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Thermodynamic model of bacterial transcription
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Transcriptional pausing is highly regulated by the template DNA and nascent transcript sequences. Here, we
propose a thermodynamic model of transcriptional pausing, based on the thermal energy of transcription bubbles
and nascent RNA structures, to describe the kinetics of the reaction pathways between active translocation,
elemental, backtracked, and hairpin-stabilized pauses. The model readily predicts experimentally detected pauses
in high-resolution optical-tweezer measurements of transcription. Unlike other models, it also predicts the effect
of tension and the GreA transcription factor on pausing.
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I. INTRODUCTION

During bacterial transcription, there are frequent pauses
in the forward translocation of RNA polymerase. Pauses ob-
served in vivo and in vitro vary in durations from milliseconds
to minutes [1,2]. Short pauses, which typically last less than
one second and are referred to as elemental pauses, are pro-
posed to be intermediate precursors of long pauses [3]. Long
pauses, which may last tens of seconds, are classified as class
I hairpin-stabilized and class II backtracked signals and have
been structurally characterized and mechanistically explored
[4,5]. They are thought to be regulated by the sequence of the
DNA template, the structure of the nascent transcript, and the
availability of transcription factors (TFs) [6–8].

Previous models of the kinetics of backtracked pauses pre-
dict some types of experimentally detected pauses [9–12] but
fail to predict other types of pausing and pause duration, and
do not treat external tension or TFs. Here, we propose a model
based on our current biochemical understanding of transcrip-
tion pausing mechanisms and optimize the parameters of the
model with high-resolution transcription data. This purely
thermodynamic model provides a mechanistic explanation of
the effect of external tension and TFs, and after refinement
accurately simulates experimentally observed pause sites and
durations. Furthermore, the model accurately predicts tran-
scription dynamics on unfamiliar DNA sequences not used
for refinement and is readily extendable to incorporate the
initiation and termination stages.

II. MODEL DESCRIPTION

A. Ternary transcription elongation complex configuration
and state transition

Ternary transcription elongation (TEC) is described by a
transcription position (m) and state (n). The position along the
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template (m) indicates the length of the RNA transcript. TEC
can be in one of two translocation states: active (n = 0) or
backtracked (n < 0), or in a conformationally distinct hairpin-
stabilized state (hsp). The interconnection among these states
is shown in Fig. 1(a). From an active state at position m
(m, 0), a transcription complex can translocate to the next
active state (m + 1, 0), or branch into backtracked (m, −1)
or hairpin-stabilized states (m, hsp).

The energy of the TEC is estimated as the sum of four
contributions: the free energy of the (i) transcription bubble,
(ii) DNA-nascent RNA hybrid, (iii) nascent RNA, and (iv)
RNAP-DNA:

GTEC = Gbubble + Ghybrid + GRNA + GRNAP_binding. (1)

In this estimate, the first two terms are clearly sequence depen-
dent, as is the secondary structure of nascent RNA (the third
term). The fourth term represents interactions between the
nucleic acids and RNAP subunits and is effectively constant
and sequence independent, as argued previously [9–11].

To determine the configuration of a transcription bubble
and the details of the energy profile of a TEC, we used an
approach based on statistical mechanics, the basis of which
was described by Tadigotla [10]. A transcription complex (m,
n) is in a rapid equilibrium among many microstates, each
defined by the parameter (b) which depends on the number
of unpaired DNA bases upstream (u) and downstream (d) of
the DNA-RNA hybrid inside the RNAP enzyme, the length of
the hybrid (h) and the number of single-stranded RNA bases
protected by RNAP (r) [Fig. 1(b)].

Equilibrium among microstates [dashed arrows in Fig. 1(b)
is reached rapidly compared to the time required for state
transitions. Thus, for each transcription complex (m, n), the
probability of a particular microstate b is given by the Boltz-
mann distribution:

Pb
m = Z−1

m exp

(−Gm,b
TEC

kBT

)
, (2)

Zm =
∑

b

exp

(−Gm,b
TEC

kBT

)
. (3)
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FIG. 1. State transitions in the model and the statistical approach to the transcription bubble configuration. (a) A diagram of transcriptional
states considered in the model shows their interconnections. (b) An illustration of the statistical approach to characterize transcription bubble
configurations including the forward translocation step. Dashed arrows indicate fast equilibrium and solid arrows indicate the allowed state
transitions.

The overall forward translocation rate is calculated as

km→m+1 =
∑

b

Pb
mkb

m→m+1. (4)

Figure 1(b) shows the forward translocation step as an exam-
ple of statistical treatment in the model. All state transitions
in the model are determined according to Eq. (4), as the
summation of the products of the probability and the forward
translocation rate of individual microstates.

B. Forward translocation

The forward (active) translocation of RNAP is modeled by
the Michaelis-Menten (M-M) equation

kforward = kmax[NTP]

Kd (1 + Ki ) + [NTP]
, (5)

where kmax is the rate of NTP hydrolysis, Kd is the NTP disso-
ciation constant, and Ki is the equilibrium constant between
two adjacent translocation states determined by their base
pairing energy. The equation is derived from the Brownian-
ratchet model [13], in which forward translocation occurs in
three steps: (i) a fast equilibrium between position m and
position m + 1, (ii) recruitment of NTP at active site, (iii)
catalysis and release of pyrophosphate [Fig. 2(a)]. Fitting
kmax and Kd of Eq. (5) to experimental data identifies slow
translocation sites that precede the long-lived pauses. These
slow translocation events are interpreted as pretranslocated,
elemental pauses on the pathway of translocation. Further
elaboration of the on-pathway and off-pathway characteristics
of short pauses follows in the Discussion section.

C. Backtracking

Backtracking has been previously modeled using the Ar-
rhenius Eq. (6) with an activation barrier of 40 − 50 kBT for
each step of backward translocation [9]. This value seems
unreasonably high given that the free energy of base pairing

in a transcription bubble is typically less than −20 kBT [10]:

kbt = k1 exp (−�G/kBT ). (6)

We take the same Arrhenius approach but treat the first
step of backtracking differently from the subsequent ones
[Fig. 2(b)], based on the assumption that initially the 3′ end of
the nascent transcript blocks the active site and subsequently
invades the secondary channel of RNAP [14], while additional
backtracking stabilizes the interaction of RNA within the sec-
ondary channel.

We assume the energy barrier for an active TEC to enter
the backtracked state to be

�G0→−1 = �Gbt − G0, (7)

where �Gbt is a fixed activation energy specific for entering
a backtracked state. We can assume that �Gbt will be limited
to the energy available from complete collapse of the bubble,
which is estimated to be in the range −(10 ∼ 20)kBT . �G0

is the energy of a TEC at an active site. The rate constant to
enter the backtracked state from the active state (0) would be

k0,bt = k1 exp (−�G0→−1/kBT ), (8)

where k1 is the prefactor of backtracking.
For any further backward translocation of RNAP, the en-

ergy barrier should relate to the energy difference between
two adjacent translocation states and the backtracked distance.
Thus, for n > 0,

�G−n→−n−1 = �Gbt_increment + 0.5(G−n − G−n−1) (9)

and

k−n,bt = k1 exp(−�G−n→−n−1/kBT ), (10)

where �Gbt_increment represents the backtracking energy bar-
rier due to increase in the length of the transcript inserted into
the secondary channel.

The model considers that the recovery from a backtracked
state (kbtr) can be achieved by two pathways: a diffusive and
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FIG. 2. Model construction. (a) An illustration of RNAP forward translocation using Michaelis-Menten equation. (b) The free energy
landscape for the backtracking pathways. Note that the first backtracking step has different energy barrier than the deeper backtracking steps.
(c) The proposed kinetic mechanism for the hairpin-stabilized pause.

a cleavage pathway. The former occurs through RNAP dif-
fusion, which also follows the Arrhenius equation with the
energy barriers described above:

k−n−1,btr = k1 exp(−�G−n−1→−n/kBT ) (11)

and

k−1,btr = k1 exp (−�G−1→0/kBT ). (12)

The cleavage pathway occurs by cleaving nascent RNA in-
serted into the secondary channel to register the 3′ end of
nascent RNA in the active site. This process is likely to be
sequence independent, and was assumed to occur at a constant
rate.

Hypertranslocation, which refers to the forward translo-
cation of RNAP without concurrent RNA elongation at the
active site, is a pausing event translocationally similar to back-
tracking. However, we do not include hypertranslocation in
the model for two reasons. First, hypertranslocation may not
be a general phenomenon during transcription [15], and it can-
not be distinguished from backtracking in force spectroscopy
assays. Second, hypertranslocation is never energetically fa-
vored because the extent of base pairing is reduced with
respect to the active state.

D. Hairpin-stabilized pausing

To model a hairpin-stabilized pause, we take an allosteric
view, in which an RNA hairpin contacts a short α helix at the
tip of the RNAP flap domain that covers the RNA exit channel
to induce the pause [4,16]. The pathway is modeled as a fast
equilibrium between two configurational states, a state free of
hairpin and a state with a hairpin positioned close to the RNAP
flap domain. The equilibrium is followed by a rate-limiting
catalytic step [Fig. 2(c)]. The equilibrium is considered rapid

compared to the formation of chemical bonds that stabilize the
inactive state.

We use Eq. (13) to model the entry rate to the hairpin-
stabilized pause,

khsp = kon/(1 + Ki,h), (13)

where kon is the catalytic rate of interaction between the
RNA hairpin loop and the RNAP flap interaction, and Ki,h

is the fraction of hairpin formation. Equation (14) gives
the expression for Ki,h, which represents the equilibrium
among all possible RNA secondary structures. The secondary
structure of RNA transcript rapidly transitions among many
microstates, and the simulation of transitions among these
microstates is computationally expensive. We bypass this dif-
ficulty by simplifying the equilibrium to a two-state system of
the lowest energy state and the hairpin-included state:

Ki,h = exp

(
Glowest − Ghairpin_included

kBT

)
. (14)

In the absence of RNase A, which digests the nascent RNA
transcript, the lowest energy state is determined by allowing
all or at most a 100-nucleotide-long stretch of RNA outside
of the exit channel to fold freely. A state including a hairpin
is determined by first searching from the 3′ end of RNA for
possible hairpin structures near the exit channel (up to 30 nt)
before allowing up to 100 of the remaining ribonucleotides of
the transcript to fold freely. The equilibrium between the low-
est energy state and the hairpin state can be used to estimate
the fraction of hairpin formation. In presence of RNase A, the
length of freely folded RNA is shortened to 15 nt, which may
eliminate or generate pause stabilizing hairpins (see below:
Comparison of the model with experimental data).

A chemical bond between the hairpin loop and the RNAP
flap is required to stabilize the hairpin-flap interaction. The
catalytic rate relates to the length of stem and loop, and the
fraction of G and C in the loop as shown below:

kon = k2 exp

(
−Dstem ∗ �Gstem + Dloop ∗ �Gloop + FGC ∗ �GGC

kT

)
, (15)
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where k2 is the prefactor, Dstem and Dloop are the deviation
from optimal lengths of stem (3–8 bases) and loop (4–20
bases), respectively, FGC is the fraction of G and C nucleotides
within the loop, and �Gstem, �Gloop, and �GGC are the energy
changes due to Dstem, Dloop, and FGC .

The exit rate from a hairpin-stabilized paused state (khspr)
must be much slower than the entry rate, and is determined by
the rate of RNAP hairpin denaturation. For simplicity, the rate
is taken to be a constant.

E. The effect of tension and transcriptional factors

Tension and TFs have been reported as critical components
that can affect and even determine the transcription prod-
ucts by adjusting the energy profile of transcription complex
and/or interacting with transcription machinery [1,4]. The
effects of external tension and TFs on the thermodynamics of
TEC were considered in our model. For the forward translo-
cation and backtracking pathways, we employed the idea that
the equilibrium constant in forward translocation step Ki and
the energy barrier of backtracking step �Gn→n−1 is modulated
by the work produced by tension [17] and the presence of
GreB factors,

K∗
i = exp

(
Gpost − Gpre − F ∗ Lforward

kBT

)
(16)

and

�G∗
n→n−1 = �Gn→n−1 + �GGreB + F ∗ Lbt, (17)

where Gpre and Gpost are the energy of TEC in pre- and
posttranslocation states, respectively, Lforward and Lbt are the
effective lengths over which external tension acts in the
forward translocation step and in the backtracking step, re-
spectively, and �GGreB is the energy barrier change due to
GreB factor.

The hairpin-stabilized pause was assumed to be unaffected
by any applied tension, since it does not involve RNAP
translocation, but the length of a freely folded RNA transcript
can be limited by the presence of RNase A, as stated in previ-
ous sections. Since the experimental data we used to validate
the model were acquired under tension of magnitude ranging
from −7pN to 25pN and in presence (absence) of GreB and
RNase A, we quantitatively determined the effect of tension
and TFs by fitting the model with data acquired under different
experimental conditions.

F. Model training

It is important to note that transcription is a process
that involves only very small numbers of reactants, thus the
rates cannot be determined from the chemical law of mass
action. Rather, we apply two stochastic methods: (i) the
continuous-time Markov chain and (ii) stochastic simulation.
The continuous-time Markov chain allows us to analytically
solve for the expected time spent in each state at a certain
position. The stochastic simulation reveals how individual
pausing events develop. The details are given in the Methods
section.

The model is encapsulated in a MATLAB class object,
which can generate a predicted residence time histogram with

FIG. 3. Model fitting and prediction. (a) Stacked histogram pro-
duced by the model for the condition of 10 pN in presence of
RNase. The residence time due to different pausing mechanisms is
represented by different colors. The experimental result is shown
by the black line. Goodness of fitting is 0.948 for the major pause
sites except for c and 0.884 for the overall histogram. (b) Stacked
histogram produced by the model for the condition of 10 pN in
absence of RNase. Goodness of fitting is 0.959 for the major pause
sites except for c and 0.904 for the overall histogram. (c) Predicted
histogram by the model on an unfamiliar sequence. Goodness of
fitting is 0.871 for the overall histogram.
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TABLE I. Summary of experimental pause positions, durations, and mechansims for 10 pN under different transcriptional factor conditions.

Averaged duration(s)

Pause Position of peak (bp) WT +GreB +RNase Associated state(s)

a 9 0.66 0.58 0.64 Pretranslocated
b 34 0.94 1.27 0.59 Backtracked + hairpin stabilized
c 66 0.42 0.41 0.38 Unknown
d 94 0.74 0.96 0.33 Hairpin stabilized
his 161 0.68 0.95 0.25 Hairpin stabilized
P1 16 0.41 0.40 0.25 Hairpin stabilized
P2 44 0.16 0.17 0.34 Hairpin stabilized (with RNase)

the input of a template sequence and a guess of unknown
parameters. Thus, the model can be trained with the data from
real-time single molecule experiments. We used the time se-
ries obtained in high-resolution optical-tweezer transcription
experiments by Gabizon et al. [18], with or without GreB
and RNase A. The transcription experiments were performed
on a DNA template (8XHis) containing the T7A1 promoter
followed by eight tandem repeats of a 239 bp sequence
containing the his-leader pause site and four other known
sequence-dependent pause sites [1]. The temporal resolution
is high enough to detect pausing events longer than 100 ms.
For transcription rates of 10–20 bp/s, this is sufficient to
resolve pauses with one base-pair resolution using optical
tweezers. Alignment of the traces under different forces and
with different TFs generates the residence time histograms
(Fig. 3) as described previously.

G. Comparison of the model with experimental data

Experimental data under different conditions with vari-
ous accessory factors helped to expose the mechanisms of
the pauses. Also, the analysis of the backtracking dynamics

helped differentiate backtracked pauses from others. Table I
summarizes the position and duration of pauses as well as
their response to GreB or RNase (factors). Pauses at position
“a” are likely pretranslocation, since their duration is barely
affected by the addition of GreB or RNase. Pauses at position
b are likely due to both backtracking and hairpin-stabilization,
as their duration responds to the presence of GreB and RNase,
and they are preceded by a backward RNAP translocation, as
previous analysis suggests [18]. P1, d, and his are hairpin-
stabilized pauses that almost disappear in the presence of
RNase. Pause P2 is also hairpin-related, but unlike hairpin-
stabilized pause P1, d, and his, it only appears in the presence
of RNase.

We optimized the values of the model parameters
(Table II) to produce a dwell time histogram that resembled
the experimental data [Figs. 3(a) and 3(b)]. The model clearly
reproduces the positions and lifetimes of pauses observed ex-
perimentally except for pause c We propose possible reasons
why the model fails at pause c in the Discussion section.
The model also successfully predicts the mechanisms of the
pauses suggested by the experimental results [Fig. 4(a)]. The
experimental data suggest that the presence of GreB extends

TABLE II. Values (95% confidence interval from 100 bootstrapped values) of the optimized parameters under 10 pN assisting force and
WT conditions.

Parameters and descriptions Symbol and value Note

Rate of NTP catalysis for AUCG kmax = [85(9), 77(5), 82(9), 41(3)]s−1

Forward Equilibrium constant centerfor AUCG Kd = [34(3), 96(9), 15(2), 26(4)]μM Fitted
Translocation Effective length for forward translocation Lforward = 0.56(0.07)bp

Prefactor of backtracking k1 = 1000s−1 Fixed
Energy barrier height of first base-pair backtracking Gbt = 9.8(0.8)kBT

Backtracking Energy barrier height of deeper backtracking Gbt_incre = 1.8(0.1)kBT Fitted with fixed kmax and Kd

Effective length for backtracking Lbt = 0.06(0.01)bp

Energy change due to unlikely stem length �Gstem = Inf Fixed values
Energy change due to unlikely loop size �Gloop = Inf

Hairpin- Energy change due to GC fraction �GGC = 8.8(1.1)kBT Fitted with fixed kmax and Kd and
stabilized pause Hairpin-flap interaction rate kon = 807(71)s−1 backtrack related parameters

Hairpin denaturation rate khspr = 3.4(0.3)s−1

Allowed RNA-DNA hybrid length h = 7 ∼ 9 bp

TEC structure Allowed upstream spacer length u = 1 ∼ 3 bp Fixed range
Allowed downstream spacer length d = 1 ∼ 3 bp
Allowed number of single-stranded r = 1 ∼ 3 bp

RNA protected by RNAP
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FIG. 4. Averaged dwell times from experiments (blue) and model (red) at pause sites. (a) With various transcriptional factor conditions
under 10 pN assisting tension and (b) WT condition under different tensions. Error bars are the 25th and 75th percentile of 100 bootstrapped
values.

the dwell time at pause b [18]. The model achieves this effect
by adjusting the energy barrier of backtracking. The presence
of RNase significantly decreases the dwell time at sites P1,
d, and his, increases the dwell time at sites P2, and has little
effect on the duration of pauses at other sites. Constraining
the model to operate on shorter nascent RNA reproduces the
observed changes in pause times by slowing or destabilizing
hairpin formation at pause sites P1, d, and his while favoring
the hairpin formation at pause site P2 (Fig. 5).

The effect of tension is modeled by introducing two
different effective lengths Lforward and Lbt for forward and
backtracking translocations, respectively [Fig. 4(b)]. Notice
that the effective length for the forward translocation path-
way is shorter than 1 base, while the external force acts on
an effective length shorter than 0.1 base during backtrack-
ing (Table II). The fitted values of effective length agree
with those from previous work [13,19]. These results indi-
cate that opposing tension extends pauses by decreasing the
transcription rate and accentuating the entry into backtracked
pausing. It also supports the idea that the entry into long-
lived pauses, such as backtracked pauses, follows short-lived
pauses.

The predictive power of the model is demonstrated by the
fact that it accurately predicts major pauses in the transcription
of an unfamiliar 200-base sequence. This sequence preceding

FIG. 5. Comparison of the lowest energy conformation with one
including a proximal (3′) hairpin at position 44 (P2). Hairpin forma-
tion is unfavorable at this position without RNase. In the presence of
RNase, the length of freely folded RNA is limited to 15 nt, so hairpin
formation is favored.

the repeat region of the 8XHis template was not included in
the data used to optimize the model parameters. Figure 3(c)
shows that the model successfully predicts the main pauses
near bases 15, 45, 140, and 180 found experimentally by
aligning transcription records and histogramming the dwell
times.

To further test the validity of the model, we used Monte
Carlo simulations to generate a large number of transcription
traces, and we compared the dynamics of backtracking in
experimental and simulated traces. The pauses at site b in sim-
ulated traces were analyzed for backtrack depth and backtrack
duration (Fig. 6). The clear agreement between simulated and
experimental results lends further support to the model.

III. DISCUSSION

A. Strengths and limitations of the model

Note that, in the model, short, pretranslocated pauses (also
referred to as ubiquitous or elemental pauses elsewhere) are
identified as positions of slow forward translocation which is
on-pathway. In other reports, short pauses were identified as
off-pathway events that branch off from the active transloca-
tion pathway. The dwell time data from Gabizon et al. [18]
follows a power-law distribution up to 4–5 seconds as shown
in Fig. 7. There is no indication of decay from an off-pathway
elemental pause state. This led us to assume an on-pathway
elemental pause state and fitting Kd and kmax, Eq. (5) gives
a good agreement at elemental pause a and predicts the slow
translocation rates at other long-lived pause sites. Neverthe-
less, the current model, like others, cannot definitively place
elemental pauses on- or off-pathway, because differentiating
slow translocations from actual pausing is difficult. In fact, the
model shows greater agreement with the experimental data at
major, long-lived pause sites than elsewhere (see Fig. 3).

The previously reported values of Kd and kmax generate
different pause sites from those observed in the experimental
data examined here (Fig. 8) [12]. This may reflect the fact
that those values originated from modeling transcription data
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FIG. 6. Comparison between the backtracking dynamics in experimental and simulated data. (a) Examples of traces generated by Monte
Carlo simulation. The simulated traces show similar pauses at sites a, b, d, and his, and generate comparable transcription rates to experimental
data. (b) Distributions of backtrack depth observed experimentally and predicted by the model. (c) Distributions of backtrack duration observed
in the experiments and predicted by the model.

without localizing pauses. Alternatively, this difference might
indicate that an on-pathway state does not fully describe ele-
mental pauses. However, the goodness of fitting and accuracy
of prediction indicate that an on-pathway system patterned
on the M-M equation has sufficient complexity to effectively
model the elemental pauses. Given that the off-pathway events
may involve unknown rearrangement of active sites of RNAP,
fitting a system of suitable complexity is a good approach
to bypass the difficulty in modeling off-pathway elemental
pauses [20]. With our fitted values but not the previously
reported values of parameters, the M-M equation predicts a
slow translocation rate of 3.4 bp/s at a consensus elemental
pause site identified using NET-seq [7], which lends further
support for fitting Kd and kmax to produce correct pause
sites.

The model identifies transcriptional pausing sites and
correctly characterizes the mechanism of pausing. Our re-

FIG. 7. The probability density distribution of dwell times in the
transcription records. Dwell times ranged between 0.1 and 10 s with
a power law distribution, representing a single, on-pathway state
between 0.5 and 4 s and superposition of dwell times from other
states between 4 and 10 s.

sults support a previous theoretical analysis of transcriptional
pauses which suggests that long-lived pauses develop from
short-lived, more ubiquitous pauses [3]. For example, at pause
site b, backtracking is favored over forward translocation
because of the low forward translocation rate. Indeed, the
energetic parameters of the model would predict comparable
backtracking rates at the 35 bp site (pause b) and at the 190 bp
site, but the fast-forward translocation rate at the 190 bp
site diminishes backtracking (Fig. 9). Using the canonical
Michaelis-Menten expression, we determined that the forward
translocation rate along the template varies from less than
3 nt/s to 70 nt/s. This implies that a slowly transcribing
complex may enter into a long-lived pause at one site, even
if the backtracking energy barrier at this position is higher
than the barrier height at a position where transcription is
faster.

FIG. 8. Comparison between the experimental histogram and the
dwell time histogram generated by fixing Kd and kmax using previ-
ously reported values [12]. Exceptionally long pauses are predicted
at sites a (9 bp) and b (34 bp) and at 90 and 110 bp, where there are
no significant, experimentally observed pauses.
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FIG. 9. Backtracking probability is highly dependent on the
forward rate. The purple bands indicate two backtracking favored
energy profiles. The one at 35 bp has a slow forward rate and causes
pause b, while the one at 190 bp has a fast-forward rate and shows
no backtracking pause in both experiment and model fitting.

The model predicts that the effective length over which
tension acts is about one-half of a base pair for the for-
ward translocation pathway, but less than 0.1 base for the
backtracking pathway. This result suggests that ordinary lev-
els of force affecting translocation insignificantly affect the
backtracking rate. During backtracking, RNAP must ratchet
backward on the DNA and disrupt the RNA-DNA hybrid near
the active site. We hypothesize that the rate is determined in
large measure by the denaturation of the last formed base pair.
Thus, external forces cannot alter this process as much as
biasing the equilibrium constant in the forward translocation
pathway.

The hairpin-stabilized pause requires the interaction be-
tween a transcript hairpin and the RNAP flap domain.
Previous models simulated the folding of nascent transcripts
using the lowest-energy method [10,13,21]. However, that
method may not locate the correct positions of hairpins, since
RNA folds cotranscriptionally and may not readily reach the
lowest-energy configuration for RNAP at the pause site. In ad-
dition, simulation of co-transcriptional RNA folding requires
enormous computational resources, so we devised a method
which considers the stability difference between a structure
including a hairpin and the lowest-energy structure to estimate
the likelihood of hairpin formation. In this case, hairpins at
position 101 and 178, although they are stable structures, are
less likely to interact with RNAP than the less stable hairpins
at positions 94 and 161, which correspond to pauses at sites
d and his, respectively (Fig. 10). Our method also readily
reproduced pause P2, which is significantly lengthened in the
presence of RNase by favoring the proximal (3’) hairpin at
position 44 (P2) as illustrated in Fig. 5.

Some paused states are likely overlooked in the current
model. For example, the current model cannot characterize
the pauses observed at site c and at other less significant sites.
The duration of the pause at site c is largely unaffected by the

FIG. 10. Comparison of energy and Ki,h at different positions.
Hairpin formation is unfavorable at positions 101 and 178, although
the hairpin structures at these positions are fairly stable, while at
positions 94 and 161, the hairpin structures can readily form and
induce the hairpin-stabilized pauses.

addition of either GreB or RNase, suggesting a mechanism
distinct from backtracking or hairpin-stabilized pausing that is
not captured in the current model. In a recent work by Janissen
et al., three interconnected paused states were extracted from
long transcription assays, including an elemental paused state,
a backtracked paused state, and a backtrack-stabilized state
[22]. The backtrack-stabilized paused state is not included in
our model, since the data for the tandemly repeated, 239 bp
DNA sequence does not contain extremely long pauses (1̃00 s)
that are classified as backtrack-stabilized states by Janissen
et al.

B. Conclusion and outlook

This purely thermodynamic consideration of the transcrip-
tion complex accurately reproduces transcription kinetics. By
incorporating both class I and II pauses, the model refines our
current understanding of active pathway and branched path-
ways in transcription and can be used to predict the occurrence
of class I and II pauses that regulate transcription.

The model described herein significantly extends earlier ef-
forts to model the kinetics of transcription. Bai et al., Tadigotla
et al., and others independently proposed models in which the
kinetic of transcription is treated as a competition between
the active transcription pathway and a branched pathway
[9,10,12,13,21]. Although their models yield results in statisti-
cal agreement with experimental results, the predicted pauses
differ from those observed in single-molecule measurements,
and the effects of tension and TFs were neglected. By fit-
ting specific kinetic parameters under specific experiment
conditions, our model achieves not only statistical agree-
ment with experimental results but reveals quantitative details
regarding the effects of DNA sequences, applied tension,
and TFs.

Further improvements in our biochemical understanding
of transcriptional pauses, in the quality of experimental data
and in the model itself, could improve the predictive power.
For example, the model might predict the pause at site c
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if the mechanism underlying this pause is determined and
incorporated. Longer spans of high-resolution transcription
data would also improve optimization of the model and the ac-
curacy of predictions by providing more sequence variations.

IV. METHODS

A. Simulation of dwell time histogram using continuous-time
Markov chain

With the transition rates between states, we can write the
rate matrix of the Markov chain:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ∑
nk{1,n} k0,bt 0 . . . khsp kforward

k−1,btr + kcleavage 1 − ∑
nk{2,n} k−1,bt . . . 0 0

kcleavage k−2,btr 1 − ∑
nk{3,n} . . . 0 0

...
...

...
. . .

...
...

...
...

... . . .
...

...

khspr 0 0 . . . 1 − ∑
nk{12,n} 0

0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The elements of row n and column m represent the transition
rate from state n to state m. The rows (columns) represent
sequentially the active state, the backtracked states from 1–
10 backtracking depth, the hairpin-stabilized state, and the
next translocation state. The matrix is guaranteed nonsingular.
Given an initial state, which is clearly [1, 0, 0, . . . , 0, 0], the
time spent in each state can be expressed as a matrix exponen-
tial

τ = α exp (tQ)

= α

∞∑
n=0

t n(V DV −1)n

n!

= αVeDtV −1, (19)

where α is the initial distribution of states, V consists of the
eigenvectors of rate matrix Q, and D is a diagonal matrix of
the diagonal elements of eigenvalues of Q ordered like the
eigenvectors in V . Thus, the expected time spent in each state
is

μ = αV λV −1, (20)

where λ is the negative inverse of the diagonal element of D
after replacing 0 eigenvalues with 1.

B. Optimizing the model with experimental data

To optimize the model parameters, we first considered only
the forward translocation pathway and fitted the equilibrium
parameters Kd , the kinetic parameters kmax, and an effective
length Lforward over which the external force acts during the
forward translocation of RNAP. These parameters were opti-
mized to generate a histogram that maximizes the goodness of
fit (R), which is evaluated by the following equation:

R = 1 −
∑ |Oi − Xi|∑

Xi
, (21)

where Oi and Xi are the ith elements of the fitted and ex-
perimental histograms, respectively. In this step, parameters
related to forward translocation are fitted to produce slow
translocation rates at all experimentally detected pause sites.
The result suggests that the pause at position “a” is a pre-
translocated pause which is consistent with the experimental
data showing insensitivity to GreB. However, pauses at other

sites were characteristically longer than the dwell time pro-
duced by forward translocation only.

In the next step, we included the backtracked pathway,
the energy barriers �Gbt, �Gbt_increment, and an effective
length Lbt for backtracking, maintaining the parameters
of the forward translocation pathway set in the previous
step (Table II). To reduce the complexity of the model, we
fixed the prefactor k1 as 1000s−1. The result suggests the
backtracked pause is a large component of pauses at position
b but not at other positions, in agreement with the analysis of
backtracking dynamics.

Lastly, we included the hairpin-stabilized pause pathway
with the rest of the parameters in the model fixed at the
values identified in the preceding two steps (Table II). For any
hairpins with stems or loops exceeding 3–8 or 4–20 bases,
respectively, �Gstem and/or �Gloop were set to infinity as
they were unlikely to stabilize pauses. The result gives good
agreement with pauses at other sites.

We repeated the procedure above to fit the experimental
data with GreB and RNase. The goodness of fit is evaluated
for major pause sites (dwell time > 0.05 s) and overall his-
togram separately using Eq. (21). Overall, the model faithfully
reproduces pause times at all pause sites under all conditions
with the exception of pause c. Pauses at c might originate from
a different mechanism. Table II gives a list of the values of the
fitted model parameters.

We applied the tuned model from previous steps on a new
sequence. Since this new sequence precedes the repeat region
in the transcription experiment, we have fewer experimental
data on this sequence and the aligned histogram shows more
minor peaks than the histogram of the well-aligned repeated
region. Nonetheless, the tuned model successfully reproduced
the major pauses, as shown in Fig. 3(c), and the goodness of
fit on this unfamiliar sequence indicates the tuned model is not
an overfit.

C. Monte Carlo simulation and analysis
on backtracking dynamics

To further validate the model, we generated transcrip-
tion data using Monte Carlo simulation and compared the
dynamics of backtracking in the experimental and simulated
traces. Figure 6(a) shows the example traces generated by us-
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ing the optimized parameters shown in Table II under 10 pN of
assisting tension. The simulation was performed by calculat-
ing the probability of state transitions from the transition rates
every 0.001 s. We collected the backtrack depth and duration
from the simulated traces at pause site b and compared them
to the experimental results. Figures 6(b) and 6(c) show that
the simulated backtracking depth and duration were similar to
those observed experimentally.
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