of [45,46].

lattice that approximate the most prominent wave vectors in
the Fourier transform of the tiling. These, of course, include
the wavevectors illustrated in Fig. 3.

There are other ways of choosing periodic approximants of
QCs. The cut-and-project method from the four-dimensional
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FIG. 7. The periodic hexagonal lattice (gray dots) is generated
by two small vectors e1 and e2. From combinations of this pair,
two circles of wave vectors of radii k1 = 1 and k2 are built. The
outer circle has twelve vectors, ±q1, ±q2, ±q3, ±q4, ±q5, and ±q6,
and the inner has six, ±k1,±k2, and ±k3. Note that these can be
arranged to form rectangles [e.g., the one illustrated with the vectors
±(q1 + k3) and ±k2 forming the sides] whose side lengths are (in
the limit) in the same ratio as the sides of the rectangles in the tiling.
Similarly, corresponding small and large triangles can be formed.
This case illustrated is (a, b) = (10, 7) and (n, m) = (3, 4), and the
angle between q1 and q4 is α ≈ 26◦.

space [48] works well with some classes of QCs, but in this
case, there are difficulties because of the fractal nature of the
projection windows (see Fig. 13 below). A third approach is to
take a hexagonal arrangement of the small or large triangular
tiles and then inflate these a finite number of times. This leads
to a sequence of periodic approximants, which become better
and better approximations to the true QC as the number of in-
flations is increased. Below we discuss briefly the connections
between this and the wave vector approaches, after first giving
further details on each.

A. Constructing QC approximants in Fourier space

We begin by defining three vectors, e1, e2, and e3, of equal
length and at 120◦ to each other, with e1 aligned in the positive
x direction and

e1 + e2 + e3 = 0. (6)

Integer combinations of these three vectors define a hexagonal
lattice—these are the gray dots in Fig. 7.

Then all continuous functions of interest, such as the den-
sity profile ρ(x), can be approximated as Fourier sums of
waves with wave vectors on this lattice. Forming them this
way, the functions are periodic in a rectangular domain of size
Lx × Ly, where Lx = 4π/|e1| and Ly = Lx/

√
3.

For our purposes we follow the approach of [49] and con-
struct periodic approximants to BM and EDRT quasipatterns
by making appropriate choices of pairs of integers (a, b), with
a and b being coprime and with a > b > 1

2 a > 0. We describe
below how we choose (a, b). The integers define six vectors

[44,49]:

q1 = ae1 + be2,

q2 = (b − a)e1 − ae2,

q3 = −be1 + (a − b)e2,

q4 = ae1 + (a − b)e2,

q5 = −be1 − ae2,

q6 = (b − a)e1 + be2. (7)

With this definition we have

q1 + q2 + q3 = 0,
(8)

q4 + q5 + q6 = 0,

and

|q j |2 = (a2 − ab + b2)|e1|2. (9)

The 12 vectors ±q j correspond to the 12 peaks on the outer
circles in Fig. 3. These are illustrated in Fig. 7 for the case
when (a, b) = (10, 7). The angle between q1 and q4 is α, with

cos α = a2 + 2ab − 2b2

2(a2 − ab + b2)
(10)

and
√

3 sin α = 3a(2b − a)

2(a2 − ab + b2)
, (11)

noting that these are both rational numbers [44].
Then we choose two sets of three vectors:

k1 = q2 − q5 = (2b − a)e1 = me1,

k2 = q1 − q4 = (2b − a)e2 = me2, (12)

k3 = q3 − q6 = (2b − a)e3 = me3,

and

l1 = q1 + q5 = (a − b)(e1 − e2) = n(e1 − e2),

l2 = q3 + q4 = (a − b)(e2 − e3) = n(e2 − e3),

l3 = q2 + q6 = (a − b)(e3 − e1) = n(e3 − e1). (13)

With these definitions, |k j | = (2b − a)|e1| and |l j | = √
3(a −

b)|e1|. We also define m = 2b − a > 0 and n = a − b > 0, so
a = m + 2n and b = m + n.

These ±k j and ±l j vectors correspond to the peaks on the
inner circle and just outside the inner circle in Fig. 3. The
k j and q j vectors define the triangles noted in Figs. 3(b) and
3(d). We scale |e j | = 1/(2b − a) = 1/m so that |k j | = k1 =
1 and |q j | = k2 = √

a2 − ab + b2/(2b − a). This implies that
the domain edge lengths are Lx = 2m × 2π and Ly = Lx/

√
3.

This choice of scaling means that we have chosen the ratio
of the two wave numbers to be greater than 2. Other choices of
wave number ratios are possible, but we note that had we cho-
sen the ratio to be less than 2, other mode interactions would
compete with those that stabilize our chosen quasicrystal [26].

Next we show how to choose (a, b) so that solving the DFT
(2) and/or the DDFT (1) in the periodic domain of size Lx ×
Ly will result in good approximations to the BM and EDRT
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FIG. 8. Constructing BM QC approximants by inflation: (a) six small triangles (ST) or (b) six large triangles (LT) are arranged to form a
hexagon, with a periodic rectangle with aspect ratio

√
3 : 1 indicated in black (allowing the tiles to overlap). The six triangles are then inflated

three times, using the inflation rules in Fig. 1. The scaling is consistent within the panels, and tiles that are completely outside the periodic
rectangle are not drawn. The last inflated tiling in (a) is repeated in Fig. 10, which compares it to the DDFT density profile.

quasicrystals. The aspect ratios of the rectangles in the BM
tiling are

√
3 × 1 + √

13

6
, (14)

and for the EDRT,

√
3 × 3 + √

33

12
. (15)

Rectangles with the same aspect ratio appear in the Fourier
spectrum. This is explained for the BM case in Ref. [13]
but also applies to the EDRT case—see Sec. VI below on
properties of the EDRT tiling. The rectangle is illustrated in
Fig. 7 and connects the ends of the vectors k1, q4, q1, and
−k3, with a short side of length k1 = 1. The long side is of
length |l3| = √

3(a − b)/(2b − a) = √
3 × n

m . So canceling a
factor of

√
3 from this expression and from the irrational

expressions in Eq. (14) leads us to consider the continued
fraction approximations. For the BM this is

n

m
= 3

4
,

10

13
,

33

43
,

109

142
, · · · → 1 + √

13

6
≈ 0.7676, (16)

and for the EDRT,

n

m
= 3

4
,

8

11
,

43

59
,

94

129
, · · · → 3 + √

33

12
≈ 0.7287. (17)

These continued fraction approximants are readily calculated
using the Euclidean algorithm and are within O(m−2) of the
corresponding irrational number. In continued fraction no-
tation, we have 1

6 (1 + √
13) = [0; 1, 3, 3, 3, . . . ] and 1

12 (3 +√
33) = [0; 1, 2, 1, 2, 5, 2, 1, 2, 5, . . . ].
These choices of (n, m), and the associated values of

(a, b) = (m + 2n, m + n) define a series of periodic domain
sizes (with Lx = 4πm) that allow good approximations to the
aperiodic BM and EDRT quasicrystals. For the DDFT results
presented in Figs. 5, 10, and 11, we used (n, m) = (33, 43)
(BM case) and (n, m) = (43, 59) (EDRT case), in domains
with Lx = 86 × 2π and Lx = 118 × 2π , respectively. These
provide rational approximations to the irrational rectangle tile
aspect ratio that are within 0.02% of the true value. For larger
(n, m), the error goes as m−2.

The method presented here of constructing periodic ap-
proximants to sixfold quasicrystals generalizes the method
proposed in Ref. [43] for the dodecagonal quasicrystal. That
method was based on square periodic domains and a different
series of rational approximations to an irrational number. Here
the 1 :

√
3 domains lend themselves naturally to quasicrystals

with sixfold symmetry, and with this point of view, the rele-
vant irrational number for the dodecagonal case is 1/

√
3. The

periodic approximants have n
m = 3

5 , 4
7 , 11

19 , 15
26 , 41

71 , 56
97 , · · · →

1√
3
.
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FIG. 9. Constructing EDRT QC approximants by inflation: (a) six small or (b) large triangles are arranged to form a hexagon, as in Fig. 8.
The six triangles are then inflated twice. The last inflated tiling in (a) is repeated in Fig. 11, which compares it to the DDFT density profile.

B. Constructing QC approximants via inflation

As mentioned above, an alternative method of constructing
periodic approximants is based on tiles and inflation rules
rather than wave vectors. There are several ways to construct
a sequence of approximants that tends to ideal QCs. Here
we illustrate a series of rectangular approximants with aspect
ratio

√
3 : 1, natural for structures with sixfold symmetry.

The starting points are either six large or six small triangles,
arranged as shown in Figs. 8 and 9. With periodic boundary
conditions, these form a rectangle with aspect ratio

√
3 : 1. On

applying the inflation rules, in which the number of polygons
grows as described by Eq. (23) below, we obtain a sequence of
periodic approximants of increasing size. Ideally, the starting
choice of tiles should be a configuration that would appear
naturally within the full tiling: this is the case when choosing
six large triangles but not when choosing six small triangles.

C. Linking the Fourier and tiling viewpoints

In Figs. 10 and 11 we show the full extent of the DDFT
density profiles from which portions are displayed in Fig. 5.
Figure 10 shows the BM QC and Fig. 11 shows the EDRT

QC. In each case we superimpose the corresponding tiling
with vertices at a subset of the maxima in the density profile,
as described above in Sec. IV. We tint in green some of the
large triangles to aid the eye. Beneath each density profile we
display the corresponding tiling approximants, which are also
the last in the sequence of inflations illustrated in Figs. 8(a)
and Fig. 9(a).

Notice in Fig. 10 that arrangements of six large triangles
(highlighted in green) in central and corner parts of the density
profile do not line up with the corresponding sets of six large
triangles in the tiling. The reason for this is that the rules we
use for linking maxima in the density profile are local and do
not take into account the global structure imposed by the in-
flation rules. Minor rearrangements (phason flips) of the tiles
would make the match perfect. In contrast, in the EDRT case
(Fig. 11) the agreement is perfect without any rearrangement.
Other choices of (m, n) in the sequence of approximations in
the DDFT calculations lead, in both the BM and EDRT cases,
to tilings that match those that can be found by sequences
of inflations of six small or large triangles (though the exact
alignment between these is more complicated in the EDRT
case).
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FIG. 10. Density profiles in the BM case with the choice (m, n) = (43, 33) and the tiling corresponding to six small triangles inflated three
times (see Fig. 8). Sets of six large triangles in the density field are tinted green to guide the eye: the two tilings differ in their central and
corner regions, but small rearrangements of the choice of tiles (phason flips) in the density field would lead to exact agreement. The data for
the density profile are available at [42].

VI. PROPERTIES OF THE EDRT TILING

The EDRT tiling presented in Figs. 1, 2, and 9 is composed
of small (ST) and large (LT) equilateral triangles of edge
lengths S and L, respectively, and of rectangles (R) of size
L × S; see Fig. 1. We impose the equidiagonal conditions for
ST–R, LT–R, and LT–LT pairs as shown in Fig. 1(h). To do
this, the ratio of the edge lengths must be

φ = L

S
=

√
3 + √

11

4
≈ 1.262. (18)

In each inflation step, the tiles are subdivided according to
the rules illustrated in Figs. 1(e)–1(g). Upon subdivision, the
two lengths of the ith-generation tiling Li and Si transform

as (
Li+1

Si+1

)
=

(
3
√

3 2
4

√
3

)(
Li

Si

)
. (19)

The positive eigenvalue of this transformation matrix is

β = 2
√

3 +
√

11 ≈ 6.781, (20)

which is the inflation factor, and the corresponding eigenvec-
tor gives exactly the ratio in Eq. (18). Note that the inflation
factor β is not a Pisot number, but its square, β2 = 23 +
4
√

33, corresponding to two consecutive subdivisions, is a
Pisot number. We note that the EDRT tiling is categorized
as a type-IIC tiling, extending the scheme of Ref. [16]. More
precisely, type II means the tiles are rotated by 30◦ at each
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FIG. 11. Density profiles in the EDRT case with the choice (m, n) = (59, 43) and the tiling corresponding to six small triangles inflated
twice (see Fig. 9). Sets of six large triangles in the density field are tinted green to guide the eye: the two tilings are the same. The data for the
density profile are available at [42].

inflation and has in this case n = 3 and m = 4 in Eq. (16)
in the main text of Ref. [16] [compare with Eq. (19) above],
and the label C is given in analogy to the case of type IC in
Supplemental Note 3 of that paper.

Also of interest are the numbers of long and short edges nL
i

and nS
i , respectively, which transform according to(

nL
i+1

nS
i+1

)
=

(
3
√

3 4

2
√

3

)(
nL

i

nS
i

)
. (21)

In a self-similar tiling, the ratio of the numbers of long and
short edges is

ψ =
√

3 + √
11

2
≈ 2.524, (22)

coming from an eigenvector of the matrix in (21).

By inspecting the inflation rules for each tile type in
Figs. 1(e)–1(g), we find that in the EDRT tiling the numbers
of ST, LT, and R tiles in the (i + 1)th generation denoted by
STi+1, LTi+1, and Ri+1, respectively, are related to those in the
ith generation by

⎛
⎜⎜⎝

STi+1

LTi+1

Ri+1

⎞
⎟⎟⎠ =

⎛
⎝ 3 4 8

16 27 48
6 9 17

⎞
⎠
⎛
⎜⎝

STi

LTi

Ri

⎞
⎟⎠. (23)

The largest eigenvalue of the above matrix
is β2. The eigenvector corresponding to β2
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FIG. 12. Basis vectors in real and reciprocal space for the EDRT
tiling. Projected basis vectors in the physical and in the perpendicular
space, a‖

j and a⊥
j , are shown in (a) and (b), respectively. Projected

reciprocal-space basis vectors in the physical and in the perpendicu-
lar space, q‖

j and q⊥
j , are shown in (c) and (d), respectively.

is

1

12

⎛
⎝ 7 − √

33
8

−3 + √
33

⎞
⎠ ≈

⎛
⎝0.105

0.667
0.229

⎞
⎠, (24)

while for the BM tiling the corresponding vector is [13]

1

43

⎛
⎝29 − 5

√
13

23 − √
13

−9 + 6
√

13

⎞
⎠ ≈

⎛
⎝0.255

0.451
0.294

⎞
⎠. (25)

Therefore we find that the EDRT tiling has a higher proportion
of the LT compared to the BM tiling.

The two-dimensional aperiodic EDRT tiling can be con-
structed by projecting from a four-dimensional periodic
structure, with a set of basis vectors {a j}, where j = 0, 1, 2, 3.
Projection matrices P‖ and P⊥ allow us to define the basis
vectors in the physical and in the perpendicular space by
a‖

j ≡ P‖a j and a⊥
j ≡ P⊥a j , respectively (see Fig. 12). See the

section “higher-dimensional representation” in Ref. [13] for
more details. Thus we find that |a‖

odd| = a � α, |a‖
even| = c α,

|a⊥
odd| = a α, and |a⊥

even| = c � α. The ratios of the lengths of
even and odd basis vectors in the physical and in the perpen-
dicular space are ∣∣a‖

odd

∣∣∣∣a‖
even

∣∣ = a�

c
= φ (26)

and

|a⊥
even|

|a⊥
odd|

= c�

a
= ψ, (27)

respectively.
Using these ratios we construct the projection windows in

the perpendicular space. The position of a vertex of a tiling
in the physical space is given as r‖ = ∑3

j=0 n ja
‖
j , where n j

are integers and a‖
j are the physical-space basis vectors of

the tiling. The same set of ni also defines the position of
the corresponding vertex in the perpendicular space r⊥ =∑3

j=0 n ja⊥
j , and these vertices constitute the projection win-

dows. Figure 13(a) shows the projection window, which tends
to a self-similar shape as one proceeds with inflation from
generation to generation. Figure 13(b) shows the projection
window for the BM tiling.

We find that |q‖
odd| = 2π�α/a, |q‖

even| = 2πα/c, |q⊥
odd| =

2πα/a, and |q⊥
even| = 2π�α/c. Thus the ratios of lengths of

the reciprocal-space basis vectors in the physical and the

FIG. 13. Projection windows for (a) the EDRT tiling with
136 525 points and (b) the BM tiling.

perpendicular space are∣∣q‖
odd

∣∣∣∣q‖
even

∣∣ = c�

a
= ψ (28)

and

|q⊥
even|

|q⊥
odd|

= a�

c
= φ, (29)

respectively. These ratios are the inverses of those in the
physical space.

Recall that Fig. 3(c) shows the Fourier transform of a finite
but large EDRT tiling, with the intensities normalized by the
central peak. Remarkably, many of the prominent peaks and
numerous of the smaller ones are similar to those for the
bronze-mean tiling [Fig. 3(a)]. The first seven strong peaks
are listed in Table 1. Note that strong peaks nos. 2 and 3
have the same length wave vectors, which is nothing but the
equidiagonal property.

VII. CONCLUDING REMARKS

To conclude, we recall that aperiodic tilings have been
invoked as a description of the geometry of QCs ever since
their discovery [50], and having two length scales present in
a system is known to stabilize QCs [15,25]. Here we have
demonstrated how to join these approaches together, leading
to an example of a QC or tiling, through analysis of the
Fourier spectrum of the aperiodic tiling and a careful choice of
interaction potential. The interaction potential we use (5) is a
model for cluster crystals of polymer micelles or dendrimers

TABLE I. List of prominent peaks for the EDRT tiling having
intensity I (k‖) > 0.4. Note that the ratio of |k‖| for the second and
third intensity peaks to the fourth is 25.503/11.666 = 2.186.

No. n1 n2 n3 n3 Intensity |k⊥| |k‖|
0 0 0 0 0 1.000 0.0 0.0
1 2 2 2 1 0.936 0.571 14.724
2 3 3 4 2 0.818 0.990 25.503
3 2 3 4 3 0.818 0.990 25.503
4 1 1 2 1 0.648 1.443 11.666
5 1 2 3 2 0.603 1.552 18.786
6 1 1 1 1 0.437 1.959 7.442
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with a core and soft corona [35,51,52]. Thus our work con-
tributes to understanding how to design soft-matter systems to
form particular structures that could have useful (e.g., optical)
properties.

More elaborate potentials, perhaps involving three-body
interactions, may be required for other tilings or indeed
to make the structures discussed here the global min-
ima of F . The number of aperiodic tilings found so far
is large [53] and includes structures that may be rele-
vant to two-dimensional materials such as bilayer graphene
[44,54] and three-dimensional quasicrystals [46]. We are op-
timistic that our approach can be used, at least in principle,
to find soft-particle systems that self-assemble into these
structures.

The data associated with this paper are openly available
from the University of Leeds Data Repository [42].
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