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Force-induced wrapping phase transition in activated cellular uptake
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Intracellular pathogens, including all viruses and many bacteria, enter a host cell through either passive
endocytosis or active self-propulsion. Though the cellular uptake of passive particles via endocytic process
has been studied extensively, little work has been done on the active entry of self-propelled pathogens, such
as Listeria monocytogenes. Here, we present a theoretical model to investigate the adhesive wrapping of a
self-propelled particle by a plasma membrane, and find a type of first-order wrapping transition from a small
partial wrapping state to a large partial wrapping state triggered by the active force. The phase diagram displays
more complex behaviors compared with the passive wrapping mediated merely by adhesion. We also find that a
tubular protrusion can be formed if the active force exceeds a force barrier. These results may provide a useful
guidance to the study of activity-driven cellular entry of active particles into cells.
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I. INTRODUCTION

Endocytosis is an essential step for a wide range of health
related processes [1]. Examples include the transduction of
biochemical signal, the intake of nutrients [2,3], and the
invasion of pathogens into a cell [4,5] through a plasma
membrane, a physical barrier that protects a cell from being
infected by pathogens. In order to enter a cell, pathogens can
hijack endocytic machineries of the host cell and enter the cell
by being wrapped inside the endocytic vesicle through adhe-
sive interactions with the membrane. Extensive studies have
been devoted to understanding this adhesion-mediated wrap-
ping process. Theoretical and experimental investigations of
such kind have well characterized how the physical parame-
ters, including the particle size [6–12], shape [13–15], elastic
properties of the particle [16–20], ligand/receptor density
[21–23], as well as the mechanical properties of the mem-
brane [24,25], affect the wrapping behaviors. However, some
pathogens such as Listeria monocytogenes can generate active
force to propel themselves through the plasma membrane by
polymerization of actin filaments at its rear body [26–30].
How the active force of these self-propelled agents reshapes
the membrane remains to be elucidated.

Active force is an important factor to reshape the mem-
brane. When endocytosis happens in yeast cells, a small patch
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of membrane is pulled by the actin polymerization force and
shaped into a tubular invagination [31–33]. By forming a
tether between a bead and a vesicle, a force can be applied
on the bead and transmitted to the vesicle. Such experiment
is often used to pull a membrane tube from a giant vesicle
and measure the elastic properties of the membrane [34–36].
The collective motion of a number of self-propelled particles
inside a vesicle were found to induce large deformations of
the vesicle [37,38], and even shape transformations [39–41].
Using force to direct particles to pass through a membrane
has found a wide range of potential biomedical applica-
tions, including drug/gene delivery [42–44], cell operation
and manipulation [45,46], and bioimaging/sensing [47,48].
Understanding the role of forces on the interaction between
a particle and a membrane is critical to designing efficient
strategies for these applications.

To model the action of forces on a membrane, computer
simulations are often used with the membrane treated as a
collection of particles that make up a mesh, and the movement
of the particles is governed by force balance equations [38,49–
51]. Another approach to model the action of forces adopts the
spirit of continuum mechanics by treating the membrane as a
smooth surface and incorporating the work done by the force
into the total energy of the membrane [52–54]. By finding
the shape that minimizes the total energy, the effect of forces
is taken into account [53,54]. In this paper, we choose the
second approach and study the membrane deformation under
the action of the active force generated by a self-propelled
particle. It is found that there exists a force threshold be-
yond which the membrane starts to wrap around the particle.
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FIG. 1. Schematic of the four different wrapping states: (a) non-
wrapping (NW), (b) small partial wrapping (SPW), (c) large partial
wrapping (LPW), and (d) full wrapping (FW). The axisymmetric
parametrization of the membrane shape is shown in (b). Here, we
take the wrapping angle α as an order parameter, and define an SPW
state if the wrapping degree is shallow, and an LPW state if the
wrapping degree is deep [57].

Further increasing the active force would trigger a first-order
transition from a small wrapping state to a large one. Depend-
ing on the particle size, the role of the force on the degree of
membrane wrapping can be either inhibited for a large particle
or promoted for a small particle. It is also found that there
exists a force barrier beyond which a tubular structure can be
formed on the membrane [53].

II. THEORETICAL MODELING

Our theoretical model concerns a rigid spherical particle
of radius R wrapped by an initially flat membrane. With the
work done by the active force included, the total energy of
the system is described by the Canham-Helfrich Hamiltonian
[8,55,56]

E tot =
∫

Amem

κ

2
(2H )2dA + σ�A −

∫
Aad

ω dA − f Z, (1)

where the first term is the bending energy of the membrane,
with bending rigidity κ and local mean curvature H . The
second term is the tension energy, with σ being the mem-
brane tension and �A being the excess area, including the
wrapped part and the free part of the membrane. The third
term represents the gain in adhesive energy, characterized by a
negative adhesive energy per unit area −ω, and the last therm
arises from the active force f acting on the particle. Here the
membrane is pushed by the particle to a height of Z , as shown
in Fig. 1.

For the spherical particle, the wrapping area generates
an adhesive energy of Ead = −ωAwrapping = −2πωR2(1 −
cosα). The bending energy of the wrapping part can be written
as E ad

bend = 4πκ (1 − cosα). Similarly, the contribution made
by the surface tension of the wrapping part can be given ex-
plicitly by E ad

ten = πσR2(1 − cosα)2, which is proportional to

the area difference between the contact area (red in Fig. 1) and
the area of its projection. The work done by the active particle
for the adhered part is calculated as E ad

f = − f R(1 − cosα).
Given these, the energy of the wrapping part reads

E tot
ad

κ
= π (1 − cosα)

[
R2

λ2
(1 − cosα) − 2

ωR2

σλ2
− 2R f

λ f0
+ 4

]
,

(2)

where λ = √
κ/σ and f0 = 2π

√
κσ feature a typical length

scale and a force scale, respectively.
For the free part of the membrane, its elastic energy comes

from the axisymmetrically curved membrane shape described
by r(s), z(s) and ψ (s) [see Fig. 1(b)], where s is the arc length
of the free membrane. The coordinates r(s) and z(s) depend
on ψ (s) through constraints ṙ = cosψ and ż = −sinψ , where
the dots denote a derivative with respect to the arc length. The
total energy of the free membrane, with the two principal cur-
vatures given by ψ̇ and (sinψ )/r, can be written as [8,56,58]

E tot
free

κ
= π

∫ S

0
dsL(ψ, ψ̇, r, ṙ, ż, η, ξ , f ), (3)

where L is a Lagrangian defined by

L = r

(
ψ̇ + sinψ

r

)2

+ 2
σ

κ
r(1 − cosψ ) − f

πκ
sinψ

+ η(ṙ − cosψ ) + ξ (ż + sinψ ). (4)

Here, η(s) and ξ (s) are Lagrangian multipliers to impose the
geometric constraints between r, z, and ψ . The term associ-
ated with the active force f is proportional to the membrane
height of the free part Zfree = ∫ L

0 sin ψds. A variation of the
energy functional Eq. (3) against the shape variables r(s),
z(s), and ψ (s) produces a set of shape equations, of which the
derivations can be found in the Appendix. Here, we take the
value of ξ as a constant which equals to zero due to the fact
that its first-order derivative is zero, as well as the variation of
the energy against z(0) is zero (see Appendix). With boundary
conditions at the contact point between the particle and the
membrane, ψ (0) = α and r(0) = R sin α, as well as at
the infinity ψ (∞) = 0, and z(∞) = 0, we numerically solve
the shape equations for various α and obtain the total energy
E tot (α) as a function of the wrapping angle α. Based on the
optimal wrapping angle α obtained via minimizing the total
energy, we identify 4 types of wrapping states: nonwrapping
(NW, α = 0), small partial wrapping (SPW), large partial
wrapping (LPW), and full wrapping (FW, α = π ), as shown in
Fig. 1. Such an optimal approach is equivalent to the boundary
condition ψ̇0 = 1/R − √

2ω/κ at the contact line of the free
membrane to the spherical surface proved by Ref. [8], where
ψ̇0 = dψ/ds |s=0 is the principal curvature of the free mem-
brane at the contact line along the meridian direction. It should
be noted that, in our theoretical model, we consider a special
case where the pressure difference between the inside and
outside of the plasma membrane, as well as the spontaneous
curvature of the membrane, is neglected.
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FIG. 2. Total energy profile as a function of wrapping angle with ω = 2σ at (a) fixed R/λ = 1 and different forces, and (b) fixed force
f / f0 = 0.55 and different R, respectively. Different wrapping states of the particle for various (c) forces and (d) particle sizes, corresponding
to (a) and (b), respectively.

III. RESULTS AND DISCUSSION

A. The effect of forces and particle radii on the wrapping states

We numerically solve the shape equations for different
wrapping angles α ranging from 0 to π . Figure 2(a) shows
the total energy profile Etot (α| f ) as a function of the wrapping
angle α for a particle size R = λ at different forces f . In the
absence of active force, there exists a stable NW state and a
metastable FW state, corresponding to the empty circle and
solid circle, respectively, in the black curve in Fig. 2(a). As f
increases, the stable NW state and the metastable FW state
shift to a stable SPW state (green and white triangle) and
a metastable LPW state (green and white diamond), respec-
tively, as shown by the green curve. Further increase of f
results in the disappearance of the LPW state, leaving LPW
as the only stable state (see the red and white triangle in the
red curve). If the active force f is larger than a certain value
fc1, a metastable LPW state appears again and the total energy
demonstrates two local minima (see the blue curve). If the
total energy of the SPW state becomes equal to that of the
LPW state at a certain active force fe (which is the critical
first-order transition force), with an energy barrier in between,
the two states coexist (see the orange curve). If fc1 < f < fe,
the SPW state is energetically more favorable (i.e., olive and
white triangle in the olive curve), while if fe < f < fc2, the
LPW is more favorable (see the purple curve). At active force
f � fc2, the SPW-to-LPW energy barrier and the SPW state
itself disappear (see the pink curve). A force beyond fc2 leads
to an LPW state and a tubular structure may form below the
particle with a tether radius expected to be smaller than the
particle [52].

Besides the active force, the particle size also has a big
impact on the wrapping states. Figure 2(b) shows the de-
pendence of wrapping states on particle size. For example,
at f / f0 = 0.55, only stable NW state exists for small par-
ticle size R/λ = 0.5 (see black curve). As the particle size
increases to R/λ = 0.75, the stable NW state shifts to sta-
ble SPW state (see red curve). A further increase of particle
size leads to a metastable LPW state (see the olive curve)
besides the stable SPW state. If the particle size goes beyond
a threshold value, the metastable LPW state becomes a stable
one (see blue curve). If the particle size continues to increase,
the metastable SPW state vanishes (see orange curve). Fig-
ures 2(c) and 2(d) show 3 typical wrapping states at different
combinations of active forces and particle sizes.

B. Hysteresis in the transition from SPW to LPW

To understand the wrapping behaviors in the regime fc1 �
f � fc2, it is of help to plot the optimum wrapping angle α

against active force f for different particle sizes, as shown in
Fig. 3(a). It is found that the optimum wrapping angle α shows
a sharp jump at the critical value fe, a characteristics of first-
order transition. Such a transition occurs only for a particle
with intermediate sizes with its critical value fe decreasing
monotonically with the particle size, as shown in Fig. 3(b).
Plotting the energy barrier �E/κ separating the SPW and
the LPW states against the critical force fe/ f0 [Fig. 3(c)] ex-
hibits a significantly decreasing behavior. In particular, when
fe ≈ f0 and given a typical value of κ = 20 kBT , the energy
barrier is only about a few kBT -s, a tiny fraction of the
membrane bending rigidity κ close to the thermal fluctuation
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FIG. 3. (a) The dependence of α on f for different particle sizes with ω = 2σ . (b) The dependence of the critical force fe on the particle
size. (c) The energy barrier �E/κ separating the SPW and the LPW states against the critical force fe. (d) A typical hysteresis associated with
α and f , with the active force triggering the transition.

energy of membranes. Therefore the first-order transition is
plausible. However, if the force is small, the energy barrier
of wrapping a particle is too large to be overcome by thermal
fluctuations alone. This is consistent with the conclusion of
previous studies [8,59]. It is also found that a hysteresis fea-
tures the transition process, as show in Fig. 3(d).

C. Phase diagram for force-induced wrapping behaviors

In order to systematically investigate how a wrapping state
depends on particle radius R and active force f , we construct
an f − R phase diagram, as shown in Fig. 4, where four
regions of different colors, corresponding to NW, SPW, LPW,
and FW states, can be identified. It is found that with increas-
ing active force, the wrapping degree is enhanced from NW
to SPW for a small particle, but is reduced from FW to LPW
for a large particle. Both of these transitions are continuous.
In particular, from NW to SPW, as the membrane remains
almost flat (ψ � 1), it is reasonable to approximate the shape
equations to the linear order of ψ . Under this approximation,
we can obtain an analytical expression for the boundary curve
separating NW from SPW, which agrees well with the numer-
ical results, as shown by the red dashed line in Fig. 4. The
detailed derivation can be found in the Appendix.

For particle sizes falling in an intermediate range, increas-
ing the active force leads to a discontinuous transition from
SPW to LPW, with a sharp jump of the optimum wrapping
angle across π/2. Hysteresis is found to feature the transition
with its spinodals shown as dotted (S1) and dash-dotted (S2)
curves, respectively. Here, it should be noted that LPW is a
novel phase that does not exist in the absence of force.

D. Force-height relationship for the membrane

To further demonstrate the effect of active force on the
membrane shape, we construct the f −Z curve for particles
of different radii, which can be obtained by two ways. We
first use the force f as the control parameter ( f -ensemble)
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FIG. 4. A two-dimensional wrapping phase diagram on the
( f / f0 − R/λ) plane characterizes the interrelated effects of active
force and particle size on the cellular uptake, where the ratio
between the adhesion and tension strength is given by ω/σ = 2. The
orange line indicates the discontinuous transition between SPW and
LPW. The dotted line and the dash-dotted line indicate the spinodals
accompanied with the transition. The black solid lines that separate
NW and SPW, and LPW and FW indicate continuous transitions. The
red dashed line indicates the analytical solutions for the boundary
between NW and SPW.
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FIG. 5. Active force vs. height curves for different particle sizes.
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to find the optimal wrapping angle α( f ) that minimizes the
total energy E tot (α| f ), and its corresponding height Z ( f ). In
Fig. 5, the resulting f − Z curves (solid lines) for different
particles sizes share similar features to the f − α curves in
Fig. 3: there exists an abrupt change of Z at a critical value
of active force, indicating that a wrapping transition occurs.
We then use the membrane height Z as the control parameter
(Z-ensemble) to find the solution that minimizes the total
energy E tot (α|Z ). The Lagrangian multiplier f to impose the
fixed membrane height Z at the optimal wrapping angle is
the corresponding force f (Z ). Note that the work done by
the force is not included in E tot (α|Z ) when calculating the
optimal wrapping angle. The resulting f − Z curves (point
lines) overlap with those in the f -ensemble considerably well
in the low membrane height regime. However, with the in-
crease of membrane height Z to the vicinity of the wrapping
transition point, the f − Z curves (point lines) deviate from
those in the f -ensemble (solid lines) through a sharp drop of
force, followed by a pickup until a force barrier is formed. The
force then smoothly decreases and levels off to a plateau, cor-
responding to the formation of a tubular structure, as shown
in Fig. 5(inset). The force barrier for larger particles is lower
than that for smaller particles. However, the plateau force
to maintain a tubular shape of membrane is independent of
the particle size, a conclusion that has also been reported by
Ref. [53]. Here, it should be noted that the occurrence of the
plateau is a result of no volume and area constraint in the
model [54].

IV. DISCUSSION

A. Competition among bending energy, adhesive energy
and the work done by the force

We have studied the shape transformations of a flat mem-
brane under the force generated by a self-propelled particle,
and shown that a novel phase of LPW appears as a result
of the force. The physics behind the transition between dif-
ferent wrapping states comes from the competition among
the elastic energy (consisting of bending energy and tension
energy), adhesive energy, and the work done by the active

force. The calculated total energy, elastics energy (including
bending energy and tension energy), adhesive energy, and the
work done by active force as a function of wrapping angle
are shown in Fig. 6, demonstrating that wrapping is governed
by a balance among these energy players. In the absence of
force, for a small particle, adhesion-induced wrapping cannot
compensate the high energy cost of bending, therefore a NW
state is the most stable one. However, the introduction of
the work done by the active force reduces the total energy,
which enables the membrane to deform and wrap around the
particle, even though the wrapping is partial and small due
to the little contribution made by adhesion. In contrast, for
a large particle (R � λ) at small active force, the FW state
is the most stable one because the penalty of elastic energy
is sufficiently balanced by adhesive energy. Increasing the
force tends to lift up the membrane, which in turn reduces
the wrapping degree and consequently leads to a LPW state.
Such a transition, according to our theoretical estimation, still
exists even at zero adhesive energy, which is consistent with
the intuition. In this paper, we choose the adhesion strength ω

such that in the absence of force, increasing the particle size
would lead to transition from the SPW state to the FW state.

B. Biological implications of the phase diagram

For a cell to engulf a self-propelled particle, a FW wrap-
ping state is necessary to enclose the particle inside a vesicle.
The phase diagram shown in Fig. 4 suggests that if the particle
activity is very strong, it would be difficult for the cell to
engulf a very large particle. Instead, the membrane would be
pushed into a tubular shape, which is consistent with exper-
imental observations when Listeria invades a cell. Once the
tube is formed, the force to elongate the tube is not necessarily
very large, which has been reported in the work of Derenyi
et al. [53].

V. CONCLUSION

In summary, based on the total energy functional, we
study the wrapping states of a self-propelled particle when
being pushed against a membrane, and find that the active
force generated by the particle is able to trigger a first-order
wrapping transition, accompanied with a hysteresis behavior.
Such a transition provides a deeper insight into the wrapping
behaviors induced by a self-propelled particle. The wrapping
states of the active particle are tunable by active force and
particle size, which can be characterized by a phase diagram in
the two-parameter space. We identify that the wrapping de-
gree can be increased (for small particle) or decreased (for
large particle) upon enhancing the active force of the particle.
A further push of the active particle would lead to the forma-
tion of a tubular structure on the cell membrane, a conclusion
consistent with previous studies. Our results provide a useful
guidance for engineering active particle-based therapeutics
and promote biomedical applications.
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APPENDIX A: DERIVATION OF THE MEMBRANE
SHAPE EQUATIONS

For axisymmetric surfaces, one can derive the Euler-
Lagrange equations from the energy functional Eq. (3) in the
main text by variational methods:

ψ̈ = − cosψ

r
ψ̇ + sinψcosψ

r2
+ σ

κ
sinψ − f

2πκr
cosψ

+ η

2r
sinψ + ξ

2r
cosψ, (A1)

η̇ = ψ̇2 − sin2ψ

r2
+ 2

σ

κ
(1 − cosψ ), (A2)

ξ̇ = 0, (A3)

ṙ = cosψ, (A4)

ż = −sinψ, (A5)

with corresponding boundary conditions r(0) = Rsinα,
ψ (0) = α, ψ (∞) = 0, and z(∞) = 0. Here the ordinary dif-
ferential equations along with the boundary conditions are
solved in Matlab using ’bvp4c’ solver.

Here, we consider a homogeneous membrane, so that the
Lagrangian L is explicitly independent of the arc length s. As
a result, the Hamiltonian H ≡ −L + ψ̇∂L/∂ψ̇ + ṙ∂L/∂ ṙ +
ż∂L/∂ ż is a conserved quantity [56] given by

H = r

(
ψ̇2 − sin2ψ

r2

)
− 2

σ

κ
r(1 − cosψ ) + f

πκ
sinψ

+ ηcosψ − ξsinψ. (A6)

By combining Eqs. (A1) and (A6), and letting ξ = 0, one can
derive the general shape equation

ψ̈r2 cos ψ + ψ̇r cos2 ψ + 1

2
ψ̇2r2 sin ψ − 1

2
(cos2 ψ + 1)

× sin ψ − σ

κ
r2 sin ψ + f r

2πκ
= 0.

(A7)

APPENDIX B: ANALYTICAL EXPRESSION FOR THE
CRITICAL CURVE THAT SEPARATES NW FROM SPW

For weakly deformed membrane (ψ � 1) and small value
of α, Eq. (A7) can be linearized as

ψ̈r2 + ψ̇r − (1 + λ−2r2)ψ = − f r

2πκ
. (B1)

Here the argument of the function ψ is the radial coordinate r,
which equals to the arclength s to the first order approximation
due to dr = ds cos ψ ≈ ds + O(ψ2). The general solution of
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FIG. 7. Definition of some geometric parameters.

this differential equation reads

ψ = f λ2

2πκr
+ AI1(r/λ) + BK1(r/λ), (B2)

where I1(x) and K1(x) are first-order modified Bessel func-
tions, and A and B are integration constants. According
to the boundary conditions ψ (r = R sin α) = α and ψ (r =
+∞) = 0, one can determine that A = 0 and B = [α −
f λ2/(2πκR sin α)]/K1(R sin α/λ). Therefore, in the limit of
α � 1 and ψ � 1, we can calculate the work done by the
active particle for the free part as

E free
f = − f

∫ Rb

Rα

ψdr

= − f λ( f λ2 − 2πκRα2)

2πκRαK1(Rα/λ)
[K0(Rb/λ) − K0(Rα/λ)]

+ f 2λ2

2πκ
ln

(
Rα

Rb

)
. (B3)

Here the lower limit for the integration variable r is
R sin α ≈ Rα as shown in the schematic Fig. 7. The up-
per limit Rb in practice is chosen to be a finite value to
avoid divergence of the integral Eq. (B3) when Rb → ∞, but
large enough (e.g. Rb/λ = 1000) so that further increasing Rb

brings little change to the result when calculating the second
derivative of the total energy, as discussed later in this sub-
section. The bending energy of the free part of the membrane
reads

E free
bend = πκ

∫ Rb

Rα

(
ψ̇ + ψ

r

)2

rdr

=
(

f λ2 − 2πκRα2

2
√

2πκRαλK1(Rα/λ)

)2[
R2

b(K2
0 (Rb/λ)

− K2
1 (Rb/λ)) + R2α2(K2

1 (Rα/λ) − K2
0 (Rα/λ))

]
,

(B4)

and the tension energy is given by

E free
tens =πσ

∫ Rb

Rα

rψ2dr = σ

8πκ2α2R2K2
1 (Rα/λ)

{
( f λ2 − 2πκRα2)2

[
R2

b

(
K2

1 (Rb/λ) − K2
0 (Rb/λ)

) + R2α2
(
K2

0 (Rα/λ)

− K2
1 (Rα/λ)

)] − 2λ(2πκRα2 − f λ2)K0(Rb/λ) ·
[

Rb(2πκRα2− f λ2)K1(Rb/λ)+2 f Rαλ2K1(Rα/λ)

]

+ 2Rα(4π2κ2R2α4λ − f 2λ5)K0(Rα/λ)K1(Rα/λ) + 2 f 2R2α2λ4K2
1 (Rα/λ)ln

Rb

Rα

}
. (B5)

Summing these three terms and the total energy for the adhesion part, and doing a Taylor expansion with respect to α to the
second order of α, leads to

Etot/κ = − π

(
f

f0

)2[Rb

λ
K0(Rb/λ)K1(Rb/λ) + ln(Rb/λ) + γ − ln2

]

+ π

2

(
f

f0

)2(R

λ

)2

α2

[(
lnα + Rb

λ
K0(Rb/λ)K1(Rb/λ) + 2

( f / f0)(R/λ)
+ ln(R/λ) + γ − ln2 − 1

2

)2

−
(

Rb

λ
K0(Rb/λ)K1(Rb/λ)

)2

− 2
ω/σ

( f / f0)2
+ 1

4

]
, (B6)

where γ is the Euler Gamma function.

d(Etot/κ )

dα
=π

(
f

f0

)2(R

λ

)2

α

[
2

Rb

λ
K0(Rb/λ)K1(Rb/λ)

(
lnα + 2

( f / f0)(R/λ)
+ ln(R/λ) + γ − ln2

)
− 2

ω/σ

( f / f0)2

+
(

2

( f / f0)(R/λ)
+ γ

)2

+
(

lnα + 4

( f / f0)(R/λ)
+ ln(R/λ) + 2γ − ln2

)(
lnα + ln(R/λ) − ln2

)]
, (B7)

The second order derivative of the total energy with respect to α
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is obtained as

d2(Etot/κ )

dα2
=π

(
f

f0

)2(R

λ

)2[(
2

( f / f0)(R/λ)
+ γ

)(
2

( f / f0)(R/λ)
+ γ + 2

)
− 2

ω/σ

( f / f0)2

+ 2
Rb

λ
K0(Rb/λ)K1(Rb/λ)

(
lnα + 2

( f / f0)(R/λ)
+ ln(R/λ) + γ + 1 − ln2

)

+
(

lnα + ln(R/λ) − ln2

)2

+ 2

(
lnα + ln(R/λ) − ln2

)(
2

( f / f0)(R/λ)
+ γ + 1

)]
. (B8)

By setting d2(Etot/κ )/dα2 = 0, we can get the analytical so-
lution corresponding to the critical transition line between
nonwrapping and small partial wrapping, which is shown by
the red dash line in Fig. 4 in the main text. A comparison

between the analytical results and the exact numerical re-
sults indicates that the approximate expression is remarkably
accurate.
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