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Temporal epistasis inference from more than 3 500 000 SARS-CoV-2 genomic sequences
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We use direct coupling analysis (DCA) to determine epistatic interactions between loci of variability of the
SARS-CoV-2 virus, segmenting genomes by month of sampling. We use full-length, high-quality genomes from
the GISAID repository up to October 2021 for a total of over 3 500 000 genomes. We find that DCA terms are
more stable over time than correlations but nevertheless change over time as mutations disappear from the global
population or reach fixation. Correlations are enriched for phylogenetic effects, and in particularly statistical
dependencies at short genomic distances, while DCA brings out links at longer genomic distance. We discuss
the validity of a DCA analysis under these conditions in terms of a transient auasilinkage equilibrium state. We
identify putative epistatic interaction mutations involving loci in spike.
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I. INTRODUCTION

The global pandemic of the disease COVID-19 caused by
coronavirus SARS-CoV-2 has led to more than 617 million
confirmed cases and more than 6.5 million deaths [1]. Efforts
to counter the epidemic have include extensive use of non-
pharmaceutical interventions [2-6] and the development of
more than 10 widely used vaccines [1,7,8]. Although effective
against severe disease manifestations, these have not stopped
the ongoing spread of COVID-19 which has likely become an
endemic disease. While drugs such as dexamethasone which
lower the fatality rate are now also in wide use, effective
antiviral drugs which would open an another frontline in the
pandemic are so far lacking [9,10].

Both vaccines and antiviral drugs are based on an under-
standing of the biology of the pathogen and its strengths and
potential weaknesses [11-13]. The COVID pandemic is the
first to have occurred after massive DNA sequencing became
a commodity service. The number of SARS-CoV-2 genomes
publicly available in data repositories is many orders of mag-
nitude larger than ever seen in the past. While disparities in
sampling and other sources of bias are serious issues [14],
such large amounts of data should nevertheless be marshaled
in support of the common good to the fullest extent possible.
In this work we have relied on a full-length high-quality
SARS-CoV-2 genome sequences from the GISAID repository
[15] with a sampling date to October 2021, in all more than
three and half million viral genomes. These were the virtually
exact genetic blueprints of actual viruses infecting actual per-
sons in more than 1% of the confirmed cases worldwide up to
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the cutoff date. That such quasi-real-time monitoring is at all
possible is a staggering achievement. We are likely only at the
beginning of the process of understanding what information
that can be unlocked from such vast yet extremely rich and
precise data [16].

Among the most remarkable features of such datasets is
the possibility to observe in real time the evolutionary process
acting at a population level. In classical population genetics,
evolution is driven by four main forces in many aspects anal-
ogous to mechanisms of statistical physics [17,18]. Mutation
is the change of a single genome due to a chance event and
can be assimilated to thermal noise. Natural selection is the
propensity of more fit individuals to have more offspring
and acts as an energy term. Recombination (sex) leads to
offspring shared between two individuals and acts similarly
to pairwise collisions: The earlier genomes are substituted
by partly random new combinations and the distribution over
genomes relaxes. All the above can be understood on the level
of expected (mean) changes, which are exact descriptions in
an infinite population. Genetic drift describes the random fluc-
tuations in the numbers of gene variants in a finite population.

The focus on this work is on epistasis, synergistic, or
antagonistic contributions to fitness from allele variations at
two or more loci. Long-standing theoretical arguments predict
that the distribution of genotypes in a population directly
reflect such multiloci fitness terms when recombination is
the dominant force of evolution [19-21]. Coronaviruses in
general exhibit recombination due to their mode of RNA
replication [22-25], and recombination has been observed be-
tween different strains of SARS-CoV-2 co-infecting the same
human host [26-30]. Partly conflicting reports have appeared
in the literature as to the impact of recombination on the
total SARS-CoV-2 population [31,32]. In this context, recent
theoretical advances have shown similar correspondences also
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when mutation is the dominant force of evolution, provided
some recombination is present [33]. If both mutation and
recombination are slower (weaker) processes than selection,
then there is, on the other hand, no simple relation between
epistatic contributions to fitness and variability in the popula-
tion [18,34,35]. The approach taken here then does not apply.
In this work we assume that this scenario does not pertain.

In an earlier contribution we inferred epistatic interactions
from about 50 000 SARS-CoV-2 genome sequences deposited
in GISAID until August 2020 [36]. A slightly later contri-
bution from another group used about 130,000 sequences
available until October 19, 2020, and reached largely con-
sistent results [37]. In both analyses the mechanism behind
linkage disequilibrium (LD) was separated as due to epistasis
(the objective of this study) and LD due to phylogeny (a
confounder). In Ref. [36] interactions imputed to phylogeny
were separated out by a randomized null model procedure
[38]. The authors of Ref. [37], on the other hand, leveraged
GISAID metadata (sample geographic position) and assign-
ment of samples to clades. In this work we used almost two
orders of magnitude more data than in those earlier studies.
This necessitated a different approach, as will be described
below. Additionally, we stratified genome sequences as to
sampling date. We collected all sequences sampled in the
same month since the beginning of the pandemic and analyzed
epistasis month by month. In contrast to the earlier analysis
we find in the new larger data several mutations in spike that
appear epistatically linked to other mutations in spike and
outside spike. Among the highest-ranked such predictions we
single out S:S112L (21897), recently associated to vaccine
breakthrough infections [39].

The paper is organized as follows. In Sec. II we present
the data used and how we prepared it for further analysis.
In Sec. III we present the theoretical background and the
key tools for the direct coupling analysis (DCA) analysis. In
Sec. IV we present the results of the study and in Sec. V
we discuss implications and future work. Technical details
and supplementary data are presented in five Appendices
(A-E). Signs of epistasis in large-scale SARS-CoV-2 data
were also investigated on smaller datasets and by other meth-
ods in Refs. [40,41] and very recently in data from a wider
family of coronaviruses in Ref. [42]. We comment on this
latter important contribution under Discussion.

II. MATERIALS
A. Data collection

The input data are the genomic sequences of SARS-CoV-2
(high quality and full lengths) as stored in the GISAID public
repository [15]. Each of these is a sequence of ~30 000 base
pairs (bps), representing a nucleotide (A,C, G, T), an unknown
nucleotide N, or one of a small number of other [UPAC sym-
bols KYF, etc., which we will refer to as “minorities”; these
represent different sets of the aforementioned nucleotides.
Any site or position in the genomic sequence is called a locus.

Sequences were sorted by collection date—the typical de-
lay with respect to their appearance on GISAID being >2
weeks [43]—and grouped on a monthly basis until the end
of October 2021. Considering the small number of sequences

available for the first months after the outbreak of the pan-
demic in the 2020, data until the end of March 2020 are
grouped together as one dataset. In total, we hence have 20
datasets and 3532252 sequences. The number of collected
sequences Ngqs per month is shown in Fig. 6: It increases
toward 2021, slightly decreases in the first half of 2021, then
again greatly increases from July 2021, and finally drops down
soon afterwards in September and October 2021.

B. Multiple-sequence alignment

Multiple sequence alignments (MSA) were constructed
using the online tool MAFFT [44,45]. The set of sequences
pertaining to 1 month are aligned to the reference sequence
“Wuhan-Hu-1,” GenBank accession number NC-045512 [46].
We note that this is a different procedure compared to what
we did in Ref. [36], where a prealigned MSA was used to
lighten the computational burden. The resulting MSAs are
given as Supplementary Information (SI) Dataset S2 and are
also available on the Github repository [47]. Each MSA is a
matrix o = {of'[i=1,...,L,n=1, ..., Nygs}, Where Ngeqs
represents the number of sequences for a given MSA. This
number varies from month to month as shown in Fig. 6.
The L columns of the MSA stand for the genomic loci
or sites [48,49]. The total number of loci of the reference
sequence is L = 29 903; other sequences have somewhat dif-
fering lengths. In the MSA gap, sequences are inserted in
each sequence to align the sequences. The length of sequences
before alignment hence differs between the different sets and
is different in distinct months. However, this length variation
is modest in this dataset. The sites between 256 and 29674
in the reference sequence are referred to as coding region
since they code for the protein-coding genes in the SARS-
CoV-2 genome. Inside this coding region there are several
open reading frames (ORFs) that are translated together into
one or several proteins. The longest ORF (ORF1) comprises
more than half of the SARS-CoV-2 genome and is post-
translationally divided into 12 proteins called nonstructural
proteins from nspl to nsp12. The other SARS-CoV-2 proteins
are mostly structural and are translated each one from its own
ORF. Some of them are named from their structural position
such as spike (S), membrane (M), and envelope (E), and some
of them are named after their ORF such as ORF3a and ORFS.
The two parts of the SARS-CoV-2 genome which are not in
the coding region are in the noncoding region. Each entry o/
of the MSA o is one of the base pairs mentioned in Sec. II A
or a new gap symbol “~” introduced for a nucleotide deletion
or insertion in the alignment process.

C. MSA filtering

For the MSA filtering, we follow the methods already
employed in Ref. [36]. As a first step, ambiguous minorities
like KYF, etc., are converted into N, so that there are six states
(-,N,A,C,G,T), which we represent as 0, 1, 2, 3, 4, and 5,
respectively. Subsequently, all the 20 MSAs are filtered. Each
locus (column) in each of the 20 MSA is discarded if one of
the following two condition is matched: (1) the frequency of
a certain nucleotide along this locus is greater than a given
value p (lack of variability). A locus is variable if at least
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FIG. 1. GWYV, the number of loci L, surviving the filtering pro-
cess normalized by N4 for each MSA with threshold p = 0.98
until the end of October 2021. At the beginning of the pandemic,
GWYV was increasing; however, with the rapidly increasing number
of available sequences on GISAID, the normalized L later decreased
over months.

a fraction 1 — p carries other alleles than the major (most
frequent) one; (2) the sum of the frequencies of A, C, G,
T at this position is less than 0.2 (nonsignificant). In Fig. 1
the number of survived loci Ly, normalized by Nyeqs, for each
MSA is shown for the threshold p = 0.98. Similar results with
p = 0.9 and p = 0.999 are presented in Fig. 7.

III. METHODS
A. Static quasi-linkage-equilibrium phase

The quasilinkage-equilibrium (QLE) state of the distribu-
tion of genotypes in a population was found by M. Kimura
in a study of the steady-state distribution over two biallelic
loci evolving under selection, mutation, and recombination
in presence of both additive and epistatic contributions to
fitness [19]. In that example the genotypes were hence AB,
aB, Ab, and bb where A (a) and B (b) are the major (minor)
alleles at respectively the first and second locus. A global
QLE state over many loci and its properties was reviewed and
investigated in Ref. [20] for the case of all loci biallelic. The
generalization to the case where some loci are multiallelic
(more than two alleles per locus) can be found in Ref. [50].
The starting point is to model the evolutionary process as a
high-dimensional differential equation,

P(0) = Feu(0), (1

where P is a probability distribution in the space of all possi-
ble genomic sequences o = {a,'}l.L:1 with o; = —1, 1 and %,
encodes the evolutionary dynamics. This model is meant to
capture all effects that act on each individual (genome) sep-
arately and those that act on pairs of genomes. Effects of the
first kind are mutations, which on a biallelic genome are flip
operations, and natural selection. The action of selection is
to enhance the likelihood of survival of more fit individuals.
Biological fitness is a complex and multifaceted concept. In
the present context we are only concerned with fitness that
can be encoded in a fitness function which furthermore consist

only of single-locus and pairwise terms:

F(o)=Fy+ Y F(o)+ Y _ Fijoi,0)). )
i ij

In biological terminology the F; are called additive contribu-
tions to fitness and the F;; epistatic contributions to fitness,
or simply epistasis. The third mechanism underlying QLE is
recombination. This is the biological mechanism whereby two
genomes combine to give a third, i.e., sex. In (1) they are
represented by a term of the right-hand side which depends
on the probability distribution at two different genomes P(a)
and P(0,). From a physical point of view, recombination is
analogous to collision, and the term in (1) is analogous to the
collsion operator in the Boltzmann equation.

A static QLE state is then a stationary solution of (1).
The covariance of alleles at each pair of loci is a small but
nonzero quantity. In presence of pairwise epistasis F;; # 0
and sufficiently high rate of recombination, the probability
distribution P(o') reaches a steady-state distribution taking the
Gibbs-Boltzmann form:

1
P(oy,...,0.) = Ze*”“” ----- o), 3)

with
H(oy,...,01) = E hi(o;) + E Jij(oy, 0}), 4)
i i

where for completely biallelic genomes %;(0;) = h; - 0; and
Jij(0i, 0;) = Jij - 0i0;. The parameters h; and J;; describe the
one-time stationary distribution of genomes in a population.
As we will infer these parameters from data by the DCA (to be
described below), we will refer to in particular the J;; as DCA
terms. As parameters of the probability distribution depend on
the parameters of the dynamics (1), the fixed point of which
(in QLE) is of the form (3). In the (theoretically) simplest
setting of recombination stronger than mutations stronger than
selection, the relation between J;; and F;; does not involve
mutations and has the form J;;(0;, o) = ml—/F, (o1, 0j), where
r is an overall recombination rate and c;; is a measure of
genomic distance between loci i and j [20]. This formula has
been verified in silico [21] (in simulations). Generalizations in
other parameter ranges have been derived and have also been
verified in silico [33]. It should be noted that distributions
of the form (3) are not the only stationary solutions of (1).
In other parameter ranges qualitatively different distributions
appear [34] and also nonstationary (but statistically static)
solutions [35].

A nonzero correlation between alleles at different loci
is called LD. In a probability distribution (3), LD can be
identified with thermal spin-spin correlations (0;0;)x. When
this holds the relation between correlations and epistasis is
nevertheless indirect as it goes through the relation between
correlations and parameters J;;(0;, 0;) in probability distri-
butions of this type; a problem variously called “parameter
inference in models in exponential families” [51], “direct cou-
pling analysis™ [52], or “inverse Ising problem” [53,54]. We
note that LD as a concept is not limited to QLE; also other
distributions than (3) can have nonzero correlations.

Genetic drift is finally the conventional term designating
randomness in a dynamics of the type (1). In a formulation
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in terms of allele frequencies in a population, the effects of
mutations, selection, and recombination can be given in terms
of their expected (mean) values. Genetic drift is typically in-
versely proportional to population size (V). In the limit when
N tends to infinity it hence vanishes.

B. Transient QLE phase

A QLE state can prevail over a finite time in the sense that
correlations and DCA terms J;; in (4) inferred from a temporal
snapshot of the population remain stable, while single-locus
frequencies change. The mechanism behind such an effect is
time-constant epistatic fitness parameters (F;;) coexisting with
genetic drift and/or time-changing additive fitness parameters
(F;). One scenario when this occurs is two weakly advan-
tageous mutations at two different sites appear at about the
same time in a population and then grow in frequency toward
fixation. At the very beginning there is only one mutation
present, and there is no variability on which epistatic effects
can act. When both mutations are present but one is still at
low prevalence, both correlation and DCA analysis will give
nonzero but noisy output due to small sample size. In the
other end, toward the end when one (or both) mutation are
close to fixation both correlation and DCA analysis will give
nonzero but noisy output due to small sample size. At the very
end when there is only one mutation left, there is again no
variability on which epistatic effects to act and correlation or
DCA analysis applied to the data will again yield nothing.

In the intermediate region the equations satisfied by single-
locus frequencies and two-locus joint frequencies in a finite
population were derived in Ref. [20] [Eqgs. (36) and (37)]
starting from the same equation (1) as above, for an Ising
genome model (biallelic genome) and under a diffusion ap-
proximation. This approximation is valid when both allele
frequencies at both loci are significant, i.e., none is close to
zero or to one (fixation). The equations take the form

xi(t) = (1 —X,-Z)E'-FZXUF_;'—zliXi-FQ, ()
J#

Xij (@) = [(1 = x7)(1 = x})Fyj — reij]nij + &g (6)
where x; = (0;) and x;; = {(0;0;) — x;x; are signed frequen-
cies and correlations in physical notation, F; and F;; are
additive and epistatic fitness parameters, (& is mutation rate,
r overall recombi.nation. rate, ¢;; is a measure of closeness of
loci i and j, and ¢&; and &;; genetic drift noise terms.

It is readily seen that (5) and (6) are qualitatively different.
The first equation describes a process driven by noise and
(11— Xl-z)F,- — 2ux;, modulated, if there are nonzero correla-
tions in the population, by 3 ; xi;F;. Depending on the sign
of the net drift, it will hence tend to drive y; toward +1
(fixation or elimination of the mutation). The second equation,
on the other hand, has vanishing drift whenever the expression
in the bracket vanishes. It can be checked that with the small
field assumptions used in Ref. [20], and stated in terms of the
(in principle time-dependent) DCA terms, this vanishing of
the bracket corresponds to the above noted (time-stationary)
relation J;; = F;;/rc;; and that this is a stable equilibrium
[Ref. [20], Eq. (25)]. There can thus be a transient QLE
phase where single-locus frequencies may go up in a fluctu-
ating manner for a fairly long time, while J;; and two-mode

frequencies remain steady because governed by a relaxation
dynamics. An extension of the above to the case where the
fastest process is mutations and not recombination can be
found in Ref. [33].

C. Correlation analysis and LD

Correlations are a measure of LD, i.e., of nonrandom
association between different alleles at different loci. For
multiallele distributions, statistical covariance matrices are
defined as

Cij(a, b) = (10,,alaj,b> - (10;,11)(10,»,17)’ (7)

where 1, , = 1 if 0; = a and zero otherwise and (-) indicates
the average over g different alleles per locus. As discussed
above, in our representation of the GISAID data, g = 6. We
compute overall correlation between site i and j as Frobenius
norms of the statistical covariance matrices (summation over
the inner indices a, b),

®)

D. Pseudolikelihood maximization inference
for epistasis between loci

Correlations differ from statistical dependency encoded in
the J;; through (3) and (4) because the distribution may not be
of the form (3) and because when it is, two loci i and j may
be correlated even if their direct interaction J;; is zero. This
is possible if they both interact with a third locus k. Many
techniques have been developed to infer the direct couplings
in Eq. (3), see Ref. [54] and references therein. In this work
we have used the pseudolikelihood maximization (plmDCA)
method [50,53,55-58] to estimate the parameters J;;. The
basic idea of plmDCA is to substitute maximum-likelihood
inference of parameters from the joint distribution (3) by the
simpler one of estimating which parameters best match the
conditional probabilities

exp [hi(Ui) + Zj;éi Jij(oi, Gj)]
S exp [hi(q) + X2 Jij(q, 0)]

Here q = {0, 1, 2, 3, 4, 5} are the possible states of o; in the
dataset and o\; denotes all the loci except the locus i. Assum-
ing independent samples, the functions to optimize (one for
each locus) are

PLi(hi, {Jij} )

- 1 o L (s ()
© Nacgs ijhl[ai ]+N ZZJU(U[ 0 )

seqs i

P(oiloy) = ©)]

1
- ZlogZexp |:hi(Q) + le’j(t], U;S)):|, (10)
seqs

s q J#i

where s labels the sequences (samples) from 1 t0 Ngeqs. We
use the asymmetric version of plmDCA [58] as implemented
in Ref. [59] with [, regularization with penalty parameter A =
0.1. The inferred DCA terms between loci i and j are scored
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by the Frobenius norm over the inner indices a, b as in (8) and
as implemented in Ref. [59].

Inference of epistatic interactions as in (2) would then re-
quire knowledge of additional model parameters, in particular
the overall recombination rate r [20,21,33,50]. This has not
been attempted here; we have used DCA terms as proxies for
epistatic fitness terms.

E. Removal of phylogenetic confounders

Statistical dependency between allele distributions at two
loci can arise both from epistatic contributions in QLE, and
from inheritance, for example when two unrelated mutations
appeared by chance at the same time in a very fit individ-
ual which spread in the same geographic area (phylogenetic
effect). The global distribution of genotypes then does not
have to be of the Boltzmann form (3) but can instead reflect
mixtures of clones [34].

All data from which one wishes to infer epistasis from
LD to some extent contain such a combination of the in-
trinsically epistatic effects and of phylogeny. In particular,
when recombination acts approximately in the same manner
along a genome, LD due to phylogeny dominates between
pairs of loci that are close, while LD due to epistasis can
dominate between pairs of loci that are distant. In earlier
studies on whole-genome data from bacterial pathogens, a
distance cutoff was therefore employed [60,61] as well as in
previous work on SARS-CoV-2 data [36,37]. The effect of
phylogenetic correlations in DCA-based contact prediction in
proteins was recently investigated in Ref. [38].

In the current work we have leveraged the well-
documented growth of large clones in the global SARS-CoV-2
population. In particular, we have ascribed large scores J;;
between pairs of loci to phylogenetic effect when i or j is
included in one of three variants of concern (VoC) “alpha”
[62], “beta” [63,64], or “delta” [65]. The corresponding tables
of mutations and time evolution of mutation frequencies were
recently reported by us in Ref. [66].

F. Fraction of residual couplings over rank

Let us define the fraction of residual couplings R over n
as follows. We start by ranking all possible couplings by their
score C;; or J;; computed as in Eq. (8). Within the nth highest
ranked couplings, a number k of them is removed when it
is likely not to be due to an underlying epistatic effect. We
include as possible confounders to be removed when at least
one of the terminals, i.e., i or j in C;; and J;; is located in
noncoding regions; the loci lie too close (|i — j| < 5 bps); and
at least one of the terminals, i or j of C;; or J;;, lie in one of
the VoCs.

The fraction of residual couplings is then defined as

n—=k

R(n) = (1)
We compute this quantity for J;;s and Cj;s, respectively. As
shown in Fig. 2, the curve for residual couplings defined by
pImDCA lies well above the curve defined by correlations for
small values of rank n. This strongly suggests that the leading
couplings J;; are more likely to capture epistatic effects than
leading correlations C;;, as a higher number of the latter is

1 1

— plmDCA .. (a)
0.8}---- correlation” 0.8
—~ 0.6 0.6
~ 04 0.4
0.2 e 0.2

0 i 2020-10

0
10 102 10* 109 10° 102 10* 10

maximum rank n

FIG. 2. Examples of fraction of retained couplings R(n) Eq. (11)
as function of maximum rank considered n for October 2020 (a) and
2021 (b). Blue solid lines show pImDCA J;;; red dashed lines
show correlations C;;. Couplings with i, j satisfying the conditions
mentioned in Sec. IIIF have been removed. Panel (a) shows one
exceptional case for the highest 5 ranked plmDCA scores and the
highest 20 ranked correlations have been removed. In this case
the distinction between correlation analysis and DCA is not of a
qualitative nature. Panel (b) shows the typical case where none of
the highest 4 ranked plmDCA scores have been removed while the
highest 30 ranked correlations have all been removed. In this case the
two curves are qualitatively different.

removed according to the above criteria for the same n. We
will comment on this in Sec. IV B.

IV. RESULTS

A. The genomewide variability of SARS-CoV-2 changes in time

We here define the genomewide variability (GWV) for a
genome as the number of loci that shows variability, i.e., the
number of loci that survive filtering Ly, normalized by Ngeqs
for each MSA. The threshold p used for filtering subjects to
(I = p) - Nsegs > 1, indicates that the expected number of all
minor alleles is greater than 1. We define GWV as

Ly
GWYV = , (12)
seqs
Figure 1 shows GWYV for threshold p = 0.98. The GWV
increased in the beginning of the pandemic until May of 2020
and then decreased with light fluctuations. In the same time
period the number of sequences increased 10-fold (Fig. 6),
thus the GWV per month has decreased. Similar results hold
for other choices of p equals 90% and 99.9% are discussed
further in Appendix B.

B. Leading correlations can mostly be explained by the growth
of focused SARS-CoV-2 VoCs

A simple way to visualize if ranked effects are due to
one out of several factors is to plot the contribution of the
factor of interest as function of rank. A standard procedure in
DCA analysis of tables of homologous protein sequences is
indeed top-k plots illustrating the fraction of k highest rank
predictions which correspond to spatially proximate residue
pairs. For instance, if we want to assess the effect of the rise
of variants in the computed couplings, then we can proceed
as described in Sec. IIIF by ranking them by magnitude,
taking out those related to the variants and plotting R(n) as in
Eq. (11). This is done in Fig. 2 for one representative and one
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FIG. 3. Main panel: Number of loci located in the VoCs from
top 2000 J;; (blue squares) and C;; (orange dots) respectively over
each month. Links with i, j satisfying the first and second removal
conditions are discarded. Links with one or both terminals in VoCs
are, however, retained. Correlations provide much more VoC loci
than DCAs during December 2020 to July 2021. This is the time
period when one or more of the VoC dominated the set of genomes
on GISAID on a monthly basis. Insert: The probability of distance
D = |i — j|in top 2000 C;; and J;; for October 2020 and March 2021,
respectively. Here links that meet any of the removal conditions are
removed. Correlations are enriched in links with short D both in and
out of the time period dominated by the VoCs.

exceptional month (in fact, the only exceptional month, see
Fig. 8 in Appendix C). In both plots the fractions of highest
ranked correlations C;; and plmDCA terms J;; are presented,
with part of C;; or J;; being removed when i or j matches
the removal conditions listed in Sec. III F. The representative
month [October 2021, Fig. 2(b)] shows that the leading corre-
lations can mostly be explained by variations in VoCs alpha,
beta, and delta. For the exceptional month [October 2020,
Fig. 2(a)] the separation between correlations and DCA terms
is not clear.

The essence of the argument is that for the same #n, leading
DCA terms contain much fewer pairs where one or both
terminals appear in the VoCs. Lists of leading DCA terms
are hence compared to correlations, enriched for epistatic
interactions. Analogous (and similar) results are shown for the
other months in Appendix C.

To check the other possible confounding effects, the num-
ber of loci that appears in the focused VoCs are counted in the
top 2000 C;; and J;; over each month, as presented in the main
panel of Fig. 3. It shows that the leading correlations contain-
ing more VoC loci comparing with DCAs during the prevalent
period of the focused VoCs. To check the possible epistatical
or phylogenetic effect, the distance distribution P(D) between
locus i and j are computed. Two examples of October 2020
(outside the peak) and March 2021 (in the peak region) are
presented in the inner panels of Fig. 3, respectively. In both
cases, correlations tend to single out links between closely
spaced loci. This explains the big jump between C;; and J;;
during the end of 2020 up to the middle of 2021.

C. Inferred epistasis has both invariant and variant aspects

One novelty of the analysis presented in this work is
that the dataset is much larger than in previous contributions
[36,37]. For this reason we grouped data by month of sam-
pling time. As we will see this leads to new effects. A second
novelty is that phylogenetic confounders have been eliminated
by excluding inferred links where one or both loci appear in
the VoCs of SARS-CoV-2.

Figure 4 displays the rank in logarithm scale of leading
residual epistatic interactions J;; (solid lines) and correlations
C;; (dashed lines) with same i and j as a function of sampling
time. A subset of top 200 J;; with is or js excluded or included
in the focused VoCs are provided in Figs. 4(a) and 4(b) respec-
tively. Their counterpart C;; are shown in dashed lines. One
feature that stands out on these two subgraph is that as long
as they appear in the data, both types of ranks appear fairly
stable, but the ranks of correlations are far lower. The ranks
of the DCA terms fluctuate (roughly) in the interval 1-20
while those of the corresponding correlations vary between
10000 and 200 000. Similarly, a subset of top 2000 C;; and
their corresponding J;; with i or j located out of or inside the
focused VoCs are displayed in Figs. 4(c) and 4(d) respectively.
Here the J;;s last longer than the corresponding C;;s over time.

Furthermore Fig. 4 shows that none of the interactions
appear for the entire period but only in some time window.
Outside this window, the frequency of the major allele of one
or both loci in a pair rises above the threshold p and is hence
discarded because of lack of variability. As a consequence, the
pair hence disappears from the analysis. We can therefore at
best have a transient QLE phase, as defined in Sec. III B.

D. A subset of mutations of variant of concern omicron
has nontrivial dynamics

We here also find it of interest to describe the dynamics
of the individual mutations listed for the more recent VoC
omicron [67]. We note that this variant, dominant in the
worldwide population today, rose to prominence after the time
interval on which the present study is based.

In earlier work we showed that a subset of the mutations in
alpha, beta, and delta have different dynamics than would be
expected from a clone growing de novo [66]. In Fig. 5 we show
that the same holds for omicron. The red-dot trajectory shows
the frequency of a nucleotide substitution at position 21846,
which corresponds to S:T95I in spike, this being listed as one
of the defining mutations of omicron [67]. The formula S:T951
is to be read as a point mutation at the locus 21846 which
lies in the codon coding for the 95th amino acid of the spike
protein (S). The mutation changes the amino acid from that
of the reference sequence T (threonine) to that of the mutant
I (isoleucine). This mutation in the N-terminal domain of S1
subunit of the spike protein rose quickly in frequency from
May 21 to June 21 in the GISAID database and has since been
found in about half of the samples. Its prevalence therefore
cannot be explained by the rise of omicron, which appeared
later. Indeed, T951 was among the most common in the variant
B.1.526 (Iota), which spread mainly in USA in late 2020 and
early 2021 [68], and has been observed in strains classified as
VoC delta circulating in France [69], the UK, and Germany
[70]. It is therefore an example of a mutation which though
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FIG. 4. Ranks for a subset of residual epistatic interactions per
month inferred by plmDCA (solid) J;; and correlations (dashed)
C;j. The pairs with i or j matching condition 1 and 2 described
in Sec. IITF have been discarded. Panels (a) and (b) display the
ranks of a subset of top 200 J;; and their counterparts C;; with i, j
excluded and included in the focused VoCs, respectively. J;; extend
more or less the same period with their counterparts but with much
higher rank. Similarly, the ranks of a subset of top 2000 C;; and the
corresponding J;; with i or j located out of or inside the focused VoCs
are presented in (c) and (d), respectively. J;; extend much longer than
C;; over time.The data for this figure is given in Datasets 2 and 3 in
Appendix E.
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FIG. 5. Wild-type nucleotide frequencies of the loci of the omi-
cron variant with heavy fluctuations listed in Ref. [67]. The wild
type is defined here as reference sequence “Wuhan-Hu-1,” GISAID
access ID: EPI_ISL_402125; nucleotides are numbered based on
their locus in the latter. The growth of the omicron variant happens
later than the time-window displayed. For most of the omicron loci
the corresponding wild-type frequency remains close to 1 (thin lines
in figure). Loci showing large fluctuations are plotted with bold
lines. 23403 is the spike mutation D614G which rose early in the
pandemic while 23063 and 23604 are S:N501Y and S:P681H, which
appeared in alpha. 22995 is S:T478K which appeared in delta. The
remaining mutations are 21846 (dashed marked red line) discussed in
text; 28881 (N:R203M), which is listed in delta but follows another
dynamic [66]; 10029, which follows a trajectory characteristic of
delta without being listed for it; and 28883, which does the same
for alpha.

classified as a defining mutation of one strain of the virus, in
fact is more widely spread, and can be found also in other
strains. The other curves in Fig. 5 with a dynamics different
from omicron can mostly be explained as also belonging to
VoCs alpha and delta.

E. DCA detects epistatic interactions between loci in spike
and between spike and other genes

Let us focus here on the couplings involving sites on the
SARS-CoV-2 that code for the spike protein, crucial for the
virus to bind to target cells. In an earlier study using data up
to August 2020, only one large plImDCA score involving a
locus in spike was detected, at genomic position 23403 [36]
(Table I). This G—A substitution was deemed to be due to
a phylogenetic effect as detected by a randomization proce-
dure [36] (Table II) and therefore not retained as a predicted
epistatic link in that study. In fact, this substitution corre-
sponds to the well-known mutation spike D614G, which grew
in frequency in the early phase of the pandemic.

In the present (larger) month-by-month data we find sev-
eral persistent plmDCA couplings with terminals in spike.
Some of them are related to the variants alpha, beta, delta,
and also the more recent omicron [67] (in the sense above),
and some others are not. Table I gives for the months August—
October 2021 the couplings whose both terminals are in a
spike coding region while Table II lists those for which only
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TABLE I. Largest DCA terms with both terminals in the spike coding region, August—October 2021. The top 200 couplings computed as
plmDCA scores are considered. For each of them in the 3 months displayed, there is the indication of the rank, the two loci involved, and the
corresponding amino acid (AA) mutations. Light gray indicates that this mutation is found in the delta variant. Dark gray indicates that this
mutation is found in the omicron variant. Couplings with one or both terminals in light gray are attributed to a phylogenetic effect. The single
pair with one terminal in dark gray is not attributed to a phylogenetic effect, the growth of omicron being later than October 2021. Omicron

mutations used here are taken from Ref. [67], and deletions are not considered.

August 2021

September 2021

October 2021

Rank Locus1 AA-m. Locus2 AA-m. Rank Locus 1

AA-m. Locus2 AA-m.

Rank Locus1 AA-m. Locus2 AA-m.

7 23284 D574D 25339 DI1259D 7 23284 D574D 25339 DI1259D 9 23284 D574D 25339 DI1259D
16 21987 G142D @ 24410 D950ON 15 21987 Gl142D 24410 DO950N 11 21995 TI145H 22227  A222V
67 22093 MI1771 22104 G181V 45 21995 TI145H 22227 A222V 15 21987 G142D @ 24410 D950N
70 22917 R452L @ 22995  K478T 135 - T9sI 24208 18821
71 22082 P174S 22093 M1771
74 22081 QI173H 22093 M1771
190 22082 P174S 22104 G181V
195 22081 QI73H 22104 G181V

one of the extrema is in a spike coding region; corresponding
data for all months is mentioned in Appendix E, Dataset 4.
The largest inferred spike-spike interaction in all 3 months,
not related to any mutation appearing in alpha, beta, delta or
omicron, is between two synonymous mutations, D574D and
D1259D. Most of the other pairs in Table I have one terminal
listed in delta, are somewhat close along the genome (within
35 bp), or involve a synonymous mutation. This includes the

pair (21846,24208) appearing in October, where the first locus
is the mutation S:T951, part of the definition of omicron and
discussed above, while the second locus is S:18821.

The first prediction appearing in Table II, in all 3 months, is
the pair (17236,24208) where the first locus is in gene nsp13
and the second is a synonymous mutation in spike. This is in
fact the largest effect detected by the DCA analysis in all 3
months (rank 1 in Table II).

TABLE II. Largest DCA terms with only one terminal in spike coding region, August—October 2021. Top 200 couplings computed as
plmDCA scores are considered. For each of them in the 3 months displayed, there is the indication of the rank, the locus in the spike coding
region and corresponding amino acid (AA) mutation, the locus in the partner coding region, and corresponding amino acid (AA) mutation.
Light gray indicates that this mutation is found in the delta variant. Dark gray color indicates that this mutation is found in the omicron variant.
Pairs with one or both terminals in light gray are attributed to a phylogenetic effect, while the several pairs with one terminal in dark gray
are not, the growth of omicron being later than October 2021. Omicron mutations used here are taken from Ref. [67], and deletions are not
considered.

August 2021 September 2021 October 2021
Partner Spike Partner Spike Partner Spike
Rank Locus AA-m. Locus AA-m. Rank Locus AA-m. Locus AA-m. Rank Locus AA-m. Locus AA-m.

1 17236 nspl3:1334V 24208 18821 1 17236 nspl3:1334V 24208 18821 1 17236 nspl3:I334V 24208 18821
14 7851 nsp3:A1711V [2I846) To51 13 7851 nsp3:A1711V [2H846] T95I 10 7851 nsp3:A1711V [2I846] TO5I
20 28461  N:G63D 24410 D950N 16 28461  N:D63G 24410 D9SON 17 28461  N:D63G 24410 D950N
27 1048 nsp2:K8IN 208461 T95I 36 1048 nsp2:K8IN [2H846] TSI 20 25614 ORF3a:S74S 21995 T145H

25614 ORF3a: S74S 22227 A222V

nsp2:K8IN  [20846] T951

52 26107 ORF3a:E239Q 21897 S112L 52
57 27507 ORF7a:G38G 21897 S112L 57

25614 ORF3a:S74S 21995 T145H 21
26107 ORF3a:E239Q 21897 S112L 30 1048

62 18086 nspl4:T161 22792 14101 58 25614 ORF3a:S74S 22227 A222V 51 10977  nsp6:A2V  [21846] TSI
76 27291 ORF6:D30D 24208 18821 71 27507 ORF7a:G38G 21897 S112L 56 27291 ORF6:D30D 24208 18821
79 1729 nsp2:V308V 22792 410 82 27291 ORF6:G30G 24208 18821 60 26107 ORF3a:E239Q 21897 S112L
151 28007 ORF8:P38P [2HB&6] T951 83 11514 nsp6:TISIL 22227 A222V 63 29253  N:S327L  |2H846] T951
168 27604 ORF7a:V71l - T95I 128 17236 nspl3:1334V - T9SI 64 18744 nspl4:T235T [24180] N856N
174 17236 nspl3:1334V T95I 151 18744 nspl4:T235T N856N 74 27507 ORF7a:G38G 21897 S112L
197 11514 nsp6:T1811 22227 A222V 190 5584  nsp3:T955T 22227 A222V 80 17236 nspl3:1334V |[2I8E6I T951
195 13019 nsp9:L112L 22227 A222V 124 15952 nspl2:S837S T951

153 26107 ORF3a:E239 - T951

163 28299  N:QIL T951

190 27507 ORF7a:G38G [21846] T951
194 11562 nsp6:C197F 21897 S112L
197 11514  nsp6:TI811 22227 A222V
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The second prediction in Table II, ranked respectively as
14, 13, and 10, is the pair (7851,21846) where the first is
the mutation A1711V in nsp3. In Table II the variation at
locus 21846 (S:T95I) appears also together with nsp2:K81N
in all 3 months, together with ORF8:P38P and ORF7a:V711 in
August, and together with nsp6:A2V, N:S327L, nsp13:1334V,
nsp12:S837S, ORF3a:E239, N:QI9L, and ORF7a:G38G in
October. The mutation nsp3:1711V was a defining mutation
of variant of interest labeled N.9 discovered in Brazil in 2020
[71]. The mutation nsp2:K81N has been detected in variants
of VoC delta circulating in Russia [72].

The third prediction in Table II, ranked respectively as 20,
16, and 17, is the pair (28461,24410) where the first is the mu-
tation G63D in N and the second is N950D in spike. N:G63D
is a defining mutation of VoC delta while S:N950D is a reverse
mutation of delta defining mutation D950N, identified as such
in a recent study [70].

The next two predictions which appear in all 3 months and
which do not involve any of the above or any variants both
involve locus 21897 (S:S112L) with partners, respectively,
26107 (ORF3a:E239Q) at ranks 52, 57, and 60 and 27507
(ORF7a:G38G) at ranks 57, 71, and 74. The spike mutation
S112L was recently associated to vaccination breakthrough
infections in New York City [39]. That study also identi-
fied that genes ORF3a (56%) and ORF8 (67%) had higher
numbers of sites with enriched mutations in breakthrough
sequences. The ORF3a mutation E239Q is located at the
protein C-terminal and appears in the subvariant of VoC delta
variously labeled AY.25 and B.1.617.2.25; it has no annotation
in UniProt.

V. DISCUSSION

In this work we have applied the DCA methodology
[52,54,57,58,73,74] to identify putative epistatic interactions
between pairs of loci in the SARS-CoV-2 virus. We have
described the rationale for such an approach based on the
QLE mechanism of Kimura [19,20], which we have recently
combined with DCA in in silico validation [21,33,50]. As part
of the worldwide effort to combat the COVID-19 epidemic, an
unprecedented number of genomes of the disease agent have
been obtained and released through open repositories. In this
study we have thus been able to use more than three and a
half million full-length high-quality SARS-CoV-2 genomes
from GISAID deposited until October 2021 [15]. Such very
large, quasiexact, and easily accessible data resources will
very likely be the norm in future pandemics. Methods to turn
them into actionable information in new ways are therefore of
high relevance. Except for the more-than-order-of-magnitude-
larger data size, the main methodological novelty in this study
has been to separate genomes as to sampling date (by month).
We have hence been able to carry out a temporal epistasis
inference.

Our main finding is that the leading terms identified by
DCA and those counterparts by correlations are fairly stable
over time, while the ranks of correlations are much lower and
with larger fluctuations. Furthermore, the leading correlations
appear in the lists as leading for shorter time periods compared
to DCA terms. This observation is an argument in favor of
the global SARS-CoV population exhibiting characteristics

of QLE, as would be expected from the substantial rate of
recombination characteristic of coronaviruses [22] and the
sometimes high rate of circulating infections in the human
population worldwide. The finding, however, comes with a
caveat: DCA analysis (and correlation analysis) is necessarily
based on observed variability which disappears if an allele at a
locus is lost. This is indeed what we find. The stability of DCA
terms therefore only pertain for the time window when the
mutations at both terminals appear in a significant proportion
of the samples. Few of the epistatic interactions found in two
earlier studies [36,37] are therefore in fact found in the later
data, as one or both of the corresponding mutations have either
since been lost or reached fixation.

We refer to the resulting setting as temporal epistasis infer-
ence. In earlier theoretical work we identified the possibility
of retrieving epistatic parameters from pairwise variations in a
population even though single-locus frequencies vary greatly
[59]. In this work we have found that such an effect appears
in data and is reflected in the epistasis prediction pipeline
through the appearance and/or disappearance of predicted
pairs. The biological relevance is that epistasis can be detected
in a transient phase and then used as input to further analysis
at a later time, when variations at one or both terminals will
have disappeared, and epistasis can no longer be detected from
the sequences present in the population. We further remark
that in the data at hand (SARS-CoV-2 sequences collected in
the COVID-19 pandemic) evolutionary parameters are them-
selves most likely changing with time. The most immediate
effect is the changed fitness landscape (to the virus) after
large-scale vaccination (of the human hosts). We have in this
work not tried to estimate such effects.

The main success story of DCA applied to biological
data has been to predict spatial residue-residue contacts in
proteins [48]. In that important application accuracy of pre-
dictions can be assessed by comparing to distance data in
resolved protein structures. Spatial proximity is the main
mechanism behind and a relevant proxy for epistasis within
one gene (one protein). It is a general feature of DCA that the
accuracy is generally highest for the largest predictions, typi-
cally visualized through plots of the true prediction rate of the
kth largest predictions [TPR(k)] [48]. On the global genome
scale labeled test data of the same kind is not available, and
evaluation will necessarily be in terms of potential biological
or medical relevance, compared to the literature or other data.

In the bacterial domain, in an earlier study based on around
3000 full-length genomes of the bacterial pathogen Strepto-
coccus pneumoniae we hence found as main terms epistatic
interactions between loci in the PBP family of proteins central
to antibiotic resistance in the pneumococcus [60]; analogous
results have also been found for the gonococcus [61]. Recent
results use on the one hand over 60000 Escherichia coli
genomes and on the other hand a set of closely related other
bacterial genomes, leading to testable predictions on amino
acid variability [75].

In the viral domain DCA methods have been applied to
the genes coding for the envelope of HIV in a well-known
series of papers [76—81]; more have led to experimental tests
[82] promising for antiviral drug and vaccine development.
The same group has also extended the analysis to polio
[83]. On the global genome level a recent contribution used
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FIG. 6. Number of complete and high-quality SARS-CoV-2 se-
quences deposited in the GISAID repository per month until the end
of October 2021, stratified by month of sampling time. The accession
IDs of the samples from GISAID used in this work are given in
Appendix E, Dataset 1.

whole-genome sequences of a set of coronaviruses to predict
mutability using DCA methods which were then assessed
by the use of the same GISAID data base as we have used
here [42]. Leveraging a more variable set of genomes is an
alternative and possibly more robust avenue to obtain bio-
logically viable predictions; the issue, however, merits further
investigation.

We have here limited ourselves to a discussion of the top
200 predictions per month that are also stable in rank over
the last 3 months of data (August—October 2021) and which
involve loci in spike. We find several DCA terms associated to
variants of concern delta and omicron, which we in the case
of the delta attribute to a phylogenetic effect. On methods
to remove phylogeny as a confounder of DCA we refer to
Refs. [38,84] and as described in our earlier contribution [36].
Recently, an alternative way to infer and tease out epistasis
from the linkage effect has been proposed in Refs. [85,86]
based on the average over multiple independently evolving
populations. The Wright-Fisher model used there contains
no recombination which is distinct with the assumption from
QLE. It would be worth comparing both methods for the
epistasis inference from the available SARS-CoV-2 genomic
sequences.

The most prominent of the mutations in omicron is S:T95I
at genomic position 21846. Although a defining mutation
for this VoC, it was actually found in approximately half of
the genomes collected worldwide in the time period August—
October 2021. The inferred epistatic interactions between
S:T951 and loci in other genes are hence examples of inter-
actions that were detectable in data up to the end of 2021 but
which is not detectable anymore as the omicron variant has
taken over fully.

Our results of potential biological and medical relevance
are given in Table I for epistatic interactions between two loci
out of which at least one in spike. We surmise that the most
interesting of those are two epistatic interactions involving
spike mutation S112L, recently shown to be associated to
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FIG. 7. Normalized survived loci L; by the total number of
sequences Nyq, per month with p = 0.9 (upper) and p = 0.999
(bottom). In our analysis, loci (MSA columns) where any of the
nucleotides is found with a frequency greater than p is excluded.

vaccination breakthrough infections [39]. One of its interac-
tion partners is mutation ORF3a:E239Q, where ORF3a is a
cation channel protein unique to the coronavirus family [87]
and known to be involved in inflammation of lung tissue and
severe disease outcomes [88-90]. In the earlier study [36]
several other mutations in ORF3a appeared prominently; in
this study a new one does so together with a mutation in spike.
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APPENDIX A: THE NUMBER OF SEQUENCES SAMPLED
PER MONTH HAS INCREASED DURING THE PANDEMIC

Figure 6 shows the number of whole-genome high-quality
SARS-CoV-2 sequences deposited in GISAID and stratified

044409-10



TEMPORAL EPISTASIS INFERENCE FROM MORE THAN ...

PHYSICAL REVIEW E 106, 044409 (2022)

1 1
T pimDCA
08l — gorgelationx, \,: 08 2020-04 2020-05 08 2020-06
0.6 2020-03 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 - 0 ; = e
10 102 10* 10 10 102 10* 10° 10 102 10* 106 109 102 10* 106
1 1
2020-07 2020-08 2020-09 2020-10
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0Ll (] B 0 oL
10 102 10* 10 10 102 10* 10° 10 102 10* 108 109 102 10* 106
1 1
2020-11 2020-12 2021-01 2021-02
0.8 0.8 0.8 0.8
= 06 0.6 0.6 0.6
& 04 0.4 0.4 0.4
0.2 0.2 0.2 0.2
10 102 10* 106 10 102 10* 10% 10 102 10* 106 109 102 10* 106
1
2021-03 2021-04 2021-05 2021-06
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4 .
0.2 0.2 0.2 0.2
0 (0] T —— 0 (0]
10 102 10* 106 10 102 10* 10% 10 102 10* 109 109 102  10* 106
1 1 1 1
2021-07.--, d 2021-09 .- 2021-10
0.8 0.8} 0.8 0.8
0.6 0.6} 0.6 0.6
0.4 04" 0.4 0.4
0.2 0.2 0.2 0.2
0 0 0 0
10 102 10* 106 10 102 10* 10% 10 102 10* 108 109 102 10* 106

maximum rank n

FIG. 8. Fraction of the residual epistatic couplings over the top-k considered. Couplings between close sites (<6 bps), those with extrema
in noncoding regions, and those related to VoCs are excluded. Blue line for pilmDCA while red for correlation analysis.

by month. With some irregularity this number has grown
exponentially since the summer of 2020 and was toward the
end of the studied period around half a million SARS-CoV-2
genomes per month.

APPENDIX B: GWV WITH OTHER FILTERING
THRESHOLDS

We computed the frequencies of nucleotides along each
locus or column in each MSA matrix. If the frequency of any
of the nucleotides is larger than the given value of p, then
this locus will be excluded in the following epistasis analysis.
To complement Fig. 1 in the main text, we show plots for
the normalized number of survived loci Ly by the number of

sequences Ngeqs in each MSA with different values of p here in
Fig. 7. The upper panel is for p = 0.9 while the bottom one is
for p = 0.999, respectively. They show similar patterns with
p = 0.98 in the main text.

APPENDIX C: FRACTIONS OF RESIDUAL COUPLINGS

This Appendix shows the fraction of residual (epistatic)
couplings for plmDCA and correlation analysis as a function
of the top-k links considered, as shown in Fig. 8. Data for
the months October 2020 and October 2021 are also shown in
Fig. 2 of the main text. For the highest ranks, plmDCA gives
a greater fraction of true epistatic predictions with respect to
correlation analysis. Couplings are removed if one or both
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FIG. 9. Circos plots for epistatic links located in the coding region, top 200 ranks. The p values for each month are selected as 93%, 95%,

and 98%, respectively.

i, j meets or meet the removal conditions as described in
Sec. IITF.

APPENDIX D: CIRCOS PLOTS WITH DIFFERENT
FILTERING VALUES FOR EACH MONTH

For each monthly dataset, three different p values are em-
ployed for filtering the loci. If the percentage of a same major
nucleotide along a column is larger than the given value (0.93,
0.95, and 0.98), then the column is discarded in the following
DCA analysis.

With pImDCA analysis, each pair of retained loci gets a
score, which is related to the the epistasis between them. The
pairwise epistatic links can be sorted by ranking the scores.
Here we plot the top 200 epistasis with the “Circos” software
[91]. Only those located in the coding region are shown in
Fig. 9. The short links, i.e., those with distances between two
terminals less than 4 bps, are not included. The lightest ones
are those within ranks 51 and 200 while others are within top
50 ranks. The straight lines indicate the short links.

APPENDIX E: DATA RESOURCES

All datasets listed below are available on Github [47].

Dataset 1: Accession_IDs.xIsx

The Accession IDs for the genomic sequences we used
in the analysis. The prefix of each sequence “EPI_ISL_”
is excluded to decrease the file size. This dataset is
cut into two separate files further to satisfy the limita-
tion of file size on Github, named “Datasetl-1-Mar-2020-
May-2021-Accession_IDs.xIsx” and “Datasetl-2-Jun2021-
Oct-2021-Accession_IDs.xIsx,” respectively on Github.

Dataset 2: p0.98_plm_Top200_No_3variants.xlsx

This dataset contains selected links in the top 200 pImDCA
epistasic couplings, as ranked by their score. The plmDCA
links shown in Figs. 4(a) and 4(b) in the main text are based
on this dataset. Here the links located in the noncoding region
and with close locus (<5) and any loci included in alpha, beta,
and delta are excluded.

Dataset 3: p0.98_Top_2000_CA_No_variants.xIsx

This dataset lists the sorted correlation scores which
correspond to the dashed correlations in the middle and
bottom [Figs. 4(c) and 4(d)]. Similarly to its plm coun-
terpart, links in coding region and the distance between
loci is larger than 5 bps are considered. No variant is
included.

Dataset 4: links_with_Spike_locus_or_loci_ranks.xlsx

The epistasis provided by plmDCA and correlation anal-
ysis are included in this dataset for each month. Only those
within top 200, for which the distance between two terminals
is >5 loci and whose both terminals located in the coding
region are listed in the dataset. The genomic positions pro-
vided in Table I and II in the main text are based on this
dataset.

Dataset 5 protein_aa_mut_for_links_in_Dataset4.xIsx

We provide the links within top 200 plmDCA scores that
containing spike terminals for each month. The short links
with loci located within 5 bps are discarded. Here we also
annotate the genes to which loci in the Dataset 4 belong to
and the corresponding amino acid mutations. The annotated
genes and corresponding amino acid mutations in Table I
and II in the main body of the manuscript are based on this
dataset.
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