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Kinetic model description of dissipation and recovery in collagen fibrils under cyclic loading
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Collagen fibrils, when subjected to cyclic loading, are known to exhibit hysteretic behavior with energy
dissipation that is partially recovered on relaxation. In this paper, we develop a kinetic model for a collagen
fibril incorporating presence of hidden loops and stochastic fragmentation as well as reformation of sacrificial
bonds. We show that the model reproduces well the characteristic features of reported experimental data on
cyclic response of collagen fibrils, such as moving hysteresis loops, time evolution of residual strains and
energy dissipation, recovery on relaxation, etc. We show that the approach to the steady state is controlled by a
characteristic cycle number for both residual strain as well as energy dissipation and is in good agreement with
reported existing experimental data.
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I. INTRODUCTION

Collagen, the most abundant protein in humans, is found
in several hard and soft tissues, such as bones, tendons,
ligaments, cartilage, etc. Collagenous tissues provide not
only mechanical support and strength but also flexibility and
mobility [1–3]. Collagen has a hierarchical structure with
tropocollagen as the fundamental protein molecule. The di-
versity observed in the mechanical behavior of collagen based
tissues is a direct consequence of the differences in their
hierarchical structures [4–7]. Characterizing the structure
property of collagen at different length scales and developing
predictive models has significance not only in understanding
the mechanistic basis of wide spectrum of properties seen in
different tissues but also for important clinical objectives, such
as risk assessment of tissue failure, treatment optimization,
etc. [4,8,9].

Collagen molecules, typically of length ≈300 nm, self-
assemble in a staggered manner to form long collagen fibrils
of diameters ranging between 10s to 100s of nm [2]. The
staggered arrangement of these molecules in the longitudinal
direction results in a gap and overlap region in the fibril along
its length which gives rise to the characteristic D-period of
the fibril [10,11]. The fibril structure is further stabilized by
intermolecular enzymatic covalent cross-linking that form at
the nonhelical ends (telopeptides) [12–14].

At the smallest length scale, the mechanical response of
collagen molecules has been determined using atomic force
microscopy (AFM) and optical tweezer experiments [15–18].
The molecular basis of toughness of collagenous tissues
was established by identifying the basic mechanisms of
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energy dissipation during pulling of collagen molecules using
AFM [15]. The force-extension response of collagen from
bovine Achilles tendon was shown to be saw-toothed, such
that the force had multiple drops with increasing extension.
These drops were attributed to the rupture of intermolecular
sacrificial bonds that release hidden lengths, thereby ensuring
the integrity of the backbone chain and at the same time
dissipating large amounts of energy. Further, a delay of 100s
before the next cycle was shown to result in almost 50%
recovery in the capacity of energy dissipation, suggesting pos-
sible reformation of the sacrificial bonds during the waiting
interval [15]. A similar saw-toothed response was also seen in
molecular-scale experiments of biological polymeric adhesive
found in nacre [19], in unfolding of titin [20], etc. The struc-
ture of intermolecular covalent cross-links between adjacent
collagen molecules molecules, using x-ray diffraction, was
shown to have a turn at the C-terminal telopeptides that causes
the molecule to fold back on itself [21].

At the level of fibrils, the extent and type of covalent
cross-linking between the tropocollagen molecules has been
shown to strongly affect the constitutive response [22,23].
The collagen fibrils from human patella tendon were found
to exhibit a characteristic three-phase stress-strain behavior.
An initial rise in modulus followed by a plateau and in the
final phase further increase in stresses and modulus, hypoth-
esized to be a consequence of maturity of cross-links, before
final failure [22]. In contrast, collagen from rat tail tendon, a
nonload bearing tissue, displayed only two phases as plateau
in the stress-strain led to failure.

Simulations at multiple length scales have provided in-
teresting insights into various aspects of deformation and
failure of collagen ranging from atomistic length scales, fo-
cusing on individual tropocollagen molecules, to continuum
length scales for collagen fibrils [24–26]. Atomistic-scale
investigations showed three stages of tropocollagen defor-
mation: molecular unwinding, breaking of hydrogen bonds
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and backbone stretching and the overall response was rate
dependent [27]. Mesoscopic molecular model, derived from
atomistic studies of tropocollagen, of ultralong tropocolla-
gen molecule showed the transition from entropic elasticity
at small deformations to energetic elasticity at large de-
formations [28]. Atomistic simulations of Uzel et al. [29],
incorporating the folded structure of the cross link as seen
using x-ray diffraction [21], were shown to reproduce the
dissipative response of collagen molecules better than the
earlier studies. The observed unfolding of nonhelical regions,
as well as the stretching and eventual breakage of enzymatic
cross-links can be equated to the breaking of sacrificial bonds
and the release of hidden length.

At the level of fibrils, using idealized two-dimensional
representation of collagen fibril, large deformations with-
out catastrophic failure were shown to be possible due to
molecular stretching as well as other competing mechanisms
such as intermolecular sliding and breaking of cross-links
between collagen molecules [30]. More realistic aspects of
structure of collagen were incorporated in a three-dimensional
model of fibril [31], with enzymatic cross-links included as
in their physiological locations. By differentiating between
mature and immature cross-link properties, the model could
reproduce the three-phase stress-strain response as in exper-
iments [22]. A similar molecular dynamics (MD) simulation
of a three-dimensional model showed the effect of degrada-
tion in properties of cross-links at the fibril surface or within
the volume on the overall fibril response [32]. With small
degradation, a drastic change in mechanical properties was
observed, demonstrating the relevance of molecular organi-
zation in collagen fibrils.

Collagen is subjected to cyclic loads during exercise and
routine body movements. While the response of collagen
to monotonically increasing loads is comprehensively inves-
tigated, the response to cyclic loads, resulting dissipation,
and recovery are comparatively much less studied, ranging
from single fibril scale [33–35] to macroscopic tissue length
scale [36–40]. For isolated collagen fibril, Shen et al. [33]
performed fatigue test on isolated collagen fibrils and reported
four different stress-strain response: linear to failure, perfectly
plastic, perfectly plastic-strain hardening, and nonlinear strain
softening. All fibrils exhibited significant hysteresis and a
residual strain (strain at zero force). A recovery in residual
strain was also observed, which was dependent on the amount
of time spent at zero force. Similar features have also been
observed in experiments at tissue length scale [38,39].

In a recent study, Liu et al. [35] conducted displacement
controlled cyclic loading experiments on single collagen fib-
rils obtained from calf skin. Collagen fibrils were loaded for
20 cycles up to a predetermined stretch ratio, λmax, and then
unloaded to zero force. The fibrils were allowed to relax for
1 h after the first 10 cycles. The stress-stretch response of
fibrils showed moving hysteresis loops and associated residual
strains. With increasing number of loading cycles, the dissi-
pation during hysteresis decreases while the residual strain
increases and both finally saturate to their respective steady-
state values. Collagen fibrils also showed recovery in residual
strain and as well as in capacity to dissipate energy when
allowed to relax at zero force. It was conjectured that these
features could be due to the existence of reformable sacrificial

bonds within the fibrils. Finally, the fibrils which were cycli-
cally loaded showed an increase in strength and toughness
compared to monotonically loaded fibrils. The mechanism un-
derlying these enhancements was speculated to be due to some
permanent molecular rearrangements. With respect to model-
ing cyclic response of collagen, there are recent advances in
understanding of the energy dissipation and wave propagation
properties of collagen at molecular and microfibril level due
to transient loading using fully atomistic models [28–30].
However, to the best of our knowledge, existing models have
not explained key experimental features from cyclic loading
of a single collagen fibril.

Dynamic sacrificial bonds within polymers have been suc-
cessfully incorporated in simplified models called kinetic
models. The saw-toothed stress-strain response of collagen
molecules has been simulated using deterministic kinetic
models of a wormlike chain with additional sacrificial bonds
whose breakage results in the release of a hidden length,
resulting in a drop in force [41,42]. Historically, two state
kinetic models have been used to describe the force-extension
response of single protein pulling experiments [43,44]. In this
paper, within the framework of kinetic models, we develop a
minimal stochastic kinetic model for collagen fibrils that in-
corporates dynamic reformable sacrificial bonds with hidden
lengths. We show that the proposed model is able to reproduce
the main qualitative features of the cyclic loading experi-
ment [35], suggesting that the essential physics is captured by
the kinetic model. By choosing realistic model parameters, we
reproduce key quantitative features of the experimental data.

The remainder of paper is organized as follows. In Sec. II,
we describe the stochastic kinetic model and its imple-
mentation for collagen fibril. In Sec. III, we determine the
stress-stretch response of the fibril, the recovery of the fibril
on relaxation, and the behavior of the dissipation as well as
residual strain with cycles. We show that our model repro-
duces main features of cyclic loading experiment. Section IV
contains a summary and discussion of the results.

II. MODEL AND METHODS

A. Model

1. Kinetic model formulation

We first describe the basis of kinetic models and how they
incorporate the dynamic formation and breaking of sacrificial
bonds. We then give the details of the specific kinetic model
that we develop for simulating the cyclic response of a fibril.

Consider a linear polymer whose contour length, in the
absence of sacrificial bonds, is Lc. Let bond length be b such
that number of monomers are N = Lc/b. Each sacrificial bond
creates a hidden loop that prevents a part of polymer backbone
from taking any load, as shown schematically in Fig. 1. When
hidden loops are present, the available length La, of the poly-
mer backbone is less than Lc and is given by

La = Lc −
∑

i

�i, (1)

where �i is the length of the ith hidden loop. The length of the
hidden loops are chosen from a distribution P(�).
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FIG. 1. (a) Schematic of a polymer with a single sacrificial bond
(dotted line), corresponding hidden loop (shown in red) and the
corresponding force-stretch ratio response. (b) As the sacrificial bond
breaks, the force drops due to release of the hidden length. (c) Force
rises again as the polymer is extended further.

We denote the stress-stretch relation of the polymer by
σ (λ), where λ is the stretch (note that λ = 1 + ε, where ε is
the strain). We assume that σ (λ) increases monotonically with
λ. Sacrificial bonds are created and broken with rates kb and
k f which are in general dependent on the force acting on the
polymer. For a given macroscopic extension, when a sacrifi-
cial bond is created, La decreases, thus increasing the strain,
and hence the force. Similarly, when a sacrificial bond breaks,
La increases, thus decreasing strain, and hence there is a drop
in force. The rates of formation, kb, and fragmentation, k f , of
sacrificial bonds have been earlier modeled [42], according to
Bell’s theory [45], as

k f = α0 exp

(
F�x f

kBT

)
, (2)

kb = β0 exp

(−F�xb

kBT

)
, (3)

where α0 and β0 are rates of fragmentation and formation of
sacrificial bonds at zero force, �x f and �xb are distances to
transition state, F is the force felt by the sacrificial bond, kB is
the Boltzmann’s constant, and T is the temperature.

2. Determination of stress-stretch relation

We now describe the implementation of the kinetic model
for a collagen fibril. A fibril consists of a collection of collagen
molecules that are linked to each other through enzymatic
cross-links. Within the kinetic model framework, we treat
the collagen fibril as a coarse-grained linear polymer. The

FIG. 2. (a) Cross-sectional view of coarse-grained MD model of
collagen fibril. (b) Cross-sectional view of a single microfibril. (c) A
single collagen molecule as a bead spring linear polymer.

cross-links are treated as dynamic sacrificial bonds that can
be created or broken with rates described in Eqs. (2) and (3).

To first establish the stress-stretch response of collagen
fibril without any creating or fragmentation dynamics, we use
an existing coarse-grained three-dimensional MD model [32],
but here we disallow any fragmentation of cross-links. In the
coarse-grained MD model (as in Ref. [32]), shown schemat-
ically in Fig. 2, each collagen molecule is represented by a
linear bead-spring model of 215 beads [see Fig. 2(c)]. To
create a microfibril, five collagen molecules are arranged in
a staggered manner along the longitudinal direction such that
the arrangement is a pentagon in the cross-sectional view
[see Fig. 2(b)]. A repeated hexagonal arrangement of mul-
tiple microfibrils forms a fibril [see Fig. 2(a)]. Within each
microfibril, the collagen molecules are interconnected through
cross-links. We considered the case of 100% cross-linking
(β = 100%), which implies that the terminal ends of all colla-
gen molecules form cross-links with neighboring molecules.
A detailed description of the model, the values of the pa-
rameters used, and details of simulation are provided in the
Appendix A.

The stress-stretch relation σ (λ), where λ = x/La and x is
the end-to-end distance of the polymer, obtained from MD
simulations is shown in Fig. 3, where for bench-marking, we
have compared the data with the results of Ref. [32], where
cross-links break beyond a threshold strain. For convenience
of use in the kinetic model, we fit a ninth-order polynomial

σ (λ) =
9∑

n=1

an(λ − 1)n (4)

to the data.

3. Determination of parameters and rates

We now describe how to determine model parameters: Lc,
P(�), α0, and β0. At zero force, sacrificial bonds form and
break spontaneously with rates β0La/b and α0Nb, respectively,
where Nb is the number of sacrificial bonds present at any
instant. At steady state, rate of fragmentation and formation
of bonds should be equal, implying

α0〈Nb〉 = β0〈La,0〉
b

, F = 0, (5)

where the zero in the subscript of La,0 denotes the reference
time after steady state is reached, taken to be t = 0. Also,
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FIG. 3. Stress-stretch relation σ (λ) obtained from MD simula-
tions of a fibril in which breakage of bonds (including backbone and
other enzymatic cross-links) is disallowed. The data are fitted to a
polynomial of degree nine. The x axis has been shifted to ignore the
knee region.

〈La,0〉 = Lc − 〈Nb〉〈�〉 where 〈�〉 and 〈Nb〉 are the average loop
size and the average number of loops respectively. Substitut-
ing for 〈La,0〉 in Eq. (5), we obtain

〈Nb〉 = Lcβ0

α0b + β0〈�〉 , (6)

Lc

La,0
= 1 + β0

α0

〈�〉
b

. (7)

We estimate Lc/〈La,0〉 from the experimental data [35]. To
do so, we assume that after 20 cycles, most of the sacrificial
bonds are broken and hidden lengths appear as residual strain.
Equating the ratio Lc/〈La,0〉 to the experimental residual ex-
tension of ≈1.15 after 20 cycles, as shown in Fig. 5(c) of
Ref. [35], we obtain Lc/〈La,0〉 = 1.15. The initial length of
the fibril is known to be 〈La,0〉 = 30 μm, thus fixing Lc. The
intermonomer distance b is chosen to be b = 1.4 nm, equal to
the interbead distance in the MD model [32]. To choose the
distribution of the hidden loop sizes, we proceed as follows.
In kinetic models for collagen, the loop sizes were chosen
proportional to the contour length of the polymer [41,42].
However, in fibrils, we expect the hidden length released from
breakage of sacrificial bonds (representing a cumulative effect
of cross-links at MD length scale [31,32] and the U-shaped
telopeptides at the atomistic scale [21]) to be order of a few
monomer lengths, as the equilibrium distance of cross-links
(≈10 Å) is less than the equilibrium distance of the LJ po-
tential (≈16.5 Å). We assume the hidden loops to be on an
average four monomer lengths.

We make the choice of P(�) to be a uniform distribution
U [2b, 6b]. We will argue that this choice is consistent with the
MD-model for fibrils, as well as show that the results are not
sensitive to the choice as long as the perturbations to P(�) are
not significant. With this choice of P(�), we obtain 〈�〉 = 4b.

On substituting these values of Lc/〈La,0〉, b and 〈�〉 in
Eq. (7), we obtain β0/α0 = 0.0375. Then from Eq. (6), we
obtain 〈Nb〉/(Lc/b) ≈ 0.0326. We now argue that this number
that follows from the experimental residual strain has the cor-
rect order of magnitude. The kinetic model represents a fibril

FIG. 4. (a) Schematic of evolution of available length during a
series of cycles followed by relaxation at zero force. (b) Relaxation
dynamics of fibril of length Lc(with no sacrificial bonds). At long
time fibril equilibrates to initial experimental length La,0. Relaxation
curve averaged over 1000 runs.

with diameter of a single microfibril, such that 215 monomers
in the kinetic model represents 215 × 5 monomers of the
microfibril. A molecule in the microfibril has two cross-links.
This corresponds to 10 sacrificial bonds per 215 monomers
in the kinetic model or equivalently we expect 〈Nb〉/(Lc/b) ≈
0.047. Among these, some will be broken at zero force, and
the calculated result 〈Nb〉/(Lc/b) ≈ 0.0326 makes sense.

Knowing the ratio β0/α0 = 0.0375, we would like to now
fix the values of α0 and β0. For this, we use the fact that
as part of the cyclic loading experiment [35], recovery of
residual strain is also studied. In the experiment, the fibril is
cyclically loaded for 10 cycles followed by relaxation at zero
force for 60 min, as shown schematically in Fig. 4(a). We will
choose an α0 for which the relaxation time matches with the
experimental data. For doing so, we take a polymer of length
Lc with no sacrificial bonds which roughly mimics the state
after 10 cycles. We then equilibrate the system at zero force.
After equilibration, the available length is La0 , as shown in
Fig. 4(b). The relaxation dynamics from our model matches
well with the experiment (experimental data shown as solid
circles) for α0 = 1.69 × 10−4 s, as shown in Fig. 4(b).

Finally, we describe how we fix the parameters �x f and
�xb, as defined in Eqs. (2) and (3). The force F in these
equations is the force felt by the sacrificial bonds. Since the
sacrificial bonds or cross-links are between different collagen
chains and transverse to the direction of loading, we have no
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TABLE I. The parameters for the kinetic model for collagen fibril.

Parameter Description Value

La,0 Available length at zero force 30 μm
Lc Contour length 1.15 La,0

b Bond length 1.4 nm
P(�) Loop size distribution U [2b, 6b]
〈�〉 Mean loop size 4b
β0 Formation rate of sacrificial bonds at zero force 6.32 × 10−6 s−1

α0 Fragmentation rate of sacrificial bonds at zero force 1.69 × 10−4 s−1

�x f Distance to transition state 0.01 nm
�xb Distance to transition state 0
v Pulling velocity 125 nm/s
T Temperature 298 K

direct way of measuring F . Instead, we approximate it by
the force in a chain. In the MD simulations, the force in a
chain is σA0/185, where A0 is the cross-sectional area of the
fibril, and 185 is the number of chains. We then treat �x f

as a parameter. Note that �x f controls when the stretch ratio
at which fragmentation of sacrificial bonds is enhanced. We
perform a parametric study of the dependence of the stress-
stretch response for uniaxial loading on �x f . We choose that
value of �x f for which the strain at which deviation from the
initial linear behavior coincides with that in the experiment.
Using this procedure, we converge on �x f to be 0.01 nm. We
notice that the formation rate is low and during the pulling ex-
periment, there are very few reformations of sacrificial bonds.
We therefore choose �xb to be zero, and check that even if a
nonzero value is chosen, the results do not change.

The values of the different parameters are summarized in
Table I.

B. Simulation protocol

The system evolves in time through constant time steps dt .
In this time interval, the probabilities of fragmentation (p f )
and formation (pb) of sacrificial bonds are given by p f =
k f Nb(t )dt and pb = kbNf (t )dt , where Nf (t ) = La(t )/b is the
number of free sites and Nb(t ) is the number of sacrificial
bonds. The time step dt is chosen such that the probabilities
are much smaller than 1 at all times. Whenever a sacrificial
bond forms, a hidden loop of length � is assigned from distri-
bution P(�). When a sacrificial bond breaks, a hidden length
of a randomly chosen loop is released. The available length
gets updated as La ± � depending on breaking or formation
event of sacrificial bonds. The rates are also updated depend-
ing on the current force and current La.

We start with a polymer of length Lc with zero sacrificial
bonds and equilibrate the system at zero force. After equili-
bration, to do cyclic loading, we pull at a constant velocity
such that v = dx/dt , where x = λLa(t ) is the end to end
distance. The time-dependent stress σ (x, La(t )) is calculated
using Eq. (4) and the corresponding rates are determined. The
polymer is pulled up to a predecided stretch ratio λmax after
which the pulling velocity is reversed to −v, and the polymer
is stretched back to zero force. This completes one loading
cycle.

III. RESULTS AND DISCUSSION

A. Uniaxial loading

To establish the effectiveness of the proposed kinetic
model, we first simulate response of the fibril chain polymer
to monotonically increasing load. The average macroscopic
response obtained from 16 realizations is shown in Fig. 5(a).
For each run, the system is first equilibrated at zero force,
after which displacement (end-to-end distance) is increased at

FIG. 5. (a) The mean stress-strain response of the polymer under
monotonic loading obtained using kinetic model. It shows three
distinct regions which are roughly demarcated by the vertical dotted
lines. λmax

1 , λmax
2 , and λmax

3 correspond to the maximum strain applied
in the three different cyclic loading protocols. (b) The mean number
of sacrificial bonds for a given strain for monotonic loading.
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FIG. 6. The macroscopic stress-stretch response for cyclic loading for (a) λmax = 1.1 (region I), (b) λmax = 1.2 (region II), and (c) λmax =
1.3 (region III). In all the three cases, the response shows moving hysteresis loops which saturate with loading cycles for both series 1 (first 10
cycles) and series 2 (next 10 cycles after 60 minutes relaxation at F = 0) loading.

a constant velocity of 125 nm/s. The macroscopic response
exhibits three distinct regions: an initial region (region I)
where stress increases linearly with strain, an intermediate
region where stress is weakly increasing with strain (region
II), and a final region where the stress increases nonlinearly
with strain (region III). These qualitative features, of three dis-
tinct regions, of the macroscopic response are consistent with
what has been observed in pulling experiments of collagen
fibril [22,35].

The existence of three distinct regimes is better understood
in terms of the number of the intact sacrificial bonds at any
given strain. In Fig. 5(b), we show the mean number of sac-
rificial bonds for a given applied strain. For small strains,
corresponding to region I there is only a marginal decrease
from its initial equilibrium value. Further increase in strain,
corresponding to region II, results in a sharp decrease in the
number of sacrificial bonds, thereby releasing hidden lengths
and causing relaxation in the stresses. Finally, all sacrificial
bonds are broken in region III. The change in slope of the
stress-strain curve in region II occurs due to breaking of sac-
rificial bonds.

B. Cyclic loading

We next simulate the cyclic loading patterns reported in
Ref. [35] to compare the characteristic features of the me-
chanical response seen in the experiment with our simulations.
Cyclic load is applied such that in each cycle the chain is
stretched up to a maximum stretch ratio, λmax. As in Ref. [35],
we also consider λmax to lie in the three distinct regimes
by choosing it to be λmax = 1.1, 1.2, 1.3 [the corresponding
positions on the macroscopic response is shown by red circles
in Fig. 5(a)] and these stretch ratios are representative points
of regions I, II and III. The fibril is subjected to cyclic loading
using the protocol described in Sec. II B with pulling speed
v = 125 nm/s, chosen to be same as in experiment [35]. The
polymer is subjected to 10 loading cycles (series 1) and then
relaxed at zero force for 60 minutes, and then subjected to 10
more loading cycles (series 2).

We first present results for the variation of the stress-stretch
curve with cycles. The stress-stretch ratio curves show hys-
teresis, as evident in Fig. 6. The first cycle exhibits hysteresis
as well as residual strain at a completely unloaded state.
Further cycling results in the subsequent hysteresis loops to
shift to the right implying accumulation of residual strains.

The hysteresis loops eventually tend to reach a steady state
with number of cycles for both the series and for all three rep-
resentative values of λmax. These features from the simulations
of the kinetic model are consistent with the observed trends in
the experiment [35].

In the associated number of intact sacrificial bonds, shown
in Fig. 7 with fading shades of red and blue for series 1
and 2, respectively, the progressive breakage patterns with
increasing cycles is clearly evident. For λmax = 1.1, the first
cycle results in breakage of 10% bonds and in subsequent 9
cycles there is a further gradual reduction in sacrificial bonds,
slowly reaching a steady state. During the waiting interval,
bonds reform (shown with dashed line). The cyclic loading
of series 2 causes the number of sacrificial bonds to gradu-
ally decrease again. For λmax

2 , however, most of the breakage
occurs in the first cycle as the number of shows a dramatic
decrease (by more than 50%). Subsequent cycles show com-
paratively lower rate of breakage per cycle. Interestingly, for
a similar waiting interval, the reformation of bonds is signifi-
cantly higher than for λmax

1 and this could be attributed to the
comparatively larger available length from more number of
broken bonds. For the cyclic loads with λmax

3 , first cycle results

FIG. 7. The variation of number of sacrificial bonds with loading
cycles for both series 1 and series 2 and for different stretch ratios,
λmax. The dashed line corresponds to discontinuity due to relaxation
before series 2 loading. After relaxation, there is a partial recovery
in number of sacrificial bonds for all λmax. Color scheme used for
cycles is same as in Fig. 6.
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FIG. 8. The evolution of residual strain with number of loading
cycles for both series 1 and series 2 for different stretch ratios, λmax.
The magnitude and final saturated value of residual strain depends
on the maximum stretch ratio, λmax.

in breakage of more than 90% of the sacrificial bonds. Since
most bonds are already broken further cycling does not affect
the overall status of intact bonds appreciably. Waiting period
recovers 50% of the initial bonds which again break primarily
in the first cycle of the series 2.

The residual strain accumulates with increasing cycles and
reaches a steady state for both series 1 and series 2 loading
for all three λmax (see Fig. 8). During the relaxation period
between the two series, the residual strain reduces by ap-
proximately 50%. The magnitude of the residual strain when
steady state is reached depends on λmax (see Fig. 8). It can be
seen that the steady-state residual strains follows the order of
λmax

3 > λmax
2 > λmax

1 , in agreement with the experiments [35].
The residual strain increasing with λmax is due to the larger
number of sacrificial bonds breaking in the first cycle itself
for higher λmax, as shown in Fig. 7. It can also be seen that
number of sacrificial bonds reform during relaxation which
accounts for recovery in residual strain.

The energy dissipated per cycle (area under the loading-
unloading curve) decreases with increase in the number of
cycles and reaches steady state for both series 1 and series
2 loading (see Fig. 9) for all chosen stretch ratios. There is a
partial recovery in energy dissipation after relaxation as seen
from first cycle of series 2 loading (see Figs. 6 and 9). The
area of the hysteresis loop after the first cycle also follows the
pattern λmax

3 > λmax
2 > λmax

1 . This is because the first cycle of
region III has maximum number of sacrificial bond breaking
compared to the other two regions, as evident from Fig. 7.
Restoration of sacrificial bonds on relaxation accounts for
recovery in energy dissipation.

We now quantify the approach of residual strain and energy
dissipation to their respective steady-state values. We find that
the deviation of residual strain and energy dissipation from
their steady-state value has an exponential decrease to zero
with number of loading cycles (see Fig. 10, where the data
for λmax = 1.1 and λmax = 1.2 are shown). We extract the
experimental data for these quantities from Ref. [35] and find
that the exponential decrease is also seen in experiment (see
Fig. 10). This allow us to determine a characteristic cycle

FIG. 9. The evolution of energy dissipation with number of load-
ing cycles for both series 1 and series 2 and for different stretch
ratios, λmax. The data from second cycle onward is zoomed and
shown in the inset figure.

number c∗ defined as:

εr (c) − εr (∞) ∝ e−c/c∗
, (8)

where εr (c) is residual strain at cycle c, εr (∞) is the steady-
state value of residual strain.

We compare the characteristic number of cycles, c∗, ob-
tained for residual strain from simulations and experiments
of Liu et al. [35] in Fig. 11(a). We use the average c∗ of
series 1 and 2 for the both simulations and experimental data.
Since c∗ is not quoted in the experiments, we fit the extracted
experimental data to obtain c∗. From simulations, for small
λmax, in regime I, we find the polymeric chain takes larger
number of cycles (≈16) to reach steady state. This large value
of c∗ for small stretch ratio is understood as ideally, polymer
should take infinite cycles to reach steady state within elastic
regime. With increasing λmax, c∗ decreases. In region II, the
steady state is reached at significantly lower cycles (≈ 5)
and there is marginal decrease with increasing λmax. Further
increase in λmax, corresponding to region III, shows again a
further drop in c∗ implying faster approach to steady state
in stress-lambda response. Experimental data compares very
well in the region II as it also exhibits marginal change with
increasing λmax, and in region III there is decrease in c∗ with
increasing λmax.

We also compare the value of characteristic cycle c∗,
obtained for energy dissipation from simulations and the ex-
tracted experimental data as shown in Fig. 11(b). We obtain
a similar trend of c∗ with λmax for energy dissipation also.
The value of c∗ is large in region I, then it decreases with
λmax, it shows some plateau in region II and then further
decreases sharply in region III. Again, we see a good match
with experimental results.

Finally, we study two more quantities studied in the ex-
periment: peak stress and elastic modulus. The peak stress
(stress at λmax) decreases with number of cycles for both series
1 and 2 and for all three stretch ratios (see Fig. 12). It also
approaches the steady state exponentially. The peak stress in
the first cycle in a particular region depends on choice of λmax

and follows the order: σ (λmax
3 ) > σ (λmax

2 ) > σ (λmax
1 ).
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FIG. 10. The variation of the deviation of (a) residual strain and (b) area of hysteresis loop from their respective steady-state values with
number of loading cycles. The corresponding experimental data from Liu et al. (2018) [35] are shown with squares. Both quantities approaches
steady state exponentially. The best fits are shown by dashed lines.

We define two elastic moduli E1 and E2 in accordance
with the experimental study [35]. The elastic modulus E1 is
calculated from the slope of the stress-stretch (Fig. 6) curve
up to λ ≈ 1.02 while E2 is calculated from the slope (where
dσ/dλ ≈ constant) of the stress-stretch curve in region II.
We find that E1 is not affected by cyclic loading for all
three stretch ratios while E2 becomes a constant after the
first loading cycle and then remains invariant to cyclic load-
ing for λmax

2 and λmax
3 in both series loading (see Fig. 13).

However, the extent of transition region between region I to
region II decreases with cycles within λmax = 1.2, 1.3 [see
Figs. 6(b) and 6(c)] and these feature are also observed in the
experiment. Our results are in good agreement with the cyclic
loading experiment (see Figs. 3, 4, and 5 in Ref. [35]).

IV. CONCLUSIONS AND DISCUSSION

Experimentally, the stress-stretch response of a single col-
lagen fibril subject to cyclic loading [33,35] within a fixed
stretch ratio λ is known to show moving hysteresis loops
and residual strains that increase and saturate with number

of cycles. The fibril is known to show recovery in energy
dissipation as well as residual strains on relaxation. These
features were thought to be related to the presence of sacri-
ficial bonds within the fibril [35]. To test this hypothesis, we
develop a stochastic kinetic model specifically for collagen
fibril. The model treats the collagen fibril to be a polymeric
chain that has hidden lengths secured by sacrificial bonds. The
two primary ingredients of the model are: a reference stress-
stretch relation for the available length of the polymer and
stochastic formation and fragmentation of sacrificial bonds.
The reference stress-stretch relation is first established from
molecular dynamics simulations of an existing coarse-grain
fibril model [32]. The kinetic model incorporates formation
and breakage of sacrificial bonds and release of hidden lengths
based on Bell’s theory. We estimated the model parameters
by comparing with available experimental data and used ki-
netic Monte Carlo methods to simulate the cyclic loading
experiment.

The model qualitatively reproduces the main features of
the experiment such as time evolution of hysteresis loops,

FIG. 11. The variation of characteristic cycle c∗ with the maximum stretch ratio, λmax obtained for (a) residual strain and (b) energy
dissipation.
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FIG. 12. The variation of peak stress with number of loading
cycles for different λmax

1 , before (series 1) and after relaxation (series
2). Peak values of stress depends on λmax and show a partial recovery
on relaxation (series 2).

energy dissipation, peak stress and residual strain etc. It is
shown that these quantities approach their respective steady
states exponentially with the number of loading cycles. We
find that the characteristic cycle number associated with this
exponential decay is in close agreement with the character-
istic cycle number extracted from the reported experimental
data. The breaking of sacrificial bonds is responsible for hys-
teresis (energy dissipation) and the corresponding release of
hidden lengths appears as residual strain. The magnitude of
hysteresis, peak stress and residual strain after first cycle is
proportional to maximum stretch ration λmax. The recovery
of the fibril is proportional to the relaxation time and sponta-
neous formation and breaking of sacrificial bonds at zero force
is a possible healing mechanism in the collagen fibril.

The presence of a characteristic cycle number has signifi-
cance in the description of the time dependent cyclic response
of collagen. In particular, it has the potential of being utilised
for comparison of fibril response across animals, ages, stages

FIG. 13. Elastic modulus E1 remains invariant to cyclic loading
for both series and in all three regions while E2 (for regions II and
III) becomes constant after first cycle and then remains invariant to
cyclic loading.

of disease, level of hierarchy, response to medication, etc. This
is a promising area for future experimental investigation.

The kinetic model is able to reproduce the majority of
the characteristic features of the fatigue experimental data in
Ref. [35], thus providing an insight into the essential mech-
anisms at work. One feature that it is not able to explain
is the experimental observation that the strength of a fibril,
that has undergone cyclic loading, is increased. This could
be due to permanent rearrangement of molecules inside the
fibril, making the feature history-dependent. It is to be noted
that reformation of sacrificial bonds, as in the present kinetic
model, can only lead to recovery of strength up to the virgin
sample, which is independent of past history. It is possible
that the observed gain in strength may be accounted for by
a three-dimensional model of a fibril incorporating detailed
microscopic interactions. It would thus be of interest to de-
velop a coarse-grained model for the fibril that incorporates
sacrificial bonds. In addition, it will provide a microscopic
basis for the validity of the kinetic model, as well as allow for
a determination of parameters. A microscopic model would
also have a characteristic relaxation time, which is assumed
to be zero in the present kinetic model, which will have an
additional contribution to the hysteretic response.

Interestingly, at tissue scale also, the stress-strain response
exhibits moving hysteresis loops, residual strain, etc. [38].
Linka et al. [46], proposed a constitutive damage model that
reproduces the experimental results of the tendon overloading
experiment [38]. The kinetic model described in this paper,
with suitable modifications, would also be ideally suited to
explain the results at tissue level.
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APPENDIX: COARSE-GRAINED COLLAGEN FIBRIL
MODEL

In this Appendix, we describe the coarse-grained model for
the fibril that we have used for MD simulations. The model is
from Refs. [31,32].

A collagen molecule is represented by 215 beads con-
nected with spring to each other. The distance between two
consecutive bead is b = 1.4 nm, which is roughly equal to the
diameter of collagen molecule. Five collagen molecules are
arranged in staggered manner in the z direction while in pen-
tagonal geometry in the x-y plane to form a microfibril. This
staggered arrangement of collagen molecules give rise to the
characteristic D-period of collagen fibril (67 nm). The diame-
ter of a single microfibril is ≈3.5 nm. Terminal beads of each
tropocollagen molecule forms a divalent or trivalent cross-link
within a microfibril. In divalent cross-link, end beads of a
molecule forms a single connection with a nearest bead from
it’s neighboring molecule while in case of trivalent cross-link,
the end beads forms two connection with the closest beads
from its nearest and next-nearest collagen molecule. These
terminal connections represents the enzymatic cross-links in
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TABLE II. The parameters for the MD-model of fibril.

Model parameters Value

ε, LJ energy parameter (kcal mol−1) 6.87
σ , LJ distance parameter (Å) 14.72
θ0, Equilibrium bending angle (degree) 180
kθ , Bending strength constant (kcal mol−1 rad−2) 14.98
r0, Equilibrium distance (tropocollagen) (Å) 14.00
r1, critical hyperelastic distance (tropocollagen) (Å) 18.20
rbreak, bond breaking distance (tropocollagen) 21.00
kT 0, Stretching strength constant (tropocollagen) (kcal mol−1 Å−2) 17.13
kT 1, Stretching strength constant (tropocollagen) (kcal mol−1 Å−2) 97.66
r0, Equilibrium distance (divalent cross-link) (Å) 10.00
r1, critical hyperelastic distance (divalent cross-link) (Å) 12.00
rbreak, bond breaking distance (divalent cross-link) 14.68
kT 0, Stretching strength constant (divalent cross-link) (kcal mol−1 Å−2) 0.20
kT 1, Stretching strength constant (divalent cross-link) (kcal mol−1 Å−2) 41.84
r0, Equilibrium distance (trivalent cross-link) (Å) 8.60
r1, critical hyperelastic distance (trivalent cross-link) (Å) 12.20
rbreak, Bond breaking distance (trivalent cross-link) 14.89
kT 0, Stretching strength constant (trivalent cross-link) (kcal mol−1 Å−2) 0.20
kT 1, Stretching strength constant (trivalent cross-link) (kcal mol−1 Å−2) 54.60
m, mass of tropocollagen bead [a.m.u] 1358.7

fibril. We have considered the case with 100% cross-link
(β = 100%), which means all the terminal ends will from
a cross-links with their neighboring molecule. The ratio of
trivalent (33%) and divalent (66%) cross-links has been kept
fixed. Now 37 of these microfibrils are arranged in a hexago-
nal close packing to represent a collagen fibril. The length and
diameter of fibril model are 343.6 and 25.9 nm, respectively.
The periodic boundary conditions has been used to mimic the
fibril of infinite length. Periodic boundary condition ensures
the D-periodicity of the fibril structure.

The nonbonded interaction between beads of fibril is given
by Lenard-Jones potential as:

ULJ = 4ε
[(σ

r

)12
−

(σ

r

)6]
, (A1)

where r is the distance between interacting beads and σ is
the distance parameter and ε is energy parameter (depth of
potential).

The bending energy (Uθ ) between three consecutive beads
of collagen molecule is given by harmonic interaction as:

Uθ = kθ (θ − θ0)2, (A2)

where kθ is bending strength and θ0 is equilibrium angle.

The interaction between bonded beads is defined by a bi-
harmonic potential as:

Fbond = −∂Ubond

∂r
=

⎧⎪⎪⎨
⎪⎪⎩

kT 0(r − r0) for r < r1,

kT 1(r − r0) for r1 � r < rbreak,

0 for r > rbreak.

(A3)

where r0 is the equilibrium distance between two beads, kT 0

and kT 1 are spring constants between distances 0 to r1 and 0
to rbreak.

The simulations were performed using LAMMPS [47].
Time step was set to �t = 10 fs, and the equations of motion
were integrated with langevin thermostat with drag coefficient
1000 fs and temperature 310 K. The fibril was equilibrated
for 20 ns and then a constant strain rate of 107 s−1 was
applied. All the parameters used in simulation are given in
Table II. These parameters have been developed for collagen
molecules in Refs. [25,26] and specifically for the fibril model
in Refs. [31,32].

[1] K. E. Kadler, C. Baldock, J. Bella, and R. P. Boot-Handford,
Collagens at a glance, J. Cell Sci. 120, 1955 (2007).

[2] P. Fratzl, Collagen: Structure and Mechanics, an Introduction
(Springer, New York, 2008).

[3] M. D. Shoulders and R. T. Raines, Collagen structure and sta-
bility, Annu. Rev. Biochem. 78, 929 (2009).

[4] S. Bose, S. Li, E. Mele, and V. V. Silberschmidt, Exploring
the mechanical properties and performance of type-I collagen
at various length scales: A progress report, Materials 15, 2753
(2022).

[5] W. Yang, M. A. Meyers, and R. O. Ritchie, Structural architec-
tures with toughening mechanisms in nature: A review of the
materials science of type-I collagenous materials, Prog. Mater.
Sci. 103, 425 (2019).

[6] V. Ottani, D. Martini, M. Franchi, A. Ruggeri, and M. Raspanti,
Hierarchical structures in fibrillar collagens, Micron 33, 587
(2002).

[7] P. Fratzl and R. Weinkamer, Nature’s hierar-
chical materials, Prog. Mater. Sci. 52, 1263
(2007).

044407-10

https://doi.org/10.1242/jcs.03453
https://doi.org/10.1146/annurev.biochem.77.032207.120833
https://doi.org/10.3390/ma15082753
https://doi.org/10.1016/j.pmatsci.2019.01.002
https://doi.org/10.1016/S0968-4328(02)00033-1
https://doi.org/10.1016/j.pmatsci.2007.06.001


KINETIC MODEL DESCRIPTION OF DISSIPATION AND … PHYSICAL REVIEW E 106, 044407 (2022)

[8] E. Rezvani Ghomi, N. Nourbakhsh, M. Akbari Kenari, M. Zare,
and S. Ramakrishna, Collagen-based biomaterials for biomedi-
cal applications, J. Biomed. Mater. Res. B 109, 1986 (2021).

[9] C. H. Lee, A. Singla, and Y. Lee, Biomedical applications of
collagen, Int. J. Pharm. 221, 1 (2001).

[10] J. A. Petruska and A. J. Hodge, A subunit model for the
tropocollagen macromolecule, Proc. Natl. Acad. Sci. USA 51,
871 (1964).

[11] J. P. Orgel, T. C. Irving, A. Miller, and T. J. Wess, Microfibrillar
structure of type I collagen in situ, Proc. Natl. Acad. Sci. USA
103, 9001 (2006).

[12] N. Light and A. Bailey, The chemistry of the collagen
cross-links. Purification and characterization of cross-linked
polymeric peptide material from mature collagen containing
unknown amino acids, Biochem. J. 185, 373 (1980).

[13] L. Knott and A. Bailey, Collagen cross-links in mineralizing
tissues: A review of their chemistry, function, and clinical rele-
vance, Bone 22, 181 (1998).

[14] K. Reiser, R. J. McCormick, and R. B. Rucker, Enzymatic and
nonenzymatic cross-linking of collagen and elastin, FASEB J.
6, 2439 (1992).

[15] J. B. Thompson, J. H. Kindt, B. Drake, H. G. Hansma, D. E.
Morse, and P. K. Hansma, Bone indentation recovery time
correlates with bond reforming time, Nature (Lond.) 414, 773
(2001).

[16] Y.-L. Sun, Z.-P. Luo, A. Fertala, and K.-N. An, Direct quantifi-
cation of the flexibility of type I collagen monomer, Biochem.
Biophys. Res. Commun. 295, 382 (2002).

[17] Y.-L. Sun, Z.-P. Luo, A. Fertala, and K.-N. An, Stretching
type II collagen with optical tweezers, J. Biomech. 37, 1665
(2004).

[18] L. Bozec and M. Horton, Topography and mechanical proper-
ties of single molecules of type I collagen using atomic force
microscopy, Biophys. J. 88, 4223 (2005).

[19] B. L. Smith, T. E. Schäffer, M. Viani, J. B. Thompson, N. A.
Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse, and
P. K. Hansma, Molecular mechanistic origin of the toughness of
natural adhesives, fibres and composites, Nature (Lond.) 399,
761 (1999).

[20] M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E.
Gaub, Reversible unfolding of individual titin immunoglobulin
domains by AFM, Science 276, 1109 (1997).

[21] J. P. Orgel, T. J. Wess, and A. Miller, The in situ conformation
and axial location of the intermolecular cross-linked non-helical
telopeptides of type I collagen, Structure 8, 137 (2000).

[22] R. Svensson, H. Mulder, V. Kovanen, and S. Magnusson,
Fracture mechanics of collagen fibrils: Influence of natural
cross-links, Biophys. J. 104, 2476 (2013).

[23] Z. Liu, M. R. Dodge, H. Kahn, R. Ballarini, and S. J. Eppell,
In vitro fracture testing of submicron diameter collagen fibril
specimens, Biophys. J. 99, 1986 (2010).

[24] A. C. Lorenzo and E. R. Caffarena, Elastic properties, young’s
modulus determination and structural stability of the tropocol-
lagen molecule: A computational study by steered molecular
dynamics, J. Biomech. 38, 1527 (2005).

[25] M. J. Buehler, Atomistic and continuum modeling of me-
chanical properties of collagen: Elasticity, fracture, and self-
assembly, J. Mater. Res. 21, 1947 (2006).

[26] M. J. Buehler, Nature designs tough collagen: Explaining the
nanostructure of collagen fibrils, Proc. Natl. Acad. Sci. USA
103, 12285 (2006).

[27] A. Gautieri, M. J. Buehler, and A. Redaelli, Deformation rate
controls elasticity and unfolding pathway of single tropocol-
lagen molecules, J. Mech. Behav. Biomed. Mater. 2, 130
(2009).

[28] M. J. Buehler and S. Y. Wong, Entropic elasticity controls
nanomechanics of single tropocollagen molecules, Biophys. J.
93, 37 (2007).

[29] S. G. Uzel and M. J. Buehler, Molecular structure, mechanical
behavior and failure mechanism of the c-terminal cross-link
domain in type I collagen, J. Mech. Behav. Biomed. Mater. 4,
153 (2011).

[30] M. J. Buehler, Nanomechanics of collagen fibrils under varying
cross-link densities: Atomistic and continuum studies, J. Mech.
Behav. Biomed. Mater. 1, 59 (2008).

[31] B. Depalle, Z. Qin, S. J. Shefelbine, and M. J. Buehler, Influ-
ence of cross-link structure, density and mechanical properties
in the mesoscale deformation mechanisms of collagen fibrils,
J. Mech. Behav. Biomed. Mater. 52, 1 (2015).

[32] D. C. Malaspina, I. Szleifer, and Y. Dhaher, Mechanical prop-
erties of a collagen fibril under simulated degradation, J. Mech.
Behav. Biomed. Mater. 75, 549 (2017).

[33] Z. L. Shen, M. R. Dodge, H. Kahn, R. Ballarini, and S. J.
Eppell, Stress-strain experiments on individual collagen fibrils,
Biophys. J. 95, 3956 (2008).

[34] R. B. Svensson, T. Hassenkam, P. Hansen, and S. Peter
Magnusson, Viscoelastic behavior of discrete human collagen
fibrils, J. Mech. Behav. Biomed. Mater. 3, 112 (2010).

[35] J. Liu, D. Das, F. Yang, A. G. Schwartz, G. M. Genin,
S. Thomopoulos, and I. Chasiotis, Energy dissipation in
mammalian collagen fibrils: Cyclic strain-induced damp-
ing, toughening, and strengthening, Acta Biomater. 80, 217
(2018).

[36] T. L. Sellaro, D. Hildebrand, Q. Lu, N. Vyavahare, M. Scott,
and M. S. Sacks, Effects of collagen fiber orientation on
the response of biologically derived soft tissue biomaterials
to cyclic loading, J. Biomed. Mater. Res., Part A 80A, 194
(2007).

[37] S. P. Veres, J. M. Harrison, and J. M. Lee, Repeated subrupture
overload causes progression of nanoscaled discrete plasticity
damage in tendon collagen fibrils, J. Orthop. Res. 31, 731
(2013).

[38] S. P. Veres, J. M. Harrison, and J. M. Lee, Cross-link stabiliza-
tion does not affect the response of collagen molecules, fibrils,
or tendons to tensile overload, J. Orthop. Res. 31, 1907 (2013).

[39] S. Bose, S. Li, E. Mele, and V. V. Silberschmidt, Dry vs. wet:
Properties and performance of collagen films. Part II. Cyclic
and time-dependent behaviours, J. Mech. Behav. Biomed.
Mater. 112, 104040 (2020).

[40] M. E. Susilo, J. A. Paten, E. A. Sander, T. D. Nguyen, and
J. W. Ruberti, Collagen network strengthening following cyclic
tensile loading, Interface Focus 6, 20150088 (2016).

[41] A. E. Elbanna and J. M. Carlson, Dynamics of polymer
molecules with sacrificial bond and hidden length systems:
Towards a physically-based mesoscopic constitutive law, PLoS
One 8, e56118 (2013).

044407-11

https://doi.org/10.1002/jbm.b.34881
https://doi.org/10.1016/S0378-5173(01)00691-3
https://doi.org/10.1073/pnas.51.5.871
https://doi.org/10.1073/pnas.0502718103
https://doi.org/10.1042/bj1850373
https://doi.org/10.1016/S8756-3282(97)00279-2
https://doi.org/10.1096/fasebj.6.7.1348714
https://doi.org/10.1038/414773a
https://doi.org/10.1016/S0006-291X(02)00685-X
https://doi.org/10.1016/j.jbiomech.2004.02.028
https://doi.org/10.1529/biophysj.104.055228
https://doi.org/10.1038/21607
https://doi.org/10.1126/science.276.5315.1109
https://doi.org/10.1016/S0969-2126(00)00089-7
https://doi.org/10.1016/j.bpj.2013.04.033
https://doi.org/10.1016/j.bpj.2010.07.021
https://doi.org/10.1016/j.jbiomech.2004.07.011
https://doi.org/10.1557/jmr.2006.0236
https://doi.org/10.1073/pnas.0603216103
https://doi.org/10.1016/j.jmbbm.2008.03.001
https://doi.org/10.1529/biophysj.106.102616
https://doi.org/10.1016/j.jmbbm.2010.07.003
https://doi.org/10.1016/j.jmbbm.2007.04.001
https://doi.org/10.1016/j.jmbbm.2014.07.008
https://doi.org/10.1016/j.jmbbm.2017.08.020
https://doi.org/10.1529/biophysj.107.124602
https://doi.org/10.1016/j.jmbbm.2009.01.005
https://doi.org/10.1016/j.actbio.2018.09.027
https://doi.org/10.1002/jbm.a.30871
https://doi.org/10.1002/jor.22292
https://doi.org/10.1002/jor.22460
https://doi.org/10.1016/j.jmbbm.2020.104040
https://doi.org/10.1098/rsfs.2015.0088
https://doi.org/10.1371/journal.pone.0056118


SUHAIL, BANERJEE, AND RAJESH PHYSICAL REVIEW E 106, 044407 (2022)

[42] C. K. C. Lieou, A. E. Elbanna, and J. M. Carlson, Sacrificial
bonds and hidden length in biomaterials: A kinetic constitutive
description of strength and toughness in bone, Phys. Rev. E 88,
012703 (2013).

[43] M. Rief, J. M. Fernandez, and H. E. Gaub, Elastically Coupled
Two-Level Systems as a Model for Biopolymer Extensibility,
Phys. Rev. Lett. 81, 4764 (1998).

[44] T. Su and P. K. Purohit, Mechanics of forced unfolding of
proteins, Acta Biomater. 5, 1855 (2009).

[45] G. I. Bell, Models for the specific adhesion of cells to cells:
A theoretical framework for adhesion mediated by reversible
bonds between cell surface molecules, Science 200, 618
(1978).

[46] K. Linka and M. Itskov, Mechanics of collagen fibrils: A two-
scale discrete damage model, J. Mech. Behav. Biomed. Mater.
58, 163 (2016).

[47] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys. 117, 1 (1995).

044407-12

https://doi.org/10.1103/PhysRevE.88.012703
https://doi.org/10.1103/PhysRevLett.81.4764
https://doi.org/10.1016/j.actbio.2009.01.038
https://doi.org/10.1126/science.347575
https://doi.org/10.1016/j.jmbbm.2015.08.045
https://doi.org/10.1006/jcph.1995.1039

