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Flocking dynamics mediated by weighted social networks
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We study the effects of animal social networks with a weighted pattern of interactions on the flocking transition
exhibited by models of self-organized collective motion. We consider variations of traditional models of
collective motion in which interactions between individuals are mediated by static complex weighted networks,
representing patterns of social interactions. For a model representing dynamics on a one-dimensional substrate,
application of a heterogeneous mean-field theory provides a phase diagram as function of the heterogeneity of the
network connections and the correlations between weights and degree. In this diagram we observe two phases,
one corresponding to the presence of a transition and other to a transition suppressed in an always ordered system,
already observed in the nonweighted case. Interestingly, a third phase, with no transition in an always disordered
state, is also obtained. These predictions, numerically recovered in computer simulations, are also fulfilled for
the more realistic Vicsek model, with movement in a two-dimensional space. Additionally, we observe at finite
network sizes the presence of a maximum threshold for particular weight configurations, indicating that it is
possible to tune weights to achieve a maximum resilience to noise effects. Simulations in real weighted animal
social networks show that, in general, the presence of weights diminishes the value of the flocking threshold, thus
increasing the fragility of the flocking state. The shift in the threshold is observed to depend on the heterogeneity
of the weight pattern.
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I. INTRODUCTION

The self-organized behavior of different interacting ani-
mals [1] can lead to complex patterns of movement covering
widely separated time- and length scales. Such processes,
broadly known as collective motion [2], show stunning ex-
amples ranging from the migration of large mammals, the
marching of huge groups of desert locusts or the complex and
coordinated maneuvering of flocks of birds and shoals of fish,
to the swimming and swarming of bacteria [2–6]. The field of
collective motion has experienced recently an important boost
due to improvements in image acquisition and, especially, in
tracking technologies, capable to reconstruct the movement
of many unmarked individuals from digital recordings [7,8].
However, most of the scientific effort in the field has had a
theoretical nature, based in the study of different representa-
tive models [4]. Despite the different formulations of models
of collective motion, they are usually based in a set of mov-
ing self-propelled particles (SPPs) implementing three main
ingredients: (i) avoiding collisions, (ii) trying to stay together,
and (iii) trying to align the velocity with that of the nearest
neighbors [9–11].

Most of these models consider metric interactions, where
the neighbors of the SPPs are defined in terms of Euclidean
distance. It has been also proposed that interactions might
have in some cases a nonmetric nature, defined by a fixed
number of closest neighbors, independently of their rela-
tive distance [12,13], and even by a single closest neighbor
in the forward direction [14]. These local, metric, or non-
metric rules, however, neglect the effect of possible social

interactions among the group members [15] and that can in-
duce individuals to try to follow with higher preference a fixed
set of other individuals that are closely connected socially
with them [16].

The effect of social interactions in collective motion has
been studied in some detail in several models of collective
motion [17–27]. Among those models, it plays a prominent
role the celebrated Vicsek model [28] defined in terms of a
set of SPPs moving in a two-dimensional space. Dynamics
evolves in discrete time and is given by the SPPs trying to
align the direction of their velocity with the average velocity
of a set of other SPPs in a local neighborhood. This alignment
is hindered by a source of noise of strength η that represents
inherent difficulties in gathering the speed of the neighbors
or in implementing the resulting average. The interest of this
minimal model of collective motion resides in the fact that it
exhibits an order-disorder (flocking) transition at a threshold
value ηc of the noise intensity, separating an ordered phase
at η � ηc, in which particles move coherently in a randomly
chosen average direction, from a disordered phase at η > ηc,
in which SPPs behave as uncorrelated persistent random walk-
ers. This model has allowed us to draw useful conclusions
and analogies between the collective motion of animals and
the well-known features of order-disorder phase transitions in
classical statistical mechanics [4,29], besides having been the
subject of many variations and modifications implementing
possible realistic features of animal behavior [13,24,30,31].

Social interactions are introduced in the context of the
Vicsek model in terms of a variation of this model in which
interactions among particles are given by a complex network
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[32], in which nodes represent individuals and connections
among nodes the presence of social interactions between pairs
of individuals. In this model velocities are decoupled from
the spatial position of the particles, and the set of interacting
neighbors of a SPP is fixed and does not change in time, being
given by the network adjacency matrix ai j taking value 1 when
nodes i and j are socially connected and 0 otherwise. Several
works have considered the effects of different network topolo-
gies on the flocking transition experienced by the Vicsek
model [17–21]. An interesting observation in this context are
the effects that a heterogeneous pattern of social interactions,
observed in certain animal social networks [33,34], can have
on the flocking transition in the Vicsek model. Reference [22]
considered heterogeneous complex topologies represented by
networks with a degree distribution P(k), defined as the proba-
bility that a node is connected to k other nodes (i.e., has degree
k), with a power-law form, P(k) ∼ k−γ [35]. In this case, it
was observed that for a degree exponent γ > 5/2, a stan-
dard transition is present, while for γ < 5/2, the transition
is suppressed, being the system in the ordered stated, in the
thermodynamic limit of infinite network size, for all physical
values of the noise strength η. The same particular role of the
degree exponent was recovered analytically in Ref. [23] using
the scalar version of the Vicsek model proposed by Czirók,
Barabási, and Vicsek, the CBV model [36], in which velocity
is a real number, instead of a vector in a two-dimensional
space. These results are relevant for the understanding of the
collective motion in social animals, as they indicate that the
flocking phase is more robust against noise effects in the case
of a highly heterogeneous pattern of social contacts.

While the consideration of a networked pattern of contacts
provides a realistic setting for the influence of social relation
in flocking behavior, it still neglects the important fact that
social networks have an intrinsic weighted nature [37–39],
which reflects the obvious fact that not all social connections
have the same strength, in the sense, for example, that a close
friend can exert a stronger influence than a casual acquain-
tance. Such a weight pattern has been shown to have important
effects on dynamical processes running on top of it [40–43]
and even to be relevant for the efficient transfer of information
between social animals [44].

In this paper we explore the effects of a weighted pattern of
social contacts on collective motion by considering the flock-
ing transition of the vectorial Vicsek model and the related
scalar CBV model when placed on top of a weighted network.
We focus in particular in the case of heterogeneous net-
works, empirically observed in certain animal social networks
[33,34], with a degree distribution of the form P(k) ∼ k−γ .
The weighted structure is defined by a heterogeneous pattern
of weights wi j , a set of real positive numbers representing
the strength of the social tie between individuals i and j. For
other analysis of other effects of heterogeneity in collective
motion see Refs. [45,46]. For the case of the CBV model, and
considering a weight pattern depending on the degree of the
connected nodes of the form wi j = w0(kik j )αai j , where w0

is a constant fixing the average weight, as observed in many
real systems [38], we develop a theoretical approach based
in the heterogeneous mean-field theory (HMF) [43,47–50].
The theory provides a phase diagram for the behavior of the
flocking transition threshold ηc in the thermodynamic limit as

a function of the degree exponent γ of the degree distribution
and the weight exponent α. This phase diagram recovers the
results observed in the unweighted case, namely a phase with
a true transition at a finite ηc value and a phase where the
transition is absent and the system is always ordered. Surpris-
ingly, however, a new phase emerges in which the system is
always disordered, in the infinite size limit, for any value of η,
however small. In this phase, the systems becomes extremely
sensitive to the effects of noise, with a flocking phase that
can be destroyed even for small values of η. Additionally,
in the case of networks of finite size, we observe that the
predicted threshold in a given network has a maximum value
for a particular weight exponent, which indicates that we can
engineer the resilience of the system to external disorder (i.e.,
maximize ηc) for a particularly chosen weight structure.

These theoretical predictions are confirmed by means of
computer simulations of the CBV model. In the case of the
Vicsek model, while lacking an explicit theoretical formu-
lation, we observe numerically that the results for the CBV
model can be extrapolated by just taking into account the
proper physical limits of the noise parameter η in each model.
We finally consider the Vicsek model on real animal so-
cial weighted networks. We observe that, in real weighted
networks, the effect of a weight structure consists in de-
creasing the transition threshold with respect to the binary,
nonweighted network. This indicates that the actual weight
structure makes animal social networks more fragile to exter-
nal noise. While no theory is again available for real networks,
we empirically observe that the shift in the threshold observed
in weighted networks can be related to the degree of hetero-
geneity of the weight pattern.

II. MODELS OF FLOCKING DYNAMICS IN
WEIGHTED NETWORKS

In this section we describe the implementation on weighted
networks of two models of collective motion, the classical
Vicsek model [28], in which particles move on a two-
dimensional space with a vectorial velocity, and the CBV
model [36], which represents individuals moving on a line and
characterized by a scalar velocity. In these models, velocity
turns out to be decoupled from spatial position, so we choose
to keep track only of the former variables.

A. Vectorial Vicsek model

The Vicsek model is defined in terms of a set of N SPPs
moving in a two-dimensional space, characterized by a posi-
tion ri(t ) and a velocity vi(t ) at time t . Dynamics is defined
in discrete time and velocities are assumed to have a constant
modulus, |vi(t )| = v0, and are thus determined by the angle
θi(t ) they form with the x axis, taking the form

vi(t ) = v0 cos θi(t ) î + v0 sin θi(t ) ĵ. (1)

In the original Vicsek model [28], each SPP i tends to align
its velocity parallel to the average velocity Vi of a set of SPPs
in a local neighborhood inside a circle of radius R centered at
i. In the case of an unweighted (binary) network, interactions
are constant and defined by the nearest neighbors connected to
a node. Thus, in terms of the adjacency matrix, the dynamics
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of velocities is defined by the synchronous update rule [22]

θi(t + 1) = �

[
vi(t ) +

N∑
j=1

ai jv j (t )

]
+ ηξi(t ), (2)

where the function �[V] returns the angle described by a
vector V, ξi(t ) is random noise uniformly distributed in the
interval [−π, π ], and η ∈ [0, 1] is a parameter measuring
the strength of the external noise. We notice that, with this
definition, the noise strength has a maximum value η = 1,
compatible with a complete randomization of the information
provided by the average velocity of the nearest neighbors.

In the case of weighted networks [38], a real positive
number wi j is assigned to the edge connecting nodes i and j,
representing the strength of the social interaction between in-
dividuals i and j. Here we will consider the case of undirected
weighted networks, in which wi j = w ji, i.e., the influence of
node i over node j is exactly the same as that exerted over i by
j. When placed on top of a weighted network, we define the
Vicsek update rule by

θi(t + 1) = �

[
vi(t ) + ki

∑N
j=1 wi jv j (t )∑N

r=1 wir

]
+ ηξi(t ). (3)

With this rule, we consider that the average velocity of the
neighbors of agent i is computed giving a normalized weight
wi j/[

∑
r wir/ki] to each neighbor j, where the normalization

factor has been chosen as the average weight of all edges
incident to i, in such a way that the limit to a constant value
wi j = w0 recovers the dynamics in unweighted networks,
Eq. (2).

In many real weighted networks, the weight of the edge
connecting nodes i and j is found to be a function of the
product of the degrees of the connected nodes [38],

wi j = w0(kik j )
αai j, (4)

α being an exponent characterizing the correlation between
weight and degrees. In this case, the interaction rule takes the
simplified form

θi(t + 1) = �

[
vi(t ) + ki

∑N
j=1 kα

j ai jv j (t )∑N
r=1 kα

r air

]
+ ηξi(t ). (5)

The order parameter for the Vicsek model in networks is
defined as in the spatial version, namely

φ(η) = lim
T →∞

1

v0T N

tm+T∑
t ′=tm

∣∣∣∣∣
N∑

i=1

vi(t
′)

∣∣∣∣∣, (6)

where tm is a sufficiently large thermalization time.

B. Scalar CBV model

The scalar CBV model [36] is defined by a set of N SPPs
on a one-dimensional substrate, in which particles move with
velocity ui(t ). Each SPP i updates its velocity considering
the local average velocity Ui of other agents in a neighbor-
hood [xi − 
, xi + 
] surrounding it. This average velocity
is modulated by a function G(U ) that restricts the individual
velocities to remain close to +1 or −1, in order to avoid
diverging trajectories. Individual velocities are finally updated

by this modulated local average velocity with the addition of
a noise term. For a binary network, the update rule can be
defined as [23]

ui(t + 1) = G

[∑
j ai ju j (t )

ki

]
+ ηξi(t ), (7)

where ξi is a uniform random number in the interval
[−1/2, 1/2] and η ∈ [0,∞) gauges the strength of the ex-
ternal noise. For simplicity, the modulating function G(U )
is chosen to be the sign function, taking value G(U ) = +1
when U � 0 and G(U ) = −1 otherwise [23]. We notice that,
with this prescription, we do not consider the interaction of
the velocity of a node with itself.

In the case of a weighted network, the update rule can be
easily extended from the Vicsek model, taking the form

ui(t + 1) = G

[∑
j

wi ju j (t )

]
+ ηξi(t ), (8)

where we have discarded irrelevant factors due to the nature of
the sign function G(U ). When the weights have the topolog-
ical structure given by Eq. (4), the update rule can be further
simplified as

ui(t + 1) = G

[∑
j

kα
j ai ju j (t )

]
+ ηξi(t ). (9)

The order parameter is defined in this case as [23,36]

φ(η) = lim
T →∞

1

T N

tm+T∑
t ′=tm

∣∣∣∣∣
N∑

i=1

ui(t
′)

∣∣∣∣∣. (10)

III. HETEROGENEOUS MEAN-FIELD THEORY FOR THE
CBV MODEL IN WEIGHTED NETWORKS

The CBV model in weighted networks can be tackled
numerically applying the HMF approximation developed in
Ref. [23] (see also Ref. [51]). We start by rewriting the update
dynamics in terms of the dual velocities u∗

i as

u∗
i (t + 1) = G

[∑
j

kα
j ai ju j (t )

]
, (11)

ui(t + 1) = u∗
i (t + 1) + ηξi, (12)

from where it is easy to see that the dual velocities fulfill

u∗
i (t + 1) = G

[∑
j

kα
j ai ju

∗
j (t ) + η

∑
j

kα
j ai jξ j

]
. (13)

Due to the sign function G, the dual velocities are spin
variables, u∗

i = {−1, 1}, a fact that greatly simplifies the sub-
sequent analysis. To solve the dynamics of the dual velocities,
we apply an HMF approach inspired in Refs. [23,51,52], as-
suming that all dynamical properties of nodes are a function
of their degree alone, in such a way that nodes with the same
degree k, defining a degree class, share the same dynamical
properties. We define ρk (t ) as the probability that a randomly
chosen node of degree k is in state +1 at time t , and ψk (t ) as
the probability that a randomly chosen node of degree k will
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flip to the state +1 at time t . These two quantities are related
by the rate equation

ρ̇k (t ) = −ρk (t )[1 − ψk (t )] + [1 − ρk (t )]ψk (t )

= −ρk (t ) + ψk (t ), (14)

which, in the steady state ρ̇k (t ) = 0, leads to

ρk = ψk . (15)

Consider now the dynamics of Eq. (13), where we drop
the star superindex to ease notation. The function ψk can be
computed considering a node i of degree k and computing its
probability to flip to a spin value +1. From Eq. (13), this
probability is equal to the probability that the argument R
inside the sign function G is positive. This argument can be
written as the sum of two contributions, R = Ru(k) + Rξ (k),
with

Ru(k) =
∑

j

ai jk
α
j u j, Rξ (k) = η

∑
j

ai jk
α
j ξ j . (16)

Starting with the second term, it corresponds to a random
variable equal to the sum of k random variables ηkα

j ξ j of mean
zero and variance σ 2

j = k2α
j σ 2

0 , where σ 2
0 = η2/12 is the vari-

ance of the original noise term ξ j . In the HMF approximation,
the neighbors j are chosen at random in an uncorrelated net-
work [53] with probability Pn(k j ) = k j P(k j )

〈k〉 , depending only
on their degree. By the central limit theorem, we can thus see
that Rξ (k) is a Gaussian random variable of mean zero and
variance,

σ 2 = k
∑

k j

k jP(k j )

〈k〉 σ 2
j = kσ 2

0
〈k1+2α〉

〈k〉 . (17)

The factor Ru(k) is more difficult to estimate probabilistically,
so we will only consider its average value. Ru(k) is given by
the sum of the contributions kα

j u j for the nearest neighbors j
of node i. Considering that the variable u j in a node of degree
k′ takes value +1 with probability ρk′ , the average value of
Ru(k) is given by

R̄u(k) = k
∑

k′

k′P(k′)
〈k〉 k′α[(+1)ρk′ + (−1)(1 − ρk′ )]

= k
∑

k′

k′1+αP(k′)
〈k〉 [2ρk′ − 1] = k

〈k1+α〉
〈k〉 q, (18)

where the factor

q =
∑

k

k1+αP(k)

〈k1+α〉 [2ρk − 1] (19)

plays the role of an effective order parameter, with value q =
0 in the disordered state, where ρk = 1/2, and q 
= 0 in the
ordered state ρk 
= 1/2.

The probability ψk is thus equal to the probability that R =
Rξ (k) + R̄u(k) is larger than zero. Since Rξ (k) is a Gaussian
variable of zero mean and variance Eq. (17), we can write

ψk =
∫ ∞

−R̄u (k)

1√
2πσ 2

e−r2/(2σ 2 ) dr = 1

2
+ 1

2
erf

[
R̄u(k)√

2σ

]

= 1

2
+ 1

2
erf

{√
k

〈k1+α〉
[〈k〉〈k1+2α〉]1/2

q

σ0

√
2

}
, (20)

where erf (z) = (2/
√

π )
∫ z

0 e−t2
dt is the error function [54].

In the steady state ψk = ρk , so we can compute q self-
consistently from Eq. (20) as

q =
∑

k

k1+αP(k)

〈k1+α〉 [2ψk − 1] ≡ F (q)

=
∑

k

k1+αP(k)

〈k1+α〉 erf

{√
k

2

〈k1+α〉
[〈k〉〈k1+2α〉]1/2

q

σ0

}
. (21)

The equation q = F (q) has always a solution q = 0, since
F (0) = 0. From the definition of the error function, and con-
sidering the interval q ∈ [0, 1], one can see that F (1) � 1,
F ′(q) > 0, and F ′′(q) < 0. This implies that F (q) is a mono-
tonically growing, strictly concave function. It thus can only
cut the identity line y(q) = q, corresponding to a nonzero
solution, when the first derivative of F (q) evaluated at q = 0
is larger than one, that is, when

F ′(0) =
∑

k

k1+αP(k)

〈k1+α〉
2√
π

√
k

2

〈k1+α〉
[〈k〉〈k1+2α〉]1/2

1

σ0

=
√

2

π

1

σ0

〈k3/2+α〉
[〈k〉〈k1+2α〉]1/2

> 1. (22)

From here, a threshold condition appears,

σ0 <

√
2

π

〈k3/2+α〉
[〈k〉〈k1+2α〉]1/2

, (23)

that, in terms of the noise intensity η = √
12σ0, allows us to

define the noise threshold

ηc =
√

24

π

〈k3/2+α〉
[〈k〉〈k1+2α〉]1/2

, (24)

such that an ordered state is present for η < ηc, and a dis-
ordered one for η > ηc. We notice here the presence of an
erroneous factor 2 in Eq. (29) of Ref. [23], which renders it
equal to our general prediction Eq. (24) for α = 0 in the limit
of large threshold.1.

In the case of interest of scale-free networks with a degree
distribution P(k) ∼ k−γ , the value of the noise threshold of
the CBV model in weighted networks depends on ratios of
moments that can lead to peculiar behavior in the thermo-
dynamic limit depending on α and γ . Assuming γ > 2, in
order to ensure a sparse network with constant average degree
〈k〉, the value of the threshold depends on the moment ratio
ηc ∼ 〈k3/2+α〉/〈k1+2α〉1/2. Defining the functions

αN (γ ) = γ − 5

2
, αD(γ ) = γ

2
− 1, (25)

we can see that, in a network with a maximum degree kc

[49,55], the numerator of Eq. (24) diverges in the thermody-

namic limit kc → ∞ as 〈k3/2+α〉 ∼ k
α−γ+ 5

2
c for α > αN (γ ),

while it goes to a constant for α < αN (γ ). On the other

1In Ref. [23] the term corresponding to the factor Ru(k) in a binary
network was treated probabilistically and not in average value. This
explains that the result here and there only coincide in the limit of
large threshold.
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FIG. 1. Phase diagram of the CBV model on weighted networks.
Red and black lines mark respectively the functions αN (γ ) and
αD(γ ), defined in Eq. (25). The vertical dashed line indicates the
value γ = 3. The horizontal dashed line indicates the value α = 0,
corresponding to an unweighted network. In regions I and II (shaded
in blue), the threshold diverges in the thermodynamic limit, ηc → ∞;
in regions III and IV (shaded in gray), the threshold converges to
zero, ηc → 0; in region V (shaded in red), the threshold converges to
a constant, ηc → const.

hand, the denominator diverges as 〈k1+2α〉1/2 ∼ k
α− γ

2 +1
c for

α > αD(γ ), going instead to a constant for α < αD(γ ). This
leads to different scaling behaviors of the noise threshold in
the thermodynamic limit that are summarized in the phase
diagram portrayed in Fig. 1. In regions I and III, both nu-
merator and denominator diverge, leading to ηc ∼ k(3−γ )/2

c .
Thus, in region I, with γ < 3, the noise threshold diverges,
while it converges to zero in region III. In region II, numerator
diverges and denominator converges, and so the threshold
diverges. In region IV, numerator and denominator exchange
behavior, and thus the threshold converges to zero. Finally, in
region V, both denominator and numerator converge, and the
threshold converges to a constant.

The scaling of the threshold with the network size N can
be recovered if we consider, for uncorrelated networks, that
kc ∼ N1/2 for γ < 3 and that kc ∼ N1/(γ−1) for γ > 3 [56].
We therefore obtain, in the limit of large N and in the different
regions:

Region I: ηc ∼ N (3−γ )/4 → ∞;

Region II: ηc ∼ N [2(α−γ )+5]/4 → ∞;

Region III: ηc ∼ N−(γ−3)/[2(γ−1)] → 0;

Region IV: ηc ∼ N−[2(α+1)−γ ]/[2(γ−1)] → 0;

Region V: ηc → const.

This analytical solution recovers the main result in
Ref. [23] regarding the presence of a phase in which a true

transition is present, characterized by a finite threshold, sep-
arated from another region in which the threshold tends to
infinity, indicating that the transition is absent and, therefore,
the system is always ordered for any value of η. These regions
now depend on the values of α for γ < 3. The most noticeable
feature of this solution, however, is the emergence of a new
phase, regions III and IV, in which a set of values of α for
γ > 3 lead to a null threshold in the thermodynamic limit.
This case corresponds again to the absence of transition, but
now in a system that is always in the disordered state, no
matter how small the noise strength might be.

IV. NUMERICAL RESULTS IN SYNTHETIC
WEIGHTED NETWORKS

In order to check the analytical predictions obtained in
the previous section, as well as to obtain a more precise
rendering of the effects of a weighted topology on the ordering
dynamics of the CBV and Vicsek model, in this section we
consider numerical simulations of both models on synthetic
heterogeneous networks with a scale-free degree distribution
given by a power-law form, P(k) ∼ k−γ . In particular, we
generate networks using the uncorrelated configuration model
(UCM) [57] with a minimum degree kmin = 3 and a maximum
degree kc = min(N1/2, N1/(γ−1)), in order to avoid degree cor-
relations and maximum degree fluctuations [55,56]. On these
networks, we impose a weight on each edge given by Eq. (4).
The parameters of the network models are thus the degree
exponent γ and the weight exponent α. In our simulations,
we compute statistical quantities allowing for a thermaliza-
tion time tm = 50 000 and averaging over T = 250 000 time
steps for the CBV model. For the Vicsek model, we choose
tm = 10 000 and T = 50 000.

A. CBV model

In the first place, we check the predictions of the HMF
theory developed in Sec. III for the CBV model on weighted
networks. In Fig. 2 we show the order parameter φ(η) as a
function of the noise intensity η computed in networks of
different degree and weight exponents. As we can see from
this figure, the order parameter is compatible with the pres-
ence of a threshold that depends in a complex way on both
exponents γ and α. In order to determine this threshold noise
in simulations on necessarily finite systems, we consider the
dynamic susceptibility, defined as [58,59]

χN (η) = N
〈φ2〉 − 〈φ〉2

〈φ〉 . (26)

The effective critical point ηc(N ) in a network of size N is
given by the value of the noise at the maximum of the suscep-
tibility χN (η) [22,23,58,59]. In Fig. 3 we plot the shape of the
dynamic susceptibility computed from a sample of values of γ

and α. As we can see, a clear peak is observed in all plots that
allows us to define the effective threshold as a function of the
network size, ηc(N ). At this peak, the maximum value of the
dynamic susceptibility, χpeak(N ) ≡ χN [ηc(N )], is expected to
show a power-law increase with the network size,
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FIG. 2. Order parameter φ(η) as a function of η in the CBV
model on weighted UCM networks with different degree (γ ) and
weight (α) exponents. Panels correspond to different values of the
degree exponent: (a) γ = 2.10, (b) γ = 2.35, (c) γ = 2.75, and
(d) γ = 3.50. Network size N = 105.

FIG. 3. Dynamic susceptibility χN (η) as a function of η in the
CBV model on weighted UCM networks with different degree (γ )
and weight (α) exponents. Panels correspond to different values of
the degree exponent: (a) γ = 2.10, (b) γ = 2.35, (c) γ = 2.75, and
(d) γ = 3.50. Network size N = 105.

FIG. 4. Effective critical point ηc(N, γ , α) as a function of the
theoretical prediction, Eq. (24), in the CBV model on weighted UCM
networks with different degree (γ ) and weight (α) exponents and
different network sizes N . The values of α and N considered range
in the intervals [−3, 4] and [103, 105], respectively. The color of the
symbols denote their position in the phase diagram Fig. 1: blue for
regions I and II (ηc → ∞); gray for regions III and IV (ηc → 0); red
for region V (ηc → const).

given by [23,58]

χpeak(N ) ∼ Nδ, (27)

where δ is a characteristic exponent.
In Fig. 4 we compare the effective threshold ηc(N, γ , α)

in the CBV model, estimated by the peak of the dynamic
susceptibility, with the theoretical HMF prediction in Eq. (24),
for different values of the degree exponent γ , weight expo-
nent α, and network size N . As we can see, disregarding a
common vertical intercept, the theoretical prediction provides
a very good approximation to the numerical values observed
in simulations. The fit is particularly good for region I (blue
circles) and region V (red symbols), where the threshold is
expected to diverge or converge to a constant, respectively, in
the thermodynamic limit.

We now verify the scaling behavior of the threshold in the
different regions represented in the phase diagram in Fig. 1.
To do so, in Fig. 5 (left panels) we plot the effective threshold
ηc(α), measured as the peak of the dynamic susceptibility, as
a function of the weight exponent α in networks of differ-
ent degree exponent γ , for different network sizes N . From
this figure, we can see that the numerical thresholds indeed
recover the scaling form resulting from the HMF analysis.
For γ = 2.1, the values of α in region V lead to an effective
threshold converging to a constant as we increase the network
size. For values of α in regions I and II, on the other hand,
the threshold is observed to diverge for increasing N . For
γ = 2.75, small values of α in region V again lead to a
constant threshold. However, the situation for larger values of
α is more complex, due to the fact that this value of γ is quite
close to the singular case of γ = 3 for which αN (γ ) = αD(γ )
and all regions coalesce. One would need much larger network
sizes to observe the theoretical prediction for the thermody-
namic limit. For γ = 3.5 we recover in region V (small α) a
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FIG. 5. Effective critical point ηc(α) as a function of the weight
exponent α on UCM networks of different size N . Left panels show
results corresponding to the CBV model. In this case, we have color-
marked the region in the phase diagram Fig. 1 corresponding to the
expected scaling of the threshold: red (region V) for ηc → const,
blue (regions I and II) for ηc → ∞; gray (regions III and IV) for
ηc → 0. Vertical dashed lines mark the transition from region I to
II, and from III to IV. Right panels correspond to simulations of the
Vicsek model. Values of gamma are [(a) and (b)], γ = 2.10, [(c) and
(d)] γ = 2.75, [(e) and (f)] γ = 3.50.

converging threshold. For large α in regions III and IV,
however, we observe the interesting feature of a threshold
that tends to zero when increasing the network size. Again,
finite-size effects affect the behavior in the boundary between
regions V and IV.

Another important feature that can be observed from Fig. 5
(left panel) is the presence of a maximum in the threshold
ηc(α) as a function of α. This maximum reflects the fact that
the resilience of the system to the effects of noise is maximal
for a weight exponent αmax, depending in principle on the de-
gree exponent. This observation can be recovered analytically
by setting equal to zero the derivative of Eq. (24) with respect
to α and solving the ensuing equation that leads to αHMF

max =
1/2 for any γ . The threshold at this maximum depends on
the second moment of the degree distribution, ηmax

c ∼ 〈k2〉1/2,
diverging in the thermodynamic limit for γ < 3 (region I) and
converging to a constant for γ > 3 (region V). In numerical
simulations, Fig. 5 (left panel), the maximum αmax is clearly
present, but it seems to depend on the degree exponent and to
slightly change with the network size. In order to check this, in
Table I we summarize the variation of the maximum αmax(γ )
estimated numerically as we increase N and depending on the
heterogeneity of the network. These numerical results show
that HMF analysis provides a very good prediction for small
values of the degree exponent, with αmax  0.5 for γ = 2.1.

TABLE I. Numerical estimation of the weight exponent αmax(γ )
for which the effective threshold is maximum, ηmax

c ≡ ηc[αmax(γ )],
in the CBV model on UCM weighted networks of different degree
exponent γ and size N . The error in the estimation of the maxima is

αmax = 0.1 in all cases.

αmax(γ )

N γ = 2.10 γ = 2.35 γ = 2.75 γ = 3.50

3 × 103 0.5 0.6 0.2 0.3
1 × 104 0.6 0.5 0.2 0.2
3 × 104 0.6 0.6 0.2 0.1
1 × 105 0.6 0.7 0.1 0.1
3 × 105 0.5 0.8 0.1 0.1

For larger values of γ we obtain a more complex dependence.
Thus, for large N and γ = 2.35 we have αmax  0.7, while for
γ � 2.75 we observe αmax  0.1.

Finally, in Fig. 6 we study in more detail the finite-size
scaling of the CBV model as a function of network size N
for different points (γ , α) belonging to regions I, III, and V.
We do not consider regions II and IV since it is difficult to
select points sufficiently away from the boundaries γ = 3,
αN (γ ) and αD(γ ), without choosing extremely large values
of γ and α. In Fig. 6(a) we plot the resulting evolution
of the effective threshold as a function of N . The points

FIG. 6. (a) Effective critical point ηc(N ) as a function of the net-
work size N for different pairs of values (γ , α) belonging to regions
I, III, and V. The dashed horizontal line serves to highlight the slow
decay to zero of the threshold observed in region III. (b) Maximum
of the dynamic susceptibility at the peak, χ peak (N ), as a function of
the network size N for different pairs of values (γ , α). The exponents
δ quoted of the different regions are obtained by means of a linear re-
gression in log-log scale to the form χ peak ∼ N δ . Results correspond
to the CBV model on UCM weighted networks.
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corresponding to region V show a very clear plateau, indica-
tive that the constant threshold predicted by HMF is quickly
reached for moderate network sizes. On the other hand, for the
points in regions I and III, the threshold shows an increasing
and decreasing trend, respectively. The increase of threshold
with N in region I is very clear, while the decrease in region III
is weaker. This fact can be understood at the HMF level from
the scaling of the threshold as a function of N given in Sec. III.
In region I, we have ηI

c(N ) ∼ N (3−γ )/4, which for our sample
point (2.5, 2) leads to ηI

c(N ) ∼ N1/8. In region III, instead,
ηIII

c (N ) ∼ N−(γ−3)/[2(γ−1)], that for the sample point (3.5, 3)
yields ηIII

c (N ) ∼ N−1/10, that is, a smaller exponent than that
expected in region I. We notice however that, despite this
argument is qualitatively correct, our numerical simulation do
not recover the exponents predicted by the theory.

In Fig. 6(b) we study the behavior of the maximum value of
the dynamic susceptibility at its peak, χpeak(N ), as a function
of N . In accordance with the theoretical expectation, Eq. (27),
we observe that the peak of the susceptibility increases with
network size as a power law, χpeak(N ) ∼ Nδ . The character-
istic growth exponent δ seems to be constant and the same
in regions I and V, δ  0.73, and instead it is quite larger in
region III, δ  0.97.

B. Vicsek model

We have also performed numerical simulations of the vec-
torial Vicsek model in weighted UCM networks. In this case,
we do not have an explicit analytical solution. We can, how-
ever, extrapolate the results of the CBV model pursuing the
analogy made in the case of binary networks with α = 0 [23].
Since the noise intensity is bounded by the maximum value 1
in the Vicsek model, we can interpret the different regions of
the phase diagram in the CBV model directly, just considering
that regions I and II, where the CBV model exhibits a diverg-
ing threshold, correspond in the Vicsek case to a threshold that
saturates to the maximum value 1 in the thermodynamic limit.

In Fig. 5 (right panel) we present the evolution of the
effective threshold ηc(α) in the Vicsek model as a function
of the weight exponent α for UCM networks of different de-
gree exponent and size. A comparison with the corresponding
plots for the CBV case presented in the left panel shows
that both models exhibit the same trend in the behavior of
the threshold for different values of α. This indicates that
both models have an analogous phase diagram, as long as
a diverging threshold in regions I and II in the CBV model
is interpreted as a threshold converging to 1 in the Vicsek
model. This observation provides further confirmation of the
fact that the dimensionality of the order parameter does not
play a relevant role in the characterization of the behavior of
critical transitions in networks [22,49].

In Fig. 7(a) we show the analogous scaling with network
size of the effective threshold of the Vicsek model in the same
representative points of the different regions of the phase dia-
gram. As we can see, in full agreement with the observations
for the CBV model, region V leads to thresholds saturating to
a constant value, region III is characterized by a threshold de-
creasing with network size, while region I shows an increasing
threshold, necessarily saturating to the maximum value η = 1.
Interestingly, the rate of decrease of the threshold in region III

FIG. 7. (a) Effective critical point ηc(N ) as a function of the
network size N for different pairs of values (γ , α) belonging to
regions I, III, and V. The dashed horizontal line serves to highlight
the slow convergence to 1 of the threshold observed in region I.
(b) Maximum of the dynamic susceptibility at the peak, χpeak (N ), as
a function of the network size N for different pairs of values (γ , α).
The exponents δ quoted of the different regions are obtained by
means of a linear regression in log-log scale to the form χpeak ∼ N δ .
Results correspond to the Vicsek model on UCM weighted networks.

is substantially larger in the Vicsek model than in the CBV
model, whereas the opposite happens for the rate of growth
in region I, being faster in the CBV model. This is due to the
fact that, in the Vicsek model, the threshold converges to a
maximum value, while in the CBV model it grows without
limit.

Finally, in Fig. 7(b) we present the growth of the max-
imum of the susceptibility at its peak as a function of the
network size, for the different pairs of values (γ , α). A linear
regression in logarithmic scale shows the expected power-law
dependence χpeak(N ) ∼ Nδ . In contrast with the CBV model,
in the Vicsek case the exponent δ seems to depend on α and γ

simultaneously.

V. NUMERICAL RESULTS IN REAL
WEIGHTED NETWORKS

In order to ascertain the effects of a real weighted topol-
ogy on flocking dynamics, we have studied the behavior
of the Vicsek model on several empirical animal social
weighted networks [60]. As weighted substrates, we consider
20 networks reflecting dominance relationships, behavioral
activities, sexual interactions, and mating associations in dif-
ferent species (see Table II for references to the network’s
details). Since some of these networks are directed in na-
ture, in our analysis we have worked with their undirected
version, in which weights have been symmetrized, defining
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TABLE II. Topological properties of the real weighted networks
analyzed. Network size N , average weight 〈w〉, normalized vari-
ance of the weights χw = 〈w2〉/〈w〉2 − 1, effective threshold of
the weighted network version ηw

c , effective threshold of the binary
network version ηb

c , and relative difference of the threshold in the
weighted over binary networks 
η = 1 − ηw

c /ηb
c .

Network N 〈w〉 χw ηw
c ηb

c 
η

Bison [61] 26 2.76 0.54 0.834 0.854 0.023
Cattle [62] 28 2.30 0.64 0.802 0.843 0.049
Sheep [63] 28 2.66 0.65 0.829 0.855 0.030
Hyenas [64] 36 0.08 0.55 0.866 0.890 0.027
Bats [65] 43 30.62 1.17 0.860 0.885 0.028
Sparrows [66] 46 2.92 1.09 0.748 0.828 0.097
Dolphins 1 [67] 50 0.33 1.16 0.730 0.882 0.172
Lizards [68] 60 0.02 8.10 0.316 0.724 0.564
Squirrels [69] 61 0.14 1.28 0.827 0.872 0.052
Thornbills [70] 62 2.49 0.72 0.868 0.884 0.018
Macaques 1 [71] 62 2.06 0.44 0.851 0.887 0.041
Macaques 2 [72] 78 2.53 0.73 0.862 0.896 0.038
Songbirds [73] 110 0.02 3.03 0.524 0.802 0.347
Ants [74] 113 7.06 1.25 0.858 0.905 0.052
Wildbirds [75] 149 0.07 1.27 0.804 0.852 0.056
Dolphins 2 [76] 151 1.21 0.19 0.813 0.819 0.007
Crickets [77] 161 2.78 1.07 0.481 0.574 0.162
Voles [78] 255 2.19 0.81 0.421 0.518 0.187
Mice [79] 280 4.55 3.93 0.181 0.313 0.422
Sealions [80] 1007 0.03 0.63 0.926 0.939 0.014

ws
i j = (wi j + w ji )/2. We have also disregarded nodes of zero

degree and edges of zero weight. For the simulations, we have
set tm = 50 000 and T = 500 000. In Table II we present a
summary of the topological properties of the animal weighted
networks considered.

The HMF theory developed in Sec. III cannot be directly
applied to real networks, since those are usually correlated

[32] and the relation between the weight of an edge and the
degrees at its endpoints is only approximately fulfilled for
large networks [38] and difficult to asses in small ones. For
this reason, in order to characterize the effects of weights in
our empirical networks, we have compared the behavior in
the actual weighted network with that of its binary projection,
constructed by assigning to all edges a constant weight w0,
arbitrarily fixed to 1.

In Fig. 8 we present a plot of the order parameter φ(η)
(top row) and the dynamic susceptibility χN (η) (bottom row)
as a function of the noise intensity η for a sample of four
real networks, comparing the results for the weighted and
binary simulation procedures. As we can see, the effect of
the weights in all four cases is to decrease the shape of
the order parameter of the weighted networks with respect
to the binary version, effectively reducing the degree of or-
der for large values of η. At the same time, we can see
that the peak of the dynamic susceptibility is shifted to
the left in the weighted case, indicating that the effective
threshold in the weighted network, ηw

c , is smaller than in
its binary counterpart, ηb

c . This effect is confirmed in the
whole set of 20 networks considered, as shown by the relative
threshold difference, 
η = 1 − ηw

c /ηb
c , being always positive,

see Table II.
While we do not have an analytical insight about the depen-

dence of the threshold on the topological weighted substrate
of the network, an examination of Table II shows that the
threshold in the weighted networks is correlated with the
weight heterogeneity, as measured by the normalized variance
χw = 〈w2〉/〈w〉2 − 1. Indeed, a closer inspection indicates a
stronger correlation between the relative threshold difference

η and the variance of weights, which seems to be related by
a power-law form 
η ∼ χa

w, with an exponent approximately
equal to a = 1.2, see Fig. 9. This exponent is obtained via
linear regression in double logarithmic scale, with a signifi-
cant Pearson regression coefficient r = 0.85.

FIG. 8. Order parameter φ(η) (top row) and dynamic susceptibility χN (η) (bottom row) as a function of η in the Vicsek model on a sample
of four different real animal social weighted networks: [(a) and (b)] Bison, [(c) and (d)] Macaques 1, [(e) and (f)] Ants, and [(g) and (h)]
Sealions. A comparison between weighted and binary structures is shown.
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FIG. 9. Relative difference of the weighted and binary thresholds

η as a function of the normalized variance of the weights χw . A
power law relation is denoted by the straight line, 
η ∼ χ1.2

w .

VI. CONCLUSIONS

Social ties can play an important role in shaping the in-
teractions between animals ruling their collective behavior
[16]. Indeed, it has been recently shown that a heteroge-
neous pattern of social interactions, represented in terms of
a complex network, can alter the properties of the flocking
transition in simple models of collective behavior [22,23].
Here we have presented an extension of previous studies of
collective motion mediated by social interactions by consid-
ering the weighted nature of social contacts, in which the
network topology is enriched by adding a real variable wi j

between the connected nodes i and j, representing the inten-
sity of the social contact between this pair of individuals. In
this context, we have focused on the effects of a weighted
topology on the threshold marking the position of the flocking
transition in the classic Vicsek model of collective motion, and
in a related model (CBV) which has been shown to behave
similarly to the Vicsek model in networks [23]. In the case
of a weighted structure depending on the degree of nodes, of
the form wi j = w0(kik j )αai j , the CBV model can be solved
within a heterogeneous mean-field approximation, obtaining
an expression of the threshold as a function of the exponent α

and the exponent γ of the degree distribution, assumed to have
a power-law form P(k) ∼ k−γ . The solution provides a phase
diagram in the plane (γ , α), in which a phase corresponds
to a finite threshold and other to a threshold that diverges
in the thermodynamic limit. This last phase corresponds to a
system that is always ordered in the thermodynamic limit, and
therefore very resilient to the effects of external noise. These
two behaviors were already observed in the CBV and Vicsek
models in nonweighted networks [22,23]. However, in the
weighted case, a new phase emerges, in which the threshold
actually tends to zero in the thermodynamic limit. This sur-
prisingly corresponds to a system that is always disordered for
any amount of noise, however small, and indicates a dynamics
extremely susceptible to the effects of external perturbations.

Numerical simulations in the CBV model recover the the-
oretical predictions of the HMF approximation with good

qualitative accuracy, with the exception of points very close
to the boundaries between regions, in which finite-size effects
are stronger and larger system sizes than those considered
here are necessary. For networks of finite size, we additionally
observe the presence of a maximum in the threshold as a
function of α for fixed γ . This indicates that a particular
weight pattern can provide the maximum resilience against
noise perturbations, by maximizing the value of the flocking
threshold. At the HMF level, this maximum is obtained for a
weight exponent α = 1/2. Simulations lead instead to a maxi-
mum slightly depending on the degree exponent. Furthermore,
simulations of the more realistic Vicsek model yield results
that can be understood in terms of the HMF solution of the
CBV model, by simply mapping the physical limits of the
noise parameters in both models, 1 for the Vicsek model and
infinity for the CBV model. With this mapping, simulations
of the Vicsek model closely follow the prediction and results
obtained for the CBV model. We recover in particular the
presence of a region with a vanishing threshold, and extremely
susceptible to noise effects.

We finally consider the behavior of the Vicsek model
in real weighted networks representing social interactions
between different animal species. Laking a theory for real
networks, we observe that the threshold of the weighted struc-
tures is in general smaller than the one observed in the binary
(nonweighted) version of the same networks. This indicates
that the weighted pattern in real social interactions is actually
not beneficial for a flock of animals, since it reduces the
flocking threshold and thus renders the group more suscep-
tible to breaking in the presence of noise fluctuations. The
relative difference between the weighted and nonweighted
thresholds is empirically observed to depend on the degree of
heterogeneity of the weight pattern, in a functional form that
can be approximated by a power law. This observation indi-
cates that more heterogeneous patterns of weights, with some
connections much stronger than others, is again detrimental to
maintain the flock structure of the animal group.

The results presented here strengthen the equivalence be-
tween the Vicsek and CBV model in networks [23] and
highlight the important effects that a social network of inter-
actions can have on the flocking structure of social animals.
Most interestingly, they show that in some cases the presence
of a weight pattern can be counterproductive for a flocking
species, by reducing their resilience to noise or by destroying
the flocking phase altogether. The presence of such weight
pattern must thus be attributed some other adaptive benefit,
that overcomes the worsened flocking performance. Future
venues for theoretical work regarding the models proposed
here could consider going beyond HMF and applying a
quenched mean-field theory, considering the static structure
of the network in terms of the adjacency matrix [81,82], or
considering the actual dynamic nature of social networks by
implementing the models on top of temporal networks [83].
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