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Molecular sorting is a fundamental process that allows eukaryotic cells to distill and concentrate specific
chemical factors in appropriate cell membrane subregions, thus endowing them with different chemical identities
and functional properties. A phenomenological theory of this molecular distillation process has recently been
proposed [M. Zamparo, D. Valdembri, G. Serini, I. V. Kolokolov, V. V. Lebedev, L. Dall’Asta, and A. Gamba,
Phys. Rev. Lett. 126, 088101 (2021)], based on the idea that molecular sorting emerges from the combination of
(a) phase separation driven formation of sorting domains and (b) domain-induced membrane bending, leading
to the production of submicrometric lipid vesicles enriched in the sorted molecules. In this framework, a natural
parameter controlling the efficiency of molecular distillation is the critical size of phase separated domains. In
the experiments, sorting domains appear to fall into two classes: unproductive domains, characterized by short
lifetimes and low probability of extraction, and productive domains, that evolve into vesicles that ultimately
detach from the membrane system. It is tempting to link these two classes to the different fates predicted by
classical phase separation theory for subcritical and supercritical phase separated domains. Here, we discuss the
implication of this picture in the framework of the previously introduced phenomenological theory of molecular
sorting. Several predictions of the theory are verified by numerical simulations of a lattice-gas model. Sorting
is observed to be most efficient when the number of sorting domains is close to a minimum. To help in the
analysis of experimental data, an operational definition of the critical size of sorting domains is proposed.
Comparison with experimental results shows that the statistical properties of productive and unproductive
domains inferred from experimental data are in agreement with those predicted from numerical simulations
of the model, compatibly with the hypothesis that molecular sorting is driven by a phase separation process.

DOI: 10.1103/PhysRevE.106.044412

I. INTRODUCTION

Molecular sorting is a major process responsible for the
organization of cellular matter in eukaryotic cells [1]. This
highly complex task is accomplished by selectively concen-
trating and distilling specific proteins and lipids that dwell on
the plasma membrane and on the membranes of inner cellular
bodies into submicrometric lipid vesicles. Once formed, these
vesicles detach from the membrane and are subsequently
delivered to their appropriate destinations. It has recently
been proposed that molecular sorting may emerge from the
combination of two fundamental physical processes [2]: (a)
phase separation of specific molecules into localized sorting
domains and (b) domain-induced membrane bending, leading
to the formation of vesicles constitutively enriched in the
biochemical factors of the engulfed domains, thus resulting in
a natural distillation process. In the proposed abstract model
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of the process, molecules arriving on a membrane region can
laterally diffuse and aggregate into localized domains, the for-
mation and growth of which occur through the typical stages
of phase separation: After the initial nucleation stage, in the
case of low supersaturation, the growth of domains is mainly
governed by the absorption of freely diffusing molecules.
One of the main predictions of the classical theory of phase
separation is that a critical size Ac has to be reached in order
for domains to survive and continue to grow irreversibly to
larger and larger scales [3,4]. In the present theory of molec-
ular distillation such domains are extracted once they reach
a characteristic size AE � Ac, determined by the physical
and biomolecular processes that induce membrane bending
and vesicle formation. In the presence of a constant flux of
incoming molecules, the membrane system self-organizes in
a driven nonequilibrium stationary state, which can be seen as
a realization in Nature of the classical Szilard model of droplet
formation [4–6].

Phase separation phenomena are emerging as central
drivers of the self-organization of cell structures [7–11], and
the idea that phase separation is an essential step for molecular
sorting is increasingly finding support in recent studies
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[12–16]. As advances in live-cell imaging have enabled more
accurate observations in real time, a striking heterogeneity in
domain growth kinetics has emerged, and several approaches
to unambiguously classify different dynamic populations
have been proposed [17–22]. In the experiments, a crucial
parameter used to describe the sorting process is the lifetime
of a sorting domain. It has been recently shown that the
lifetime of a sorting domain is related to the domain stability,
which in its turn depends on the number of molecules
contained in the domain, and thus on the domain size [23].
It is therefore tempting to relate the existence, in the context
of phase separation, of a critical size for domain growth to
the observation that sorting domains on cell membranes can
undergo qualitatively different final fates. As a matter of
fact, sorting domains are commonly classified in two groups:
productive domains, if their growth eventually terminates
in the nucleation of a vesicle which is ultimately detached
from the membrane, and unproductive (or abortive) domains
which, instead, progressively dismantle and are ultimately dis-
solved [18,22,24]. It seems natural to interpret this distinction
in the context of classical nucleation theory, where the fate of
a domain results from the balance between bulk stabilization
and the propensity to dismantle along the domain boundary,
which in its turn is controlled by the value of a characteristic
boundary tension [3,11,25]. As a result, circular domains (that
minimize the boundary perimeter) are favored, subcritical
domains (having size A < Ac) have short lifetimes and a low
probability of reaching the extraction size AE , while super-
critical domains have a high probability of being ultimately
extracted. Here we discuss the implications of this picture in
the framework of the phenomenological theory of molecular
sorting introduced in Ref. [2]. Several predictions of the
phenomenological theory are verified by extensive numerical
simulations of a lattice-gas model. To help in the analysis of
experimental data, we introduce an operational definition of
critical size, and discuss its relation to recently introduced
methods for the classification of domain formation events into
productive and unproductive classes [22]. The operational
definition is used here to compare the predictions of our
phenomenological theory of molecular sorting to experiments
on the formation of productive and unproductive clathrin-
coated pits at the plasma membrane. However, the proposed
framework is more general, and we expect that it can turn use-
ful in the interpretation of experiments on molecular sorting at
different membrane regions, such as sorting endosomes, or the
Golgi complex. A direct comparison with experimental results
shows that the statistical properties of productive and unpro-
ductive domains inferred from experimental data are in good
qualitative agreement with those emerging from simulations
performed in some specific parameter regions. These results
hint at a central role of phase separation, and of the related
notions of boundary tension and critical size, in the processes
of molecular sorting that control the establishment and main-
tenance of distinct chemical identities on cell membranes.

II. PHENOMENOLOGICAL THEORY

We briefly summarize here the phenomenological theory
of phase separation driven molecular sorting introduced in
Ref. [2], and set up a convenient notation in view of the

present discussion. The theory is based on the following
nonequilibrium steady-state picture: a constant flux φ of
“sortable” cargo molecules is deposited on the lipid mem-
brane; each molecule occupies a characteristic area A0 on
the membrane, diffuses laterally, and can aggregate into sort-
ing domains with the help of a pool of specialized auxiliary
molecules, which sustain “active” domain formation by trig-
gering localized positive feedback loops [10,11,26], and/or
“passive” aggregation, driven by weak attractive intermolecu-
lar interactions [7,9]. Since domain formation is characterized
by competing effects, according to classical nucleation theory,
a critical size Ac is required for a domain to continue to
grow irreversibly and avoid decay [3,27,28]. Once formed,
sorting domains coarsen due to the incoming flux of laterally
diffusing molecules, and are eventually extracted from the
membrane in the form of lipid vesicles of characteristic area
AE = mA0. It follows that the growing domains coexist with
a continuously repleted two-dimensional “gas” of laterally
diffusing molecules in a statistically stationary state.

If we consider a region of linear size L of the order
of the average interdomain half distance, centered around a
growing supercritical domain of approximately circular shape
and radius R, the quasistatic profile nR(r) of the density of
the gas of freely diffusing molecules in the proximity of the
domain can be approximately obtained by solving a Laplace
equation with Dirichlet boundary conditions nR(R) = n0 and
nR(L) = n̄, obtaining

nR(r) = n0 + log(r/R)

log(L/R)
�n, (1)

where r � R denotes the distance from the domain center, and
�n = n̄ − n0. Domain growth is induced by the flux �A of
molecules from the gas to the domain, which can be calculated
by integrating the flux density −D∇nR(r) across the boundary
of the domain of size A = πR2, obtaining

�A = 4πD�n

log(AL/A)
(2)

where D is the lateral diffusivity of the molecules. This for-
mula implies that the domain will grow according to the
dynamic equation

Ȧ = 4πA0D�n

log(AL/A)
. (3)

In a membrane system where sorting domains may be as-
sumed to be approximately evenly distributed, the statistics of
supercritical domains can be conveniently described in terms
of the number density N (t, A) dA, giving the average number
per unit membrane area of supercritical domains with size
comprised between A and A + dA. Since the effects of random
fluctuations can be approximately neglected in the case of
supercritical domains, N (A, t ) satisfies the continuity equation

∂N

∂t
+ ∂

∂A
(ȦN ) + γ (A)N = 0, (4)

where the rate of removal of domains of size A from the sys-
tem is γ (A) = 0 for A < AE , and γ (A) = γ0 > 0 for A > AE .
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The stationary solution of Eq. (4),

Nst (A) = J log (AL/A)

4πD�n
exp

[
−

∫ A

Ac

γ (a) log (AL/a)

4πA0D�n
da

]
,

(5)
has a universal logarithmic behavior for A < AE . The normal-
ization constant J can be determined from the steady-state
condition

φ =
∫ ∞

Ac

�ANst (A) dA � JAE (6)

for large γ0 and AE � Ac. Assuming that the incoming flux φ

of molecules is evenly distributed in average among all avail-
able supercritical sorting domains, and neglecting logarithmic
corrections, the average number of supercritical domains per
unit area is given by

N̄d ∼ φ

�A
∼ φ

D�n
. (7)

Numerical observations suggest that faster responses of the
membrane system to changing environmental conditions are
related to shorter residence times of the sorted molecules on
the membrane in the steady state [2]. It is therefore interesting
to investigate under which parametric conditions this resi-
dence time can be minimized. From the moment of insertion
to the moment of extraction, molecules spend an average time
T̄f diffusing freely and an average time T̄d attached to super-
critical sorting domains. In principle, for the molecules that
aggregate in the initial stage of the domain formation process,
when the domain is still subcritical, one should also consider
the time spent in the subcritical stage, but this is generally
negligible if the critical size is small.

In the following, repeated use will be made of a gen-
eral steady-state relation, which applies to open systems in
a driven nonequilibrium stationary state [29]: the average
density of molecules in the system is given by the product
of the average density flux of molecules (entering or leaving
the system) and the average time that a molecule spends in
the system. According to this general relation, the steady-state
average density of molecules that are freely diffusing as a
two-dimensional gas on the membrane is

n̄ = φ T̄f . (8)

The same steady-state relation can be applied to the average
density N̄d of supercritical domains that are generated and
ultimately extracted from the membrane, giving

N̄d = dN̄d

dt
T̄d = φ

m
T̄d . (9)

On the other hand, since each new domain starts its aggre-
gation process from the encounter of two freely diffusing
molecules, one can write (see also Appendix A)

dN̄d

dt
= CD n̄2, (10)

where C is a dimensionless proportionality constant mea-
suring the strength of the effective interaction that keeps

molecules together in a sorting domain. Combining (8)–(10),
the following steady-state relations are obtained:

n̄ ∼
(

φ

m CD

)1/2

, (11)

T̄f = n̄

φ
∼ (m C Dφ)−1/2. (12)

For approximately absorbing domains, n0 � �n and �n ∼ n̄,
therefore (7), (9), and (10) give

N̄d ∼
(

m Cφ

D

)1/2

∼ m C n̄ , (13)

T̄d ∼ C m2 n̄

φ
∼

(
C m3

D φ

)1/2

. (14)

The average time spent by molecules in the system is approx-
imately T̄ = T̄d + T̄f , which is minimum for

T̄f + T̄d = T̄opt ∼
(

m

D φ

)1/2

. (15)

The optimal value T̄opt is obtained for

C = Copt ∼ 1

m2
. (16)

For this value, the average number densities of gas molecules
and of supercritical domains are

n̄opt ∼
(

mφ

D

)1/2

, N̄d,opt ∼
(

φ

m D

)1/2

. (17)

III. NUMERICAL VALIDATION

In a minimal lattice-gas model of the distillation process,
the lipid membrane is modeled as a two-dimensional square
lattice with periodic boundary conditions, where each site can
be occupied by a single molecule at most [2]. The system
evolves according to a Markov process consisting of the fol-
lowing three elementary events.

(1) Insertion: Molecules from an infinite reservoir arrive
and are inserted on empty sites with rate kI .

(2) Diffusion and aggregation: Molecules can perform dif-
fusive jumps to an empty neighboring site with rate kD/gNnn ,
where g > 1 is a dimensionless parameter representing the
interaction strength, and Nnn is the number of neighboring
molecules of the hopping molecule before the jump occurs.

(3) Extraction: Molecules are extracted from the system by
simultaneously removing all connected clusters of molecules
that contain a completely filled square of size m.

In what follows, A0 = 1, i.e., areas are measured as num-
bers of lattice sites, and m = 102. In every simulation, the
system is allowed to relax to the steady state before starting
the collection of relevant statistical data.

One of the main observations of Ref. [2] is that both the
average permanence time T̄ of sorted molecules on the mem-
brane system and the average molecule density ρ in the steady
state are minimal in an intermediate, optimal range of values
of the interaction strength g, where the molecular distillation
process is most efficient. Snapshots of the simulations taken
in the steady state show the typical behavior of the system
both inside and outside of this optimal range (Fig. 1). For
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(a) (b) (c) (d) (e)

g = 3 g = 10 g = 30 g = 102 g = 104

FIG. 1. Snapshots of configurations of the lattice-gas model of molecular sorting for a system of 4002 sites in the steady state, with
incoming flux φ/kD = 10−6 and increasing values of the interaction strength g (from left to right). In the central panel the interaction strength
is close to the optimal value gopt = 31.

low interaction strength, molecular crowding accompanied by
a hectic formation of small short-lived domains is observed
[Fig. 1(a)]. As the interaction strength increases, the density of
freely diffusing molecules decreases [Figs. 1(b)–1(d)]. Con-
sistently with the predictions of the phenomenological theory,
the molecular density ρ and residence time T̄ are lower in
this intermediate range, and reach a minimum in correspon-
dence with the optimal value of the interaction strength g [see
Ref. [2] and Fig. 1(c)]. When the interaction strength becomes
much larger than its optimal value, the gas of free molecules
is strongly depleted, and the system enters into a regime of
domain crowding [Fig. 1(d)]. Here, a large number of sorting
domains share the incoming molecular flux, the growth of
each sorting domain is slowed down, and the efficiency of the
distillation process is impaired, as both the molecular density
and molecular residence time are much larger than in the
optimal region. For very high values of the microscopic in-
teraction strength g, the formation of highly irregular domains
of the type predicted by the theory of diffusion-limited aggre-
gation (DLA) [30] is observed [Fig. 1(e)]. This latter regime
is unlikely to correspond to physiological sorting, but could
be related to pathological conditions where high intermolec-
ular interaction strength induced by mutations promotes the
formation of irregular, solidlike aggregates associated to de-
generative diseases [31,32]. Similar behaviors have also been
observed in experiments, where overexpression of adaptor
proteins responsible for mediating intermolecular interactions
leads to the formation of large and irregularly shaped sort-
ing domains [33]. In summary, for varying values of the
interaction strength g, our abstract model recapitulates two
main phenomenologies. At low and intermediate values of
the interaction strength g, the simulated dynamics is char-
acterized by the formation of approximately circular sorting
domains via nucleation and coarsening, compatibly with the
phenomenology of liquid-liquid phase separation observed in
several important biological processes [7–9]. For very large
g instead, domain remodeling is impaired and a DLA phe-
nomenology [30] is recovered, which may possibly describe
the features of pathological processes. A precise characteriza-
tion of the crossover between these two regimes will be the
matter of future investigation.

Numerical simulations confirm the validity of the scaling
laws ρopt ∼ φa, n̄opt ∼ φb, and T̄opt ∼ φ−c, as the numer-
ically obtained values a = 0.48, b = 0.46, and c = 0.52
are in good agreement with the theoretical predictions

a = b = c = 1/2 [2], that were derived under simplifying
assumptions.

In addition to these former results, other predictions of
the phenomenological theory can be verified numerically
using the microscopic lattice-gas model. The previously ex-
posed phenomenological theory is valid in the regime where
supercritical domains are well-separated objects, with a well-
defined value of the average interdomain half distance L̄.
Since the number of supercritical domains scales as N̄d ∼
φ1/2, and π L̄2N̄d ≈ 1, it is expected that L̄ ∼ φ−1/4. This scal-
ing law can be verified numerically in the following way. First,
the center of mass of each domain is computed. A critical
size is determined using the operational definition given in the
following Sec. IV. Domains with size smaller than the critical
size are neglected. The nearest neighbor of each domain is
found [Fig. 2(a)]. Finally, the distances between nearest neigh-
bors and the corresponding statistical measures are computed.
The numerical values of the average interdomain half distance
L̄ obtained by this method follow a scaling law L̄ ∼ φ−d

with d = 0.23, close to the theoretically predicted value d =
1/4 [Fig. 2(b)]. When the mean value L̄ is used to rescale
the interdomain half distances, the corresponding frequency
distributions for different values of φ collapse on a single
universal distribution [Fig. 2(c)].

Several results of the phenomenological theory stem from
the assumption that the steady-state profile of molecule den-
sity around a sorting domain has the logarithmic form (1),
and from the related idea that the membrane region can be
divided into “attraction basins” of linear size ∼L pertaining
to distinct sorting domains. Given the approximate nature of
these hypotheses, it is interesting to check their validity by
direct numerical simulations. A convenient way to compu-
tationally define this kind of attraction basin is the use of
a Voronoi decomposition, which is a partition of the plane
into nonoverlapping regions according to their proximity to
points of a given set [34]. The two-dimensional square lattice
used for the numerical simulations was therefore decomposed
according to the following procedure. Once all supercritical
domains were identified and tracked, for each time frame the
center of mass of each domain was computed and the set
of these centers was used to partition the lattice area into
Voronoi regions [Fig. 3(b)]. Then, free molecules belonging
to each region were identified, and their distance from the
domain center of mass computed. A direct validation of the
theoretical expression (1) is computationally very demanding,
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FIG. 2. (a) Nearest-neighbor distances between simulated sorting domains are highlighted in red in a snapshot from a simulation performed
with incoming flux φ/kD = 10−7 and interaction strength g = 102. (b) Scaling of the optimal values of the average interdomain half distance.
The red solid line is a fit with the power law φ−a, with a = 0.23. (c) The frequency density and cumulative frequency distribution (inset) for
the rescaled half distances L/L̄ for varying values of the incoming flux φ/kD collapse on a single universal frequency distribution.

FIG. 3. (a) Average density profile n̄(r) of the gas of free
molecules at a distance r from the center of supercritical domains,
obtained from the simulations, and fitted with the theoretical pre-
diction Eq. (19) (φ/kD = 10−7, g = 102). (b) Voronoi decomposition
obtained from a set of simulated supercritical sorting domains (19).

as it requires building histograms of distances conditional to
the radius R of a given sorting domain. We studied a slightly
different quantity, i.e., the average frequency of the distances
of free molecules from domains of linear sizes R comprised
between the critical radius Rc and the extraction radius RE :

n̄(r) =
∫ RE

Rc

nR(r)Nst (R) dR (18)

for 0 � r � L, where the theoretical model describes a den-
sity profile characterized by gas depletion in the proximity of
the sorting domain. Computing the integral in (18) we obtain

n̄(r) = K1 + K2 log(r), (19)

where K1 and K2 are functions of the model parameters. If
p(r) dr is the empirical probability of finding a molecule at a
distance comprised between r and r + dr from the center of
mass of a domain, then

n̄(r) = p(r)

2πr
. (20)

The measure of n̄(r) obtained from the numerical simulations
by this procedure is in agreement with a fit of the theoretical
prediction [Fig. 3(a)].

In the phenomenological theory, a central role is played by
the dimensionless effective interaction strength C. A conve-
nient expression for C, amenable to empirical estimation, can
be obtained by inverting Eq. (10) and making use of (9) to get

C = φ

mD n̄2
, (21)

which is a function of directly measurable quantities, such as
the incoming flux φ and the bulk gas density n̄. The theory
predicts that the optimal value C = Copt scales as m−h, with
h = 2 [see Eq. (16)]. Numerical simulations yield the com-
patible value h = 1.8 [Fig. 4(a)].

One of the main tenets of the phenomenological theory is
the existence of a well-defined critical domain size Ac, arising
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FIG. 4. (a) Optimal effective interaction strength Copt as a func-
tion of m = AE/A0, at fixed φ/kD = 10−6. The red solid line is a
fit with the power law m−h, with h = 1.8. (b) Effective interaction
strength C as a function of the microscopic interaction strength g, for
different values of the incoming flux.

from the balance between the mixing power of lateral diffu-
sion and the tendency of sorted molecules to aggregate. In the
lattice-gas model, the tendency to aggregation is controlled by
the microscopic parameter g, while in the phenomenological
theory an analogous role is played by the effective interaction
strength C. The operational definition provided by Eq. (21)
allows us to determine C from the simulated molecule density
n̄ as a function of model parameters [Fig. 4(b)]. Accordingly
with its interpretation as an effective interaction strength, C is
observed to be a nonlinear, monotonically increasing function
of the microscopic parameter g.

The critical domain size Ac is a central control param-
eter of the molecular distillation process, but there is no
simple analytical expression for it in the framework of the
phenomenological theory. Explicit approximate expressions
for the critical size can be obtained using classical metasta-
bility analysis in quasiequilibrium lattice-gas models (see
Appendix B and references therein). Such an analysis pre-

FIG. 5. Time evolution of the size of productive [blue (light
gray)] and unproductive [red (dark gray)] sorting domains, from nu-
merical simulation of the lattice-gas model (φ/kD = 10−6, g = 20).

dicts that Ac is a monotonically decreasing function of the
microscopic interaction strength between sorted molecules,
which, however, is not practically measurable. For this reason,
in the next section we provide an operational definition of
critical size that can be more directly related to the analysis
of experimental observations.

IV. OPERATIONAL DEFINITION OF THE CRITICAL SIZE

In experimental studies of molecular sorting, domain
“trajectories” have been observed to fall into two classes,
depending on their fate [18,22,24]: productive trajectories,
where the domain is finally extracted as a part of a lipid
vesicle, and unproductive trajectories, where the domain pro-
gressively dismantles and is ultimately dissolved. It is worth
observing here that these are properties of the domain history,
and not of its state at a given instant. However, for simplicity,
we will define in what follows as productive or unproduc-
tive domains those that belong to productive or unproductive
trajectories, respectively. In our lattice-gas model, productive
and unproductive domains can be directly distinguished by
tracking their evolution in time, and checking whether their
trajectory ends up with an extraction event, or not (Fig. 5).
The classification into productive and unproductive trajecto-
ries can be used to provide a natural, operational definition of
critical size, applicable to the analysis of actual experimental
data.

Let us define the “operational” critical size as the value Ac

such that a domain of size Ac has 50% probability of being
productive:

P(prod.|Ac) = 1
2 (22)

(similar definitions have been adopted in previous works; see,
e.g., Ref. [35]). In terms of (joint) probability density func-
tions (PDFs), Eq. (22) is equivalent to

p(Ac, prod.) = p(Ac, unprod.), (23)
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FIG. 6. (a) Empirical histograms of domain sizes for productive (rightmost histogram, blue) and unproductive (leftmost histogram, red)
domains obtained from numerical simulations of the lattice-gas model (φ/kD = 10−7, g = 20). (b) Probability of a domain being productive or
unproductive, conditioned by its size A. The vertical dashed lines mark the position of the critical size Ac, that can be found, according to (25),
where the frequency of productive domains surpasses the frequency of unproductive domains (a), or equivalently, according to (24), where the
conditional probability of a domain of size A being productive exceeds 1/2 (b). (c) Critical size Ac as a function of the interaction strength g
for different values of the incoming flux φ/kD.

i.e., the critical size is found at the intersection of the joint
PDFs of, respectively, productive and unproductive domain
sizes. Under a few additional hypotheses (see Appendix C),
Eq. (22) implies

P(prod.|A) � 1
2 for all A � Ac (24)

consistently with the phenomenological picture, where
smaller domains decay with high probability, while, once a
domain exceeds the critical size, the probability that it will
continue to grow up to the extraction size is larger than the
probability that it will disappear. In terms of the joint PDFs of,
respectively, productive and unproductive domains, Eq. (24) is
in its turn equivalent to the condition that

p(A, prod.) � p(A, unprod.) for all A � Ac. (25)

Either (24) or (25) can be conveniently applied to the analysis
of empirical data, which are given as integer or floating-
point numbers of finite precision. The critical size Ac can
thus be estimated either from conditional frequencies [using
Eq. (24)] or from frequency histograms of domain sizes [using
Eq. (25)], as long as productive and unproductive domains
can be effectively discriminated. As an example, in Fig. 6(a),
Ac is found at the approximate intersection of the (joint)
frequency histograms of, respectively, productive and unpro-
ductive domains. The existence of this intersection appears
to be guaranteed by the fact that p(A, unprod.) is a decreas-
ing function of A, while p(A, prod.) is initially increasing.
Figure 6(b) shows that the probability of a domain being
productive increases with its size, while the complementary
probability of being unproductive decreases. The above pro-
cedure allows us to compute Ac from numerical simulations
for different values of model parameters. The critical size
Ac is thus found to be a decreasing function of both the
microscopic interaction strength g and the incoming molecule
flux φ [Fig. 6(c)]. Having at our disposal an operational
definition of critical size, we are now in a position to check
numerically the validity of theoretical predictions about the
shape of the domain size distribution. The theory predicts

functionally different forms for the number densities for the
size of, respectively, subcritical and supercritical domains. In
the subcritical region, transient domains continuously form
and dissolve. This quasiequilibrium state is approximately de-
scribed by classical nucleation theory [27,28], which predicts
that the stationary number density for domains of size A < Ac

is

N sub
st (A) = N sub

0 eλ(A1/2−A1/2
c )2

, (26)

where λ is a constant, which is expected to be proportional to
the interaction strength between sorted molecules.

For A > Ac, according to Eq. (5), the shape of the number
density is, instead of the logarithmic type,

Nst (A) = N0 log
AL

A
, (27)

with N0 ∼ φ1/2. By fitting the full histogram of all domain
sizes with Eq. (26) for small A and with Eq. (27) for large A,
and by imposing the continuity condition

N sub
0 = N0 log

AL

Ac
, (28)

one obtains an estimate Ãc of the critical size Ac in the
framework of classical nucleation theory [see Fig. 7(a)]. The
thus obtained value Ãc is of the same order as the previously
introduced value Ac, the difference being due to the pres-
ence of a small tail of unproductive domains with A > Ac

[see Fig. 6(a)]. The definition of Ac has a clear probabilistic
interpretation and is independent of phenomenological as-
sumptions about the underlying process of domain formation.
On the other hand, the estimate Ãc by the above empirical
fitting procedure can be used when it is not possible to dis-
criminate between productive and unproductive domains.

A numerical estimate of the prefactor N0 for different
values of the incoming molecule flux φ gives N0 ∼ φ f with
f = 0.54, in reasonably good agreement with the theoretical
value f = 1/2 [Fig. 7(b)].
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FIG. 7. (a) Full histogram of all domain sizes (φ/kD = 10−7, g = 20). The lines are fits with Eq. (26) (red dashed line) for A < Ãc, and
with Eq. (27) (blue dash-dotted line) for Ãc < A < AE . The A > AE tail depends on the details of the extraction mechanism and is therefore
nonuniversal. (b) Numerical estimate of the prefactor N0 appearing in Eq. (27), as a function of the incoming flux φ/kD, in the optimal region.
The red solid line is a fit with the power law φ f with f = 0.54.

The systematic discrimination of productive and unproduc-
tive domains allows us to unravel additional aspects of the
phenomenology. Optimal sorting takes place when the total
number of molecules in the system is minimal [2] [Fig. 8(a)].
In a neighborhood of this optimal value, one observes also
a minimum in the number of molecules contained in the
domains [Fig. 8(b)], and in the number of domains itself
[Fig. 8(c)]. This is a somehow paradoxical effect, since at
first sight one would expect that a larger number of sorting
domains could increase the speed of the sorting process. In-

stead, sorting turns out to be most efficient precisely when the
number of sorting domains is close to a minimum. As a matter
of fact, when the interaction strength increases, the number
of molecules in unproductive domains decreases, while the
number of those in productive domains increases. As a conse-
quence, their sum, i.e., the number of molecules in any of the
two types of domains, has a minimum [Fig. 8(b)]. A similar
argument applies directly to the total numbers of productive
and unproductive domains: the number of unproductive do-
mains decreases when the interaction strength increases, while

FIG. 8. (a) The number of free molecules per unit area decreases for increasing interaction strength g (magenta triangles), while the
number of molecules found inside of sorting domains has an increasing trend at large g (orange dots). As a consequence, the total number of
molecules per unit area (black stars) has a minimum, which marks the position of the optimal sorting regime [2]. (b) In its turn, the number
of molecules inside of sorting domains (orange dots) is a nonmonotonic function of the interaction strength g. This can be understood as
follows. The number of molecules inside of unproductive domains (red triangles) decreases with increasing interaction strength, while the
number of molecules inside of productive domains (blue squares) increases. As a consequence, the total number of molecules found inside
of sorting domains of any of the two types (orange dots) has a minimum close to the optimal sorting regime. (c) Similarly, the number of
unproductive domains per unit area (red triangles) decreases with the interaction strength, whereas the number of productive domains (blue
squares) increases. As a consequence, the total number of sorting domains of the two types (orange dots) has a minimum for intermediate
interaction strength, close to the optimal sorting regime. Simulations were performed with φ/kD = 10−8. The number of both productive and
unproductive domains increases with increasing φ (not shown here).
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FIG. 9. Statistical properties of productive [blue (light gray, rightmost histogram)] and unproductive [red (dark gray, leftmost histogram)]
domains for incoming flux φ/kD = 10−6 and interaction strength (a)–(d) g = 102 (5 × 104 domain trajectories) and (e)–(h) g = 101 (1.5 ×
106 domain trajectories), collected over a 3 × 106/kD time interval. Simulated trajectories were classified into productive and unproductive
depending on whether they ended up in an extraction event, or not. (a), (b), (e), (f) Scatter plots of domain lifetimes vs maximum sizes (a),
(e) and of DASC indicators d1, d2 (b), (f). (c), (d), (g), (h) Frequency distributions of maximum sizes and lifetimes. Insets: Complementary
cumulative frequency distributions. Domain sizes are given as number of occupied lattice sites, and lifetimes are measured in units of 103/kD.

the number of productive domains increases, as predicted by
Eq. (13) [36]. This leads to the appearance of an intermediate
minimum in the total number of domains [Fig. 8(c)]. The
emerging picture is that the efficiency of the sorting process
is not favored by a proliferation in the number of sorting
domains: in that case, the flux of incoming molecules has to
be shared among a larger number of domains, and the growth
rate of individual domains is slowed down. A balance has
therefore to be struck between two competing requirements:
the interaction strength should be large enough to allow for
easy nucleation of new sorting domains, but small enough to
avoid their unnecessary proliferation.

These theoretical predictions are compatible with former
experimental work where the strength of interaction be-
tween transferrin receptors on cell plasma membranes was
experimentally controlled, and higher interaction strength
was shown to induce higher rates of generation of produc-
tive sorting domains, and lower numbers of unproductive
events [37].

V. INTERPRETATION OF EXPERIMENTAL DATA

The correct classification of productive and unproductive
trajectories in data obtained from living cell experiments is a
challenging process. Several approaches have been adopted.
Productive trajectories can be singled out by detecting bursts
in the concentration of specific molecules involved in the
process of vesicle detachment, such as dynamin [20,24,38].
Other approaches rely on the measure of extremal properties
of domain trajectories, such as the maximum size reached
by domains, or their lifetime [2,17,18,24,39], which are ex-
pected to be less dependent on the small-scale details of the

stochastic process. More recently, a new classification method
based on a “disassembly asymmetry score” (DASC) [22] has
been proposed. In this context, productive and unproductive
trajectories are discriminated by clustering the values of a
set of statistical indicators that compare properties of the
backward and forward histories of the domains [22]. The
effectiveness of some of these approaches can be tested on
numerical simulations of the lattice-gas model discussed in
the previous sections, where the productive vs unproduc-
tive classification can be performed exactly. The first two
columns of Fig. 9 show scatter plots of maximum size vs
lifetime [Figs. 9(a) and 9(e)], and of the DASC indicators
d1 and d2 [22] [Figs. 9(b) and 9(f)], for g = 102 and 101.
Different colors are used for productive [blue (light gray)]
and unproductive [red (dark gray)] trajectories. For g = 102

the two populations are clearly separated, and can be easily
discriminated automatically using standard clustering meth-
ods. For g = 101 instead the representative points of the
two populations start to overlap, and clustering methods are
likely to return a certain number of erroneously classified
points. For g = 102 the existence of two distinct populations
of domain trajectories is reflected in the bimodal shape of
the frequency distributions of maximum sizes and lifetimes
[Figs. 9(c) and 9(d)]. This clear separation corresponds to
a distinct plateau in the (complementary) cumulative fre-
quency distribution (insets). For g = 101 instead [Figs. 9(g)
and 9(h)], the frequency distributions of the two populations
start to overlap and the bimodal character of the two frequency
distributions tends to disappear. The loss of discriminating
power takes place approximately for values of the interaction
strength such that the critical size Ac becomes of the order of
the extraction size AE [see Fig. 6(c)].
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Interestingly, the model predictions for the frequency dis-
tributions of the maximum sizes and lifetimes of sorting
domains are similar to those resulting from experimental
observations. In particular, the maximum size and lifetime dis-
tributions for unproductive domains show a rapid monotonic
decay, while the corresponding distributions for productive
domains show a distinct maximum and a slower decaying tail
[Figs. 9(c), 9(d) 9(g), and 9(h)]. Both of these features have
been observed in experiments of endocytic sorting [18,22],
where productive and unproductive domains correspond to
clathrin-coated pits and abortive coats, respectively. (A third
population of outlier traces [22], characterized by short
lifetimes and large sizes, likely corresponds to cytoplasm-
originated events [39] and is not observed in the simulations.)
We looked for model parameters providing the best fit of
simulated frequency distributions with data from Figs. 2(b)
and 2(c) of Ref. [22], where productive and unproductive
domains were classified using DASC. By a single fit of the
two parameters of the model and of two rescaling factors for
the time and length scales, good agreement between simula-
tion and experimental data was found for both the lifetime
and maximum size distributions, simultaneously for both pro-
ductive and unproductive domains (Fig. 10). The frequency
histograms obtained from the exact classification of simulated
productive and unproductive domains [Figs. 10(a) and 10(b)]
were compared with the frequency histograms obtained with
the same model parameters, where however simulated do-
mains were classified by the DASC method, yielding similar
results [Figs. 10(c) and 10(d)].

VI. CONCLUSIONS

To generate and maintain their internal order and guaran-
tee proper physiological functioning, eukaryotic cells rely on
a sophisticated process by which specific biomolecules are
sorted and concentrated on small lipid vesicles, that are later
delivered to appropriate membrane subregions through well-
defined pathways. A recently proposed phenomenological
theory of molecular sorting assumes that this process emerges
from the coupling of two simpler biophysical mechanisms [2]:
(a) the tendency of similar molecules to phase separate into
localized sorting domains and (b) domain-induced membrane
bending, leading to the formation and ultimate detachment of
specifically enriched vesicles. A central notion of the theory of
phase separation is that only domains larger than a critical size
Ac are able to grow indefinitely, while smaller domains tend
to be dissolved. In combination with a contextual process of
domain extraction at a larger scale AE > Ac, this introduces a
sort of “physical checkpoint,” such that only domains that are
able to reach the “critical mass” Ac can drive extraction (dis-
tillation) events, and are thus “productive.” This scenario is
consistent with experimental observations where, in addition
to “productive” long-lived domains that grow into vesicles
that are ultimately extracted from the membrane, a large num-
ber of short-lived, small domains, which tend to disassemble
and ultimately disappear, is also detected. The existence of
such a “physical checkpoint” is reflected in the particular
shape of the size distribution for productive domains [Eq. (5)],
which exhibits a maximum at sizes of the order of the criti-
cal size Ac, a slowly (logarithmically) decaying intermediate
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FIG. 10. Comparison between the experimental distributions of
lifetimes (a), (c) and maximum sizes (b), (d) of unproductive (red
dashed lines) and productive (blue dash-dotted lines) domains from
Figs. 2(b) and 2(c) of Ref. [22] (kindly shared by Dr. Xinxin Wang),
and corresponding distributions obtained from simulations of the
lattice-gas model (red leftmost and blue rightmost histograms, re-
spectively) with fitted values of the model parameters (g = 6.5,
φ/kD = 10−6) and fitted rescaling factors for lifetime and domain
size units (kD = 715 s−1, one lattice site = 0.3 arb. units). Lower
cutoffs on lifetime and maximum size approximately equal to the val-
ues reported in the experimental data were used. In the experiments,
productive and unproductive domains were classified by DASC. In
the analysis of simulated data (histograms), use was made of both
the exact classification obtained directly from the simulations (a), (b)
and a posteriori use of DASC on the numerically generated domains
(c), (d), obtaining similar results.

region, followed by a nonuniversal decaying tail at scales
larger than the extraction threshold AE [Fig. 6(a), blue
rightmost histogram]. On the other hand, the existence of
a biochemical checkpoint has also been postulated in this
regard [17,18]. It would be quite interesting to further in-
vestigate the relation between these two effects. It is worth
observing here that in the actual biophysical process a wealth
of different biomolecular species takes place in the forma-
tion and stabilization of sorting domains. In the theoretical
model, the complex interplay between these different species
is effectively encoded into the value of the single dimension-
less interaction parameter g. Intriguingly, even such a highly
simplified abstract model, founded on basic notions from the
theory of phase separation, is able to capture relevant features
of the real process. This lends support to the hypothesis that
endocytic sorting is driven by an underlying phase separation
process.

We have here considered a spatially homogeneous proba-
bility of nucleation of sorting domains. It has been observed
however that nucleation events may cluster in “hotspots” or
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“nucleation organizers” [40]. The origin of such hotspots is
an interesting open question, that deserves to be investigated
in the framework of phase separation theory.
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APPENDIX A: RATE OF SUPERCRITICAL
DOMAIN PRODUCTION

The rate at which supercritical domains are generated in the
nonequilibrium driven stationary state of the lattice model of
molecular sorting is assumed, in Eq. (10), to be proportional
to the square of the free molecule density n̄. Here we provide a
justification for this assumption, based on a simplified mean-
field model of monomer aggregation.

Consider a model of domain formation by means of
monomer attachment and detachment, and suppose that there
exists a threshold area value Ac above which monomer de-
tachment from domains is not possible, and clusters grow
irreversibly. This way, the existence of a critical size in the
system is artificially reproduced. Let us call nA the number
density per unit surface of domains of area A, and N+ the
number density per unit surface of domains with A > Ac.
The incoming flux of monomers is φ. The set of mean-field
Smoluchowski equations for this model is

dn1

dt
= −2c1n2

1 + b2n2 − n1

Ac∑
A=2

cAnA

+
Ac∑

A=2

bAnA − c+n1N+ + φ, (A1a)

dnA

dt
= cA−1n1nA−1 − bAnA − cAn1nA + bA+1nA+1,

2 � A � Ac, (A1b)

dN+
dt

= cAc n1nAc (A1c)

where cA (and, respectively, bA) are dimensional coefficients
representing the attachment (detachment) rates of monomers
on (from) domains of area A, and bA = 0 for A > Ac. Ac-
cording to reaction rate theory [41], in two dimensions, the
effective reaction rate of two domains is proportional to the
sum of their diffusion constants. In the approximation where
only monomers can move (extended domains being much
slower, as their diffusivity decreases with size as A−3/2), the
effective aggregation rates cA become independent of A and
proportional to the diffusivity D of a monomer. It is also im-
portant to notice that dimers can split with a rate proportional

to D/g per molecule, i.e., b2 = b/g. Summing over the areas
2 � A � Ac to obtain an equation for N− = ∑Ac

A=2 nA, we find

dN−
dt

= c n2
1 − c n1nAc − g−1b n2, (A2a)

dN+
dt

= c n1nAc . (A2b)

The stationary condition dN−/dt = 0 for the subcritical do-
mains implies dN+/dt = c n2

1 − g−1b n2. In order for N− to
be approximately constant with a nonzero production of su-
percritical domains, the second term must be subdominant
already at moderately large values of g. One can then conclude
that the net production of supercritical domains N+ is well
approximated by the equation dN+/dt ≈ c n2

1. The quantity
N+ corresponds to the number density Nd of supercritical
domains used in the main text, thus qualitatively justifying
Eq. (10).

APPENDIX B: METASTABILITY
IN LATTICE-GAS MODELS

Assuming that in a quasiequilibrium condition the
molecule gas density outside of a growing domain in a lattice-
gas model follows the Gibbs-Thomson relation n0 = n(R) =
n∞(1 + σ/R) [35], where σ is the line tension of the domain,
using Eq. (3) we get

Ṙ = A0D

log (L/R)

(
R − σn∞

n̄ − n∞

) n̄ − n∞
R2

. (B1)

Therefore the critical value of the domain radius is

Rc = σn∞
n̄ − n∞

. (B2)

This is a nonequilibrium result, in which n̄ and n∞ represent,
respectively, the bulk average density of the molecule gas and
the equilibrium density of the gas at the interface with a large
flat domain.

These two quantities, together with σ , can be easily es-
timated at equilibrium in a lattice-gas model. Consider an
equilibrium lattice-gas model with a chemical potential μ, and
let ε > 0 be the energy gain due to the attractive interaction
between two molecules occupying nearest-neighboring sites
of the lattice. The energy function of the equilibrium lattice-
gas system takes the form

E (η) = μ
∑

i

ηi − ε
∑
〈i, j〉

ηiη j, (B3)

where η = {ηi} with ηi ∈ {0, 1} for i = 1, . . . ,N is a bi-
nary configuration representing the presence or absence of
molecules on lattice sites. According to the dynamic view-
point of Ref. [42], the expression

Rc ≈ ε

z ε − 2μ
, (B4)

with z the number of nearest neighbors of a given site, is
obtained imposing a local equilibrium condition between the
probability of growing and that of shrinking. In a mean-
field equilibrium picture, the chemical potential is related to
the average total density n̄eq = e−βμ of free molecules in a
supersaturated system. At the condensation point μ = zε/2,
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the average total density is equal to the saturation density
n∞ ≈ e−βzε/2, which is the molecule density of a gas phase in
equilibrium with a liquid phase (with flat interface). In terms
of these quantities, the critical domain radius becomes

Rc ≈ βε

2 log(n̄eq/n∞)
≈ βεn∞

2 (n̄eq − n∞)
(B5)

close to the condensation point. The expression is formally
equivalent to Eq. (B2) if we identify σ = βε/2. Given two
configurations η and η′ of the dynamic lattice-gas model, the
detailed balance condition implies

W (η → η′)
W (η′ → η)

= Peq(η′)
Peq(η)

. (B6)

Focusing on the transition η → η′, in which a dimer fragments
into two monomers as a consequence of one of them hopping
away, and since z = 4 for a square lattice, the previous re-
lation implies β ε = log g, and consequently n∞ ≈ e−2βε =
g−2. Moreover, in a lattice gas at equilibrium, the average
density n̄eq of supersaturated gas is fixed by the chemical
potential and is independent of the microscopic interaction
strength. Therefore, from (B5) the critical radius is seen to
be a monotonically decreasing function of g.

In the nonequilibrium stationary state relevant to the de-
scription of molecular sorting, n̄ is numerically observed to
be a decreasing function of g, however its decrease is slower
than the decrease of n∞, since n̄ is sustained by the constant
molecular influx φ. This way, from Eq. (B2) the critical radius
Rc is seen to be a monotonically decreasing function of g also
in the nonequilibrium case of interest.

APPENDIX C: ALTERNATIVE DEFINITIONS
OF CRITICAL SIZE

Maintaining the notations used in the main text, let us
define the empirical critical size as the value Ac such that

P(prod.|Ac) = 1
2 . (C1)

This value is well defined if P(prod.|A) is a continuous func-
tion which tends to zero for A → 0 and to 1 for A → ∞.
Equivalently, Ac can be defined as the solution of

p(A, prod.) = p(A, unprod.) (C2)

since (C2) can be rewritten as

p(A, prod.) = p(A) − p(A, prod.)

yielding

P(prod.|A) = p(A, prod.)

p(A)
= 1

2
.

If p(A, unprod.) is a decreasing function of A, and p(A, prod.)
is an increasing function of A in a right neighborhood of zero
(as the simulations suggest; see, e.g., Fig. 6), one can easily
show that P(prod.|A1 � A � Ac) is a nondecreasing function
of A1 by directly computing its derivative with respect to that
variable. Then, for all A1 � Ac one has

P(prod.|A � Ac) � P(prod.|A1 � A � Ac)

� P(prod.|A = Ac) = 1
2 .
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