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Spanning tree model and the assembly kinetics of RNA viruses

Inbal Mizrahi ,1 Robijn Bruinsma,1,2 and Joseph Rudnick1

1Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
2Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA

(Received 9 August 2021; accepted 17 May 2022; published 12 October 2022)

Single-stranded RNA (ssRNA) viruses self-assemble spontaneously in solutions that contain the viral RNA
genome molecules and viral capsid proteins. The self-assembly of empty capsids can be understood on the basis
of free energy minimization. However, during the self-assembly of complete viral particles in the cytoplasm of
an infected cell, the viral genome molecules must be selected from a large pool of very similar host messenger
RNA molecules and it is not known whether this also can be understood by free energy minimization. We address
this question using a simple mathematical model, the spanning tree model, that was recently proposed for the
assembly of small ssRNA viruses. We present a statistical physics analysis of the properties of this model. RNA
selection takes place via a kinetic mechanism that operates during the formation of the nucleation complex and
that is related to Hopfield kinetic proofreading.
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I. INTRODUCTION

Many single-stranded RNA (ssRNA) viruses, such as the
polio and common cold viruses, are able to self-assemble
spontaneously into infectious viral particles (“virions”) in
solutions that contain appropriate concentrations of viral cap-
sid proteins and RNA molecules [1,2]. For these viruses,
assembly is believed to be a purely passive process driven
by free energy minimization. Early work by Klug on the
tobacco mosaic virus (TMV) [3] indicated that RNA genome
molecules (“gRNA”) act as templates that direct the viral
assembly process. Klug proposed a physical model for viral
assembly in which the repulsive electrostatic interactions be-
tween positively charged groups of the capsid proteins are just
strong enough to overcome competing attractive hydrophobic
interactions between the proteins, thus preventing the self-
assembly of empty capsids under physiological conditions.
If then viral RNA molecules are added to the solution, the
negative charges of the RNA nucleotides neutralize some of
the positive charges of the capsid proteins tilting the free
energy balance towards assembly [4–7].1

gRNA molecules must compete for packaging with a
large pool of, quite similar, host messenger RNA (mRNA)
molecules [8]. For the case of influenza, the number of gRNA
molecules inside an infected cell is less than 104 [9] while
the total number of host mRNA molecules is in the range
of 3.6 × 105. For the case of the HIV-1 virus, the number
of gRNA molecules may be as low as 102. Like other ss-
RNA molecules, gRNA molecules have a treelike “secondary
structure” produced by Watson-Crick base pairing between
complementary RNA nucleotides of the primary sequence of
RNA nucleotides [10]. The redundancy of the genetic code al-

1For a quantitative treatment, see Ref. [21].

lows for the possibility of “silent” (or synonymous) mutations
that can alter the secondary structure of the molecule without
altering the structure of the proteins encoded by the nucleotide
sequence [11]. gRNA molecules appear to have undergone
different forms of evolutionary adaptation that increased the
packaging probability. On the one hand, gRNA molecules
have short sequences, known as packaging signals (PS), with
specific affinity for the capsid proteins of the virus [12–18].
On the other hand, the global topology of gRNA molecules
differs from that of generic mRNA molecules: they are longer
while their secondary structure is significantly more branched
and compact. Compactness reduces the radius of gyration of
the RNA molecules in solution and hence the free energy cost
of compacting the RNA molecules prior to encapsidation [19].

The physical aspects of ssRNA packaging have been exten-
sively studied experimentally, theoretically, and by numerical
studies of model systems [4–6,20–35]. Many of the theoretical
studies have focused on the minimization of the free energy of
assembled virions. This produced global measures for RNA
selectivity in terms of their length and the compactness of the
RNA molecules. On the other hand, experimental studies of
the self-assembly of empty capsids [36–38] were interpreted
in terms of a kinetic nucleation-and-growth scenario, where
the energetically uphill formation of a “nucleation complex,”
composed of a small number of capsid proteins, is followed
by an energetically downhill “elongation process” that ends
with the closure of the capsid.

This nucleation complex may be compared to the critical
nucleus of the classical theory of nucleation and growth the-
ory as applied to empty capsid assembly [39,40]. The TMV
assembly scenario proposed by Klug is actually a nucleation-
and-growth scenario with a nucleation complex composed of
a single PS associating plus a disk of proteins. The subsequent
elongation proceeds by the addition of more protein disks until
the end of the genome molecule is reached. The contribution
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FIG. 1. CryoEM asymmetric reconstruction of the MS2 virion.
The viral genome molecules (in green and blue) associate repro-
ducibly mostly with one half of the capsid shell (from Ref. [50]).

of the initial PS to the assembly free energy is probably very
small, which suggests that free energy minimization might not
be a good method to understand how TMV RNA is being
selected. Recent observations on the assembly kinetics of
individual MS2 viruses (a small ssRNA bacteriophage virus)
reported a wide distribution of timescales [41], which is con-
sistent with a nucleation-and-growth scenario. Next, for the
case of the assembly of the HIV-1 retrovirus (see [42] and
references therein), RNA selectivity was found to depend on
the cooperative action of a cluster of PS located at the 5′
end of the gRNA molecule, known as the ψ sequence. This
sequence is about 100 nucleotides long, which is again small
compared to the total length of the HIV-1 genome of about
104 nucleotides. HIV-1 gRNA selection appears to take place
during the nucleation stage of the assembly process when this
ψ sequence interacts with a small group of capsid proteins.
Changing the RNA sequence of the non-ψ part of the genome
molecules does not affect selectivity. The PS of HIV-1 was
shown to provide no significant thermodynamic advantage to
the gRNA molecules over nonviral RNA molecules of the
same length [43]. As for the MS2 case, the HIV-1 assembly
process is characterized by a broad distribution of timescales.

Important information about the kinetics of viral co-
assembly can be gleaned as well from purely structural
studies. Reconstruction of packaged genome molecules using
“icosahedral averaging” [44] showed that the interior sur-
face of the icosahedral capsids of the Nodaviridae [45,46])
is decorated by paired RNA strands lining the edges of the
“capsomers” (pentameric or hexameric groupings of cap-
sid proteins). Recent progress in cryoelectron tomography
has made it possible to reconstruct the way individual ss-
RNA genome molecules are packaged inside spherical capsids
without having to resort to icosahedral averaging (“asymmet-
ric reconstruction” [47,48]). An important example is again
the MS2 virus. It was found that sections of the RNA genome
rich in PS reproducibly associate with roughly half of the
interior surface of the capsid [49,50], as shown in Fig. 1. The
remaining capsid proteins do not associate in a reproducible
manner with the gRNA. These results can be interpreted as
evidence for a well-defined nucleoprotein complex held to-
gether by a particular section of the viral RNA molecule that
is rich in packaging sequences while the subsequent downhill
elongation process is driven by generic electrostatic interac-

tions. In contrast, the asymmetric reconstruction of the CCMV
and BMV plant viruses produced only a very small amount
of reproducible RNA-protein association [48]. Interestingly,
this same group of viruses is much less selective than MS2.
In fact, CCMV capsid proteins promiscuously select BMV
gRNA over their own CCMV gRNA, while they package a
wide variety of nonviral ssRNA molecules and even non-RNA
polyelectrolytes [51,52].

The nucleation-and-growth scenario provides a possible
framework for RNA selection in which the PS reduce the
height of the assembly energy activation barrier. This se-
lectively increases the packaging probability of viral RNA
molecules as compared to the packaging of host mRNA
molecules. Since the production rate of virions depends expo-
nentially on the height of activation energy barrier, a limited
number of PS could have a disproportionally large effect
on the RNA selectivity. Such a mechanism might be called
“selective nucleation.”2 The action of PS would be similar in
this view to that of enzymes or catalysts that increase the rate
of a chemical reaction by reducing the height of an energy
activation barrier. This selective nucleation scenario should
be contrasted with the selection mechanism based on RNA
compactness that was discussed earlier

The aim of this article is to explore the physics of selective
nucleation for the case of a recently proposed mathematical
model of RNA-directed viral assembly, the “spanning tree
model.” This model allows for tens of thousands of competing
RNA secondary structure configurations that have the same
final assembly energy but different assembly energy barriers
and assembly pathways. In this model, there is practically no
selectivity under conditions of thermodynamic equilibrium,
which allows us to focus on selective nucleation. The model,
which is sufficiently simple so its kinetics can be determined
by numerical integration of a set of coupled master equations,
is itself a generalization of an earlier model for the assembly
of empty dodecahedral capsids by Zlotnick [53–55]. The Zlot-
nick model obeys a nucleation-and-growth assembly scenario
[56] and it has been used to carry out productive simulations
of the packaging of linear genome molecules [7,57]. Using
the spanning tree model, we investigate how long kinetic
specificity can persist in the face of a final state of thermal
equilibration in which there is no selectivity.

The spanning tree model is introduced in Sec. II, followed
by a topological and geometrical classification of the model
genome molecules. Next is a discussion of minimum energy
assembly pathways and of the structural properties of the par-
tial assemblies. In Sec. III, we introduce the nonlinear master
equation for the assembly kinetics. Numerical integration of
the master equation is used to determine the characteristic
time scales of the assembly kinetics and to study packaging
competition between different classes of genome molecules
for different levels of supersaturation and RNA-to-protein
mixing ratios. In Sec. IV we examine a two-stage packaging
scenario to compare the results with a collective assembly
scenario. In the concluding Sec. V we summarize our results,
discuss experimental predictions, and return to the question of

2Selective nucleation was proposed by Rouzina in the context of
the assembly of retroviruses.
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FIG. 2. Empty capsid assembly pathway. The figure shows one
of the minimum-energy pathways for the assembly of a dodecahedral
shell composed of 12 pentamers with adhesive edges. Note that the
assembly intermediates all are compact structures.

kinetic selection by PS versus thermodynamic selection based
on RNA compactness.

II. SPANNING TREE MODEL

A. Empty capsid assembly

The Zlotnick model treats the capsid as a dodecahedral
shell composed of 12 pentamers. The 60 proteins of the shell
correspond to the capsid of a minimal “T = 1” virus. As-
sembly is driven by attractive edge-edge interactions between
the pentamers. A minimum-energy assembly pathway can be
defined as a pentamer-by-pentamer addition sequence where
each added pentamer is placed in a location that minimizes
the free energy of the partial shell. An example of one of
the very many (�105) degenerate minimum-energy assembly
pathways is shown in Fig. 2. The assembly energy �E (n)
of a partial shell composed of n pentamers is defined to
be �E (n)/E0 = −(n1 + nμ0). Here, E0 is the magnitude of
the edge-to-edge binding energy between pentamers. This
binding energy can be estimated by comparison with thermo-
dynamic assembly studies of empty capsids, giving a value
for E0 of about 4.3kbT [53]. In the following, energy pa-
rameters will be expressed in units of E0. Next, n1 is the
number of shared pentamer edges of the partial shell and
μ0 is the pentamer chemical potential at a certain reference
concentration. The assembly energy of a complete capsid
equals �E (12)/E0 = −(30 + 12μ0) for all minimum energy
assembly pathways. Assembly equilibrium is the state where
the chemical potential of a pentamer in solution is the same
as the energy of a pentamer that is part of a capsid. This is
the case if �E (12) = 0 so if the reference chemical potential
equals μ∗ = − 5

2 .
Figure 3 (top) shows the minimum energies of the n-

pentamer partial assemblies of Fig. 2 for three different values
of the reference chemical potential near μ∗. All minimum
energy assembly pathways of the Zlotnick model have the
same value of n1 for given n so this minimum energy assem-

FIG. 3. Top: Energy profiles of a minimum-energy assembly
pathway of the Zlotnick model. Blue dots: The chemical potential μ0

is slightly below μ∗, the value of the chemical potential for assembly
equilibrium. Orange squares: μ0 is equal to μ∗. Green diamonds: μ0

is slightly above μ∗. Bottom: Assembly energy profiles according to
the continuum theory of nucleation and growth [39]. Solid red dots:
energy minima. Solid black dots: energy maxima.

bly pathway is highly degenerate. For μ0 < μ∗, the absolute
energy minimum is at n = 0 while for μ0 > μ∗ the absolute
minimum is at n = 12, the assembled capsid. The assembly
activation energy barrier of a profile is the height of the
maximum. The location n∗ of the maximum under equilib-
rium conditions corresponds to a half-filled shell, shifting to
lower values as μ0 increases. For comparison, Fig. 3 (bottom)
shows the assembly energy of a spherical cap growing into a
spherical shell [39], which produces the standard nucleation-
and-growth profile. The initial rise of �E (n) with n is due
to the fact that the line energy of the perimeter of the cap
increases with n for n less than six while the subsequent drop
of �E (n) is due to the fact that the line energy decreases as a
function of n for n larger than six, when the perimeter starts to
shrink.

B. Spanning trees and their classification

The second part of the definition of the model concerns
the representation of RNA molecules. The RNA molecules
are assumed to be compacted into dodecahedra of identical
size whose shape matches the interior of the dodecahedral
capsid of the Zlotnick model. The molecules differ only in
terms of a “PS section” that is in contact with the capsid.
This section is assumed to have a secondary structure in the
form of a tree graph with 20 nodes that cover all the vertices
and 19 links, leaving 11 of the 30 edges of the dodecahedron
uncovered. This choice, motivated by the organization of the
RNA genome molecules of the Nodaviridae [45,46], allows
for considerable mathematical simplification. The interaction
between the 19 links of the tree and the capsid constitute the
specific interactions while the interaction of the 11 remaining
edges with the capsid constitute the generic contacts.
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FIG. 4. Left: Spanning tree with nodes located on the vertices of
a dodecahedron. The solid lines are the links of the spanning tree,
while the dashed lines indicate edges of the dodecahedron that are
not links of the spanning tree. A maximum of six pentamers, shown
in blue, can be placed on the dodecahedron such that each pentamer
is wrapped by four links. Right: Planar graph of the spanning tree.

Tree graphs are defined as collections of nodes connected
by links such that there is one and only one path of links
connecting any pair of nodes [58]. A spanning tree graph
of a polyhedron is defined as a tree graph whose nodes are
located on the vertices of the polyhedron with just enough
links to connect the nodes together in a tree structure [59].
For a dodecahedron there are of the order of 105 spanning
trees that represent the different possible PS configurations
of the spanning tree model. Figure 4 (left) shows on the left
an example of a spanning tree graph of the dodecahedron.
The projection of this spanning tree on the plane is shown
on the right. Now place a pentamer on the spanning tree. Each
pentamer interacts with five edges of the dodecahedron, but
by drawing different spanning trees one can convince oneself
that a pentamer can interact with no more than four links of
a spanning tree. If the interaction of pentamer edges with
the links of the spanning tree is energetically favorable, as
we will assume, then a cluster of pentamers minimizes the
interaction free energy between pentamers and spanning tree
by maximizing the number of pentamers in contact with four
links of the spanning tree. The figure shows that a maximum
of six pentamers can be positioned in this fashion. We will say
that the wrapping number of this tree structure is NP = 6. The
maximum wrapping number for a spanning tree of the dodeca-
hedron is eight while the minimum is two. The same spanning
tree can in general be distributed over a dodecahedron in
different ways, resulting in different wrapping numbers. The
wrapping number is thus not a topological characteristic of the
secondary structure.

The compactness of a spanning tree is a measure of the
probability that two pentamers placed on the dodecahedron
are able to share an edge. The maximum ladder distance (or
MLD) is a frequently used measure of the compactness of
a secondary structure [19,60]. The MLD of a spanning tree
graph is defined here as the maximum number of links sepa-
rating any pair of nodes. In graph theory, the ladder distance
between two nodes of a tree graph is called the “distance”
while the MLD is known as the “diameter” of a tree graph
[58]. The MLD of the tree molecule shown in Fig. 4 is 9.
It can be demonstrated that the smallest possible MLD for
a spanning tree of the dodecahedron is 9 (see Appendix A)
while the largest possible MLD of a spanning tree is 19.
Minimum MLD spanning trees resemble Cayley trees while

FIG. 5. Heat map of the number of spanning trees for different
wrapping and MLD numbers. The circular marker indicates spanning
trees that are maximally adapted for packaging with MLD = 9 and
NP = 8, while the polygonal marker shows spanning trees that are
minimally adapted for packaging with MLD = 19 and NP = 2.

maximum MLD spanning trees are Hamiltonian paths. These
are walks without self-intersection that visit all vertices of a
polyhedron [17,61]. In the absence of interactions, the so-
lution radius of gyration of a branched polymeric molecule
increases with the MLD as a power law [62]. A systematic
comparison between the genomic RNA molecules of RNA
viruses confirms that they have significantly lower MLDs
than randomized versions of the same molecules [19,60].
In Ref. [11] the authors showed that this result holds also
when the randomization only amounts to synonymous mu-
tations. It should be emphasized however that in our paper
the MLD concept is applied only to the PS section of twenty
links.

The wrapping number and the maximum ladder distance
are the two characteristics that we will use to classify spanning
trees. Figure 5 is a plot of the class size, i.e., the number of
spanning trees for a given pair of wrapping and MLD num-
bers. The class size has a pronounced maximum for spanning
trees with MLD and NP numbers in the range of MLD = 12
and NP = 5. The typical class size is about 4 × 103 in this
range. If different spanning trees would have the same a priori
probability, then spanning trees with MLD and NP numbers
in this range would be overwhelmingly more probable than
spanning trees that are maximally adapted for packaging,
with MLD = 8 and NP = 9 (circular dot), or spanning trees
that are minimally adapted, with MLD = 19 and NP = 2
(polygonal dot). Under such conditions, the logarithm of the
class size could be viewed as a configurational entropy. The
configurational entropy of an annealed branched polymer
composed of 19 monomers not constrained to be a spanning
tree is known to approximately 19 − MLD2/19 [62], which
has a maximum at the smallest possible MLD. Evidently,
the demand that a tree molecule also is a spanning tree of a
dodecahedron significantly alters the configurational entropy.
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The plot would seem to give the impression that there are no
spanning trees that are maximally adapted for packaging, with
MLD = 8 and NP = 9 (circular dot), nor spanning trees that
are minimally adapted, with MLD = 19 and NP = 2 (polyg-
onal dot). In actuality, there is a relatively small but finite
number of such spanning trees, though this is not visible in
the heat map. Appendix B shows projections of the class size
on the MLD axis and of the class size on the NP axis, which
make it clear that there are spanning tree realizations for all
allowed MLD and NP numbers.

C. Assembly energy profiles

The next step is to construct the minimum energy assembly
pathways and energy profiles for the spanning tree model.
The initial state is a spanning tree molecule folded over the
edges of a mathematical dodecahedron with no pentamers.
Different spanning trees are assumed to have the same folding
energy prior to the binding of pentamers. Next, pentamers are
placed on the dodecahedron, one after the other. The energy
of a cluster of n pentamers associated with a spanning tree is
defined as

�E (n)/E0 = −[n1 + n2ε + n3(1 + 2ε) + nμ0]. (2.1)

Here, n1 � 11 is the number of edges shared between two
pentamers that are not covered by a spanning tree link. The
corresponding affinity is denoted by minus E0, as for the
Zlotnick model. Next, n2 is the number of pentamer edges that
are in contact with a link of the spanning tree while the edge is
not shared with another pentamer. The dimensionless number
ε is here the ratio of the affinity of a pentamer edge with
a spanning tree link over the affinity between two pentamer
edges that are not in contact with a link. Finally, n3 is the
number of spanning tree links that lie along a pentamer edge
that is shared with another pentamer. Interactions between
edges and spanning tree links are assumed to be additive so
the bond energy of such a link is −(1 + 2ε)E0. The assembly
energy of a complete particle is equal to �E/E0 = −[19(1 +
2ε) + 11 + 12μ0] for all spanning trees, with, as before, μ0

the reference pentamer chemical potential. Importantly, the
assembly energy of complete particles does not depend on the
class of spanning trees. Note that compared with the Zlotnick
model ε is the only new energy parameter.

Examples of minimum-energy assembly profiles are shown
in Fig. 6. The top figure shows the assembly energy profiles of
NP = 8, MLD = 9 and of NP = 2, MLD = 19 spanning trees,
both for ε = 0.5. The reference chemical potential is close to
that of assembly equilibrium (μ∗ � −4.083). The activation
energy barrier of NP = 8, MLD = 9 spanning trees is about
2E0 lower than that of the NP = 2, MLD = 19 spanning trees.
The curious horizontal flatness of the middle section of the
energy profile of NP = 8, MLD = 9 spanning trees is acci-
dental [when a pentamer is added on maximal wrapping sites
making two new contacts with adjacent pentamers then the
energy change in units of E0 equals −(2 + 4ε + μ0) = 0 for
ε = 0.5 and μ0 = 4]. Because for NP = 2, MLD = 19 trees
there are no adjacent maximal wrapping sites, the energy
profile continues to increase with n over this interval for n
less than five.

FIG. 6. Top: Minimum-energy assembly profiles for NP = 8,
MLD = 9 and NP = 2, MLD = 19 spanning trees. The affinity ra-
tio is ε = 0.5 and the reference chemical potential is μ0 = −4.0.
Energies are expressed in units of the overall scale E0. Bottom:
Same except that ε = 1.1 and the reference chemical potential is
μ0 = −6.0.

The bottom figure shows the same case except that ε = 1.1
while the reference chemical potential is raised to μ0 = −6.0
in order to maintain a state that is close to assembly equi-
librium. The difference between the assembly energy barriers
has increased to about four units of E0. This is expected since
increasing ε increases the energy contrast between pentamer
bonds that are and that are not lined by an RNA link. However,
the minimum energy state of the NP = 8, MLD = 9 span-
ning tree is now at n = 10. This means that the minimum
energy state is a particle with two missing pentamers! This
type of breakdown of the nucleation-and-growth assembly
scenario becomes increasingly frequent as ε is raised
beyond 0.5.

An important observation is that different spanning trees
with the same NP and MLD numbers nearly all have the same
energy profiles. The minor changes of the energy profiles of
the very few exceptional cases are shown in Fig. 6 (top). Since
molecules with the same NP and MLD have practically always
the same assembly energy profiles, we can treat the group of
spanning trees with the same NP and MLD as belonging to
a class of molecules characterized by a particular minimum
energy assembly profile. The very large original degeneracy
of the Zlotnick model thus has been lifted in terms of these
different classes. Since the class size is now the number
of configurations associated with a certain minimum energy
assembly pathway, one might view the logarithm of the class
size as the entropy of a particular assembly pathway.

D. Assembly trajectories

Next, we explored the space of all possible minimum en-
ergy assembly trajectories. The results are shown in Fig. 7.
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FIG. 7. Minimum-energy assembly trajectories of NP = 8,
MLD = 9 spanning trees (top) and NP = 2, MLD = 19 spanning
trees (bottom). Each dot marks a physically distinct intermediate
structure with, from left to right, n = 0, 1, . . . , 12 pentamers. Every
possible path from n = 0 to n = 12, including back steps, represents
a possible minimum energy assembly pathway.

Each dot marks a physically distinct assembly intermediate.
Assemblies related by a symmetry operation of the dodecahe-
dron are being treated as the same. Assembly intermediates
can be assigned “coordinates” (n, i) with n = 0, 1, . . . , 12
the number of pentamers of the intermediate state and with
i = 1, 2, . . . , m(n) ranging over the distinct n-pentamer states
m(n) the number of distinct n-pentamer intermediates. The
multiplicities of the NP = 8, MLD = 9 spanning trees and
the NP = 2, MLD = 19 spanning trees are shown in Fig. 8.
The multiplicity of the n = 5 assembly intermediates of the
NP = 2, MLD = 19 spanning trees is about 102 times larger
than that of the NP = 8, MLD = 9 spanning trees.

A black line linking two intermediate states in Fig. 7 in-
dicates that the two states can be interconverted by addition
or removal of a pentamer. Assembly of viral particles can
be viewed as a net “current” flowing from the n = 0 source
state to the n = 12 sink state along all possible paths across
the network linking the initial state to the final state. Under
conditions of thermodynamic equilibrium, the current across
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FIG. 8. Multiplicities m(n) of the NP = 8, MLD = 9 spanning
trees (top) and the NP = 2, MLD = 19 spanning trees (bottom).

each individual link should be zero according to the princi-
ple of detailed balance. Assuming that the assembly energy
profiles of spanning trees with the same NP and MLD are all
the same allows us to define a “low temperature” Boltzmann
distribution for the assembly intermediates of RNA molecules
with a particular NP and MLD:

PB(n) ∝ exp −�F (n), (2.2)

where �F (n) = β�E (n) − ln m(n) − n ln c f (eq). The sec-
ond term includes the entropic free energy associated with the
multiplicity m(n) of n-pentamer assemblies. The third term
is the correction to the pentamer solution chemical potential
for the general case that the equilibrium concentration of
free pentamers c f (eq) differs from the reference concentration
(which is our unit of concentration). With “low temperature”
we mean here that we only include n-pentamer assembly
intermediates that minimize the assembly energy for given
n. In Appendix C we discuss the equilibrium phase behavior
obtained from this Boltzmann distribution. It turns out to be
typical of that of self-assembling systems in general. There is
a critical pentamer concentration (“CAC”) below which viral
particles do not form and above which the particle concentra-
tion increases linearly with the pentamer concentration. The
equilibrium phase diagram is only very weakly dependent on
the MLD and NP numbers so there is practically no selectivity
under equilibrium conditions.

If ε is significantly increased above 0.5, in order to increase
selectivity, then kinetic traps appear in the assembly energy
profile while assembly intermediates start to undergo struc-
tural transitions, as discussed in Appendix D. Also, completed
particles no longer are minimum free energy states, as we
saw earlier. For this reason we will maintain in the following
ε = 0.5 as a reasonable choice.
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III. KINETICS AND PACKAGING COMPETITION

In order to construct the kinetics, we start by characterizing
the graph of the assembly pathways of spanning tree with
given NP and MLD in terms of an adjacency matrix Ai, j

n for
the intermediate states shown in Fig. 7. This adjacency matrix
equals one if a link connects intermediate state (n, i) to state
(n + 1, j) and zero if there is no link. Next, we define for each
intermediate (n, i) of the network a time-dependent occupa-
tion probability Pi,n(t ). The assembly process is assumed to
be Markovian with the probabilities Pi,n(t ) evolving in time
according to the master equation [63]

dPi,n(t )

dt
=

∑
j

{
Aj,i

n−1Wn−1,nPj,n−1(t ) + Ai, j
n Wn+1,nPj,n+1(t )

}

− Pi,n(t )
∑

j

{
Aj,i

n−1Wn,n−1 + Ai, j
n Wn,n+1

}
. (3.1)

Here, Wn,n+1 is the on rate for the transition of an intermediate
with n pentamers to one with size n + 1 by the addition of a
pentamer while Wn,n−1 is the off rate at which a pentamer is re-
moved from an assembly of size n. Physically, the assumption
of Markovian kinetics means that the rate of change Pi,n(t )
is completely determined by the occupation probabilities at
time t . We will assume a simplified diffusion-limited chemical
kinetics [64] in which the addition or removal of a pentamer
to an assembly of size n is treated as a bimolecular reaction
with an on rate that has the form of a kinetic Monte Carlo
algorithm:

Wn,n+1 = λc f (t )

{
e−��En,n+1 if �E (n + 1) > �E (n),
1 if �E (n + 1) < �E (n).

(3.2)
The concentration c f (t ) of free pentamers is in general time
dependent, and different from the reference concentration be-
cause assembly of capsids reduces the concentration of free
pentamers. The on rates are thus time dependent as well.
Next, ��En,n+1 = �E (n + 1) − �E (n) is the energy cost of
adding a pentamer while λ is a base rate that depends on
molecular quantities such as diffusion coefficients and reac-
tion radii but not on the pentamer and RNA concentrations.
The inverse of λ is the fundamental timescale of the kinetics.
In the following, time will be expressed in units of 1/λ. If
��En,n+1 is negative, then the on rate is equal to this base rate
while if ��En,n+1 is positive, then the base rate is reduced by
the Arrhenius factor e−��En,n+1 .

The off-rate entries Wn+1,n are determined in part by the
condition that in the long-time limit the occupation prob-
abilities Pi,n(t ) must approach the equilibrium Boltzmann
distribution (2.2). This imposes the condition of detailed bal-
ance Wn,n+1

Wn+1,n
|t→∞ = PB (n+1)

PB (n) = c f (eq) e��En,n+1 . Separately we
also demand, on physical grounds, that the off rates for the
release of a protein from a cluster should be independent of
the solution concentration of free pentamers. Both conditions
are satisfied by imposing

Wn,n+1

Wn+1,n
= c f (t )e��En,n+1 . (3.3)

The definition of the kinetics is completed by noting that
ratio of the free pentamer concentration c f (t ) over the total

FIG. 9. Top: Packaging kinetics of MLD = 9 and NP = 8 span-
ning trees. Parameter values are E0 = 4kbT for ε = 0.5, c0 = 1,
D = 0.5, and μ0 = −4. Bottom: Packaging kinetics of MLD = 19,
NP = 2 spanning trees for the same parameters.

time-independent pentamer concentration c0 is determined by
pentamer number conservation:

c f (t )/c0 = 1 − (D/12)
12∑

n=0

(
m(n)∑
i=1

nPi,n(t )

)
. (3.4)

Here, D ≡ 12rt/c0, with rt the total RNA concentration, is the
RNA to protein mixing ratio. If D = 1, then there are exactly
enough pentamers to encapsidate all spanning trees, which
corresponds to the stoichiometric ratio. Because all occupa-
tion probabilities enter in the relation for c f (t ) that itself enters
in all 13 equations, the rate equations form a coupled set of
nonlinear differential equations. In the following subsections
these equations are solved by numerical integration using
Mathematica.

A. Timescales

Figure 9 shows the packaging kinetics of RNA molecules
that represent maximal (top), respectively, minimal (bottom)
packaging adaptation. For the overall energy scale we used
a value E0 = 4kbT , close to that of the pentamer-pentamer
affinity of the Zlotnick model for empty capsids. The ratio
ε between RNA and pentamer to pentamer and pentamer
interaction was set to ε = 0.5. Next, the total pentamer
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concentration was set to c0 = 1 and the mixing ratio to D =
0.5, which means that there are twice as many pentamers as
would be necessary to package all RNA molecules. Finally,
we set the reference chemical potential to μ0 = −4, which is
close to the assembly equilibrium chemical potential.

In both cases, thermal equilibrium is reached in the t → ∞
limit. The fractions of RNA molecules being packaged are
roughly equal (about 66%), reflecting the fact that the two
classes of molecules have the same assembly energy. The
remaining small difference is due to the fact that the en-
tropy of the assembled particles for the two classes is not
exactly the same because of differences between the energy
cost of removing one or two pentamers under the action of
thermal fluctuations. The reason that a significant fraction
of RNA molecules are not being packaged, despite the fact
that there are more than enough pentamers to package all
RNA molecules, reflects the fact that the chemical potential
is close to assembly equilibrium. The global shapes of the
time dependence of the occupation probabilities are similar
but the timescales are quite different, about 105 time units for
MLD = 9 and NP = 8 spanning trees and about 107 time units
for MLD = 19, NP = 2 spanning trees. This difference re-
flects the fact that the assembly activation barrier is about 2E0

larger (so about 8kbT ) for the MLD = 19, NP = 2 spanning
trees.

In order to compute relaxation times, one first completes
the definition of the rate matrices by introducing the diagonal
entries Wn,n = −∑

m 	=n W (m, n). The resulting matrix Wm,n

now has column elements adding to zero. Using this com-
pleted transition matrix, the master equation can be rewritten
in the form of the matrix equation dP

dt = WP. This looks like
a linear rate matrix equation but because the concentration of
free pentamers is self-consistently dependent on all occupa-
tion probabilities through Eq. (3.4), the rate matrix W itself
depends on the occupation probabilities. However, in the long-
time limit when the system is close to thermal equilibrium,
one can replace the occupation probabilities in Eq. (3.4) by the
equilibrium Boltzmann probabilities. The equation dP

dt = WP
then does reduce to a linear rate matrix equation, which can
be solved by standard matrix diagonalization methods. The
eigenvalues of the rate matrix are the late time decay rates of
the various modes that correspond to the eigenvectors. The
thermalization time tr is the inverse of the smallest eigenvalue
of Wm,n. This gives tr � 3.26 × 105 for the MLD = 9, NP = 8
spanning trees and tr � 3.4 × 107 for the MLD = 19, NP = 2
spanning trees, consistent with the numerical results.

This thermalization time can be compared with the early-
time assembly delay time td , i.e., the time lag between the
establishment of solution assembly conditions and the first
appearance of assembled viral particles. We obtain td from the
intersection of the tangent to P12(t ) at the point of maximum
slope with the horizontal axis (see Fig. 10). For the case of the
MLD = 9 and NP = 8 class of spanning trees, this gives about
8.5 time units, so four to five orders of magnitude smaller
than the thermalization time. Other classes have compara-
ble delay times. Measured delay times for the assembly of
empty capsids are in the range of minutes [36–38], which
indicates that the time unit 1/λ is in the range of 1–10 s. The
thermalization time under conditions of assembly equilibrium
would then be in the range of 200 h for MLD = 9, NP = 8

FIG. 10. Definition of the delay time as the intersection of the
tangent to the assembly curve P12(t ) with maximum slope with the
time axis. The parameters are MLD = 9, NP = 8, ε = 0.5, c0 = 1,
D = 0.5, and μ0 = −4.

spanning trees and two orders of magnitude longer for the
MLD = 9, NP = 8 spanning trees. In actuality, in vitro assem-
bly experiments are carried out on supersaturated solutions.
When the reference pentamer chemical potential μ0 is raised
to −3.6, which corresponds to a moderate level of supersatu-
ration, the thermalization time reduces to a, more reasonable,
8.3 × 103 time units while the delay time remains about the
same.

B. Packaging competition

The kinetic equations can be extended to the case of pack-
aging competition in a solution that contains equal amounts of
two types of spanning trees, say (1) and (2), that are compet-
ing for pentamers. The two occupation probabilities P(1,2)

i,n (t )
both obey a set of 13 master equations for the respective
13 occupation probabilities. These two sets of equations are
then coupled because the same free pentamer concentration
appears in both sets of equations. This free pentamer condition
is, in turn, determined by the condition of pentamer number
conservation, which now takes the form

c f (t )/c0 = 1 − (D/24)
12∑

n=0

⎛
⎝m(1)

n∑
i=1

nP(1)
i,n (t ) +

m(2)
n∑

i=1

nP(2)
i,n (t )

⎞
⎠.

(3.5)

In Fig. 11, we show the outcome of a packaging competi-
tion experiment with the same total amount of RNA molecules
and pentamers as before but now with half of the RNA
molecules being MLD = 9 and NP = 8 spanning trees and
the other half MLD = 19, NP = 2 spanning trees. The top and
middle sections of Fig. 11 show that the fraction packaged
MLD = 9, NP = 8 molecules is significantly larger than the
fraction of packaged MLD = 19, NP = 2 molecules up to
about 106 time units. About 80% of the MLD = 9, NP = 8
molecules are packaged at that time, as against only a few per-
cent of the MLD = 19, NP = 2 spanning trees. For later times,
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FIG. 11. Packaging competition between MLD = 9, NP = 8
spanning trees and MLD = 19, NP = 2 spanning trees with the same
parameters as the previous figure. Top: timescale 105 units; middle:
timescale 107; bottom: timescale 108 units.

the packaged fraction of MLD = 9, NP = 8 spanning trees
starts to decrease slowly. This means that fully assembled
MLD = 9, NP = 8 particles are disassembling. The fraction of
packaged MLD = 19, NP = 2 spanning trees increases corre-
spondingly: pentamers freed up by disassembly of MLD = 9,
NP = 8 spanning trees are being used to feed the assembly
of the MLD = 19, NP = 2 spanning trees. The bottom fig-
ure shows the eventual approach to thermal equilibrium when
the packaging fractions of the two classes are nearly the same.
The fact that during packaging competition the disassembly of

FIG. 12. Packaging competition between MLD = 9, NP = 8
spanning trees and MLD = 19, NP = 2 spanning trees with the same
parameters as the previous figure except that the mixing RNA to
protein mixing ratio has been increased to D = 2.

completed particles is an essential step in the final approach to
thermal equilibrium will play a key role in the following.

We now can explore under which conditions kinetic se-
lectivity is maximized, both in terms of the ratio between
packaging fractions and in terms of the late time persistence
of the selectivity. One key quantity turns out to be the mixing
ratio D. For the D = 0.5 value that we have been using until
now, there was a significant excess of pentamers. We reasoned
that if the early packaging of MLD = 9 and NP = 8 parti-
cles would deplete the available pentamers then increasing
D might “starve” the subsequent assembly of MLD = 19,
NP = 2 spanning trees, which could extend the time interval
over which the packaging of MLD = 9, NP = 8 spanning trees
dominates. We tested this for the case of D = 2. In that case
there would be only enough pentamers to package half of all
RNA molecules. Figure 12 shows what happens. The fraction
of packaged MLD = 19, NP = 2 spanning trees at 5 × 107

time units does decrease, from about 0.25 to about 0.12, but
the fraction of packaged MLD = 9, NP = 8 spanning trees
also decreases, from about 0.7 to about 0.27. The increase
of the mixing ratio increased only marginally the packaging
fraction ratio.

We then reasoned that the starvation effect would be en-
hanced under conditions of supersaturation since that reduces
the concentration of free pentamers. In Fig. 13 we show
the result of reducing the reference chemical potential from
μ0 = −4.0 to −3.4. The top and middle figures show the
minimum-energy assembly profiles of the two classes. As
expected, the assembly activation energy has decreased sig-
nificantly, by about 3E0 for the first class and by about 5E0

for the second class. Both are now about 2E0. Because the
two activation energy barriers are similar, one might expect
that the kinetic selectivity actually is weakened by supersat-
uration. The bottom figure shows that the opposite is true:
supersaturation greatly increases packaging selectivity! On a
timescale of about 5 × 107 time units, the fraction of MLD =
9, NP = 8 spanning trees has increased from about 0.32 back
up to about the 0.81 of Fig. 11. The packaging ratio is high
and, importantly, the growth rate of the packaged fraction
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FIG. 13. Top and middle figures: Effect on the assembly energy
profiles of reducing the reference chemical potential to a state of
supersaturation with μ0 = −3.4. Bottom: Packaging competition be-
tween MLD = 9, NP = 8 spanning trees and MLD = 19, NP = 2
spanning trees for μ0 = −3.4. Other parameters are the same as
those of Fig. 12.

of MLD = 19, NP = 2 particles at 5 × 107 time units has
reduced from about 10−8 inverse time units to about four
parts in 4 × 10−10 inverse time units. The disassembly of
complete particles has greatly slowed down. The reason is
that supersaturation increases the energy barrier for the disas-
sembly of completed particles to about 10E0 (for both classes,
see Fig. 13). Following the early assembly of the MLD = 9,
NP = 8 spanning trees, there were few free pentamers left in
solution since for D = 2 there are just enough pentamers to
package the MLD = 9, NP = 8 spanning trees. Then, in the
absence of much disassembly of the MLD = 9, NP = 8 par-
ticles, MLD = 19, NP = 2 spanning trees indeed are starved
of pentamers. Note that this “monopoly mechanism” could
never work under conditions of assembly equilibrium since

FIG. 14. Packaging competition between MLD = 9, NP = 8
spanning trees and MLD = 12, NP = 5 spanning trees for μ0 =
−3.4. The parameters are the same as those of Fig. 13.

there would always be a significant fraction of free pentamers
in that case.

This result can be understood by noting that the height of
an activation energy barrier does not fully characterize the rate
of barrier crossing. For the MLD = 9, NP = 8 spanning trees,
the n = 2 state does function as a true transition state since
there is a substantial energy drop for the n = 3 state (and
larger states) as well as for the n = 1 state (see Fig. 13, top).
However, for the MLD = 19, NP = 2 trees, the n = 2 state
is not really a transition state as the whole interval between
n = 2 and n = 5 has roughly the same energy (see Fig. 13,
middle). The probability that a cluster of size n = 3, 4, and 5
can “fall back” to the n = 1 state remains quite large. Kinetic
selection in favor of the MLD = 9, NP = 8 spanning trees
thus remains quite effective under conditions of moderate
supersaturation even if the barrier heights are similar.

How about packaging competition between a maximally
adapted MLD = 9, NP = 8 spanning tree and other spanning
trees? Figure 14 shows the case where MLD = 9, NP = 8
spanning trees compete with MLD = 12, NP = 5 spanning
trees. The kinetic selectivity in favor of the MLD = 9, NP = 8
spanning trees is reduced to only a factor of 2. Recall that
if all possible spanning trees would have the same a priori
probability then, in a solution containing all possible spanning
trees, the overwhelming majority of spanning trees would
have MLD and NP numbers in the range of MLD = 12,
NP = 5. The entropic bias in favor of spanning trees in the
MLD = 12, NP = 5 range would completely erase the kinetic
selectivity effect. The kinetic selection mechanism “works”
only for competition between two different spanning trees
with comparable concentrations.

IV. TWO-STAGE ASSEMBLY

The master equation was based on a protein-by-protein
assembly scenario. This is not the only option: numerical
simulations of coarse-grained model systems [57,65] reported
that a collective assembly process, called the en-masse sce-
nario, also can take place. This scenario was encountered
for higher values of protein-genome affinity as compared to
the protein-protein affinity. The genome molecules initially
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are in a swollen state due to, say, electrostatic self-repulsion
between the negative charges, and free of capsid proteins.
Next, when this swollen genome molecule starts to capture
capsid proteins, a disordered nucleoprotein condensate forms.
As the number of captured proteins increases, the condensate
shrinks as both positive capsid protein charges and nega-
tive genome charges are increasingly neutralizing each other.
Finally, some form of spatial ordering of the capsid proteins
produces a viral particle (order-disorder transitions where a
spherically symmetric condensate develops broken rotational
symmetry can be described by Landau theory applied to viral
assembly [66]). Other modes of collective assembly have been
proposed as well [67]. Experiments on the encapsidation of
linear double-stranded genome molecules by capsid proteins
[68] have been interpreted according to this en-masse scenario
as have assembly studies of the CCMV virus [69].

Can we use the spanning tree model to test for RNA se-
lectivity in an en-masse scenario? Because in the spanning
tree model the genome molecule is compactified right from
the start, it cannot “capture” the transition from a swollen
to a collapsed state. However a fascinating in vitro assembly
experiment that mimics the en-masse scenario was carried out
in Ref. [70]. During a first stage, the pH level was set at a level
at which the protein-RNA affinity was large with respect to
the protein-protein affinity. Disordered and incomplete assem-
blies were observed. In a second stage, the pH level was set
at a level such that the protein-protein affinity was increased
with respect to the protein-RNA affinity. The disordered con-
densates of the first stage transformed into viruslike particles.
The selectivity for such a two-stage assembly scenario can
be examined within the model by performing two subsequent
assembly calculations. During the first stage, the assembly
energy profile is set to zero in order to mimic a state dominated
by entropy. This disordered state is then used as the initial
state for a second assembly calculation, but now with the
energy parameters set at the values we used earlier (such as
those of Fig. 13).

Figure 15 shows the first-stage occupation probabilities of
the same two classes as before (see Fig. 13). The first-stage
occupation probabilities are time independent and consistent
with a equilibrium Boltzmann distribution determined by the
multiplicities of the assembly intermediates. Next, Fig. 16
shows what happens when at t = 20 000 the energy param-
eters are reset to the values of Fig. 13. There is an instant
and complete reorganization. The intermediate-sized clusters
produced during the first stage disappear, leaving behind fully
assembled particles plus free RNA molecules of both classes.
Right at t = 20 000 the fraction of packaged MLD = 19,
NP = 2 molecules exceeds the fraction of MLD = 9, NP = 8
molecules, which is a consequence of the fact that before the
reorganization there were more clusters on the MLD = 19,
NP = 2 molecules with n = 4 and 5 (see Fig. 15). After
the reorganization, these clusters rapidly slid down the slope
of the assembly curve of Fig. 13 (top and center) towards
completion. For later times there is some continued particle
assembly because there is a substantial concentration of free
pentamers and unoccupied RNA molecules at t = 20 000.
Because the width of the assembly barrier of MLD = 9,
NP = 8 molecules is significantly smaller than that of MLD =
19, NP = 2 molecule (see again Fig. 13) this leads nearly

FIG. 15. First-stage assembly competition between MLD = 9,
NP = 8 and MLD = 19, NP = 2 molecules. The two figures show
the first-stage occupation probabilities of the MLD = 9, NP = 8
molecules and of the MLD = 19, NP = 2 molecules.

exclusively to formation of additional MLD = 9, NP = 8
particles and thus some kinetic selectivity in favor of the
MLD = 9, NP = 8 molecules. The selectivity produced by
the second stage of the assembly process is, however, quite
weak compared to that of the one-stage assembly process
discussed in the previous subsection. It should be noted that
the two-stage assembly scenario very much speeds up the
formation of assembled particles: if assembly speed instead
of selectivity would be a central aim, then two-stage assembly
could well be more efficient than one-stage assembly.

V. CONCLUSION

In the Introduction we asked about the physical properties
of a gRNA selection mechanism that operates during the for-
mation of a nucleation complex. The spanning tree model, a
drastic simplification in which the huge number of possible
RNA configurations is reduced to the, roughly, 105 different
spanning trees of a dodecahedron, was used to address this
question. The spanning trees, all of which have 19 links, are
supposed to represent a cluster of packaging signals located on
the outer surface of a condensed RNA molecule, as inspired
by the asymmetric reconstruction of the packaged RNA of the
MS2 virus. Different spanning trees were classified according
to their maximum ladder distance and their wrapping number
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FIG. 16. First- and second-stage occupation probabilities. At t =
20 000, the energy parameters were reset to the values of Fig. 13. For
the second stage, only the occupation probabilities of unoccupied
(n = 0) and fully occupied (n = 12) particles are shown as the oc-
cupation probabilities for assembly intermediates during the second
stage are negligible. The fraction of packaged particles containing
MLD = 19, NP = 2 molecules is time independent while the frac-
tion of packaged particles containing MLD = 9, NP = 8 molecules
increases moderately with time.

such that different spanning trees belonging to the same class
have the same (or nearly the same) minimum energy assembly
profile. By carrying out numerical packaging competition ex-
periments, we found that spanning trees that belong to a class
with small MLD and large NP are kinetically selected over
spanning trees with large MLD and small NP numbers. This
selectivity is eventually lost when the system reaches a state
of thermodynamic equilibrium. With only a modest amount
of “tweaking” of the system parameters, it was possible to
enhance quite significantly the kinetic selectivity and its per-
sistence.

The model is not a realistic description of any particular
virus, so direct quantitative validation is not possible. There
are, however, general consequences that, we believe, will
carry over to more realistic models and that can be tested
experimentally: (i) RNA selectivity should be significantly
more efficient under conditions of moderate supersaturation
as compared to conditions of assembly equilibrium; (ii) RNA
selectivity should degrade progressively as the strength of the
affinity between capsid proteins is decreased (for example,
by changes in the pH); (iii) RNA selectivity should be sig-
nificantly weakened under conditions of collective assembly.
Finally, the basic assumptions that underlie the model imply
that there should be a strong correlation between the degree
of RNA selectivity and the degree of internal order of the
packaged RNA.

The notion that RNA selection is a kinetic effect conflicts
with the common assumption that assembled viral particles

are in a state of full thermodynamic equilibrium. Is the
model even consistent with what is already known about viral
self-assembly? Virions are typically assembled in the cyto-
plasm of infected cells where there is a significant concentra-
tion of capsid proteins. Assembled virions are then released
from infected cells into environments that have virtually no
free capsid proteins. Capsid proteins freed in a solution that
does not contain capsid proteins should, for reasons of en-
tropy, have a lower chemical potential than capsid proteins
that are still part of viral particles, so virions would be ex-
pected to disassemble. This is, of course, not what is observed.
Even empty capsids do not disassemble spontaneously in
(capsid) protein-free solutions unless there is also a significant
change in the thermodynamic parameters of the environment
(e.g., a change in pH or salinity). Virions should be considered
to be in a state of constrained thermodynamic equilibrium
in which spontaneous disassembly does not take place on
laboratory timescales. In terms of the spanning tree model,
this justifies a focus on kinetic selection on timescales shorter
than the final thermodynamic equilibration time. Recall that
final equilibration for packaging competition calculations was
signaled by the spontaneous disassembly of assembled parti-
cles (see Fig. 11).

In the Introduction it was noted that considerations based
on free energy minimization indicate that the compactness
of an RNA molecule should be an important criterion for
packaged selection. How does this relate to the spanning tree
model? Assume that an RNA molecule has a configuration
of PS that significantly reduces the assembly free energy
barrier because the MLD of the cluster of PS is low while the
wrapping number is high. Now assume also that the MLD of
the whole molecule is too large to allow for packaging. Under
those conditions, this molecule might initially be kinetically
selected but completion of the assembly is not possible be-
cause the free energy cost of compacting the whole molecule
is too high. This aspect of the assembly of a viral particle was
suppressed in the spanning tree molecule by the assumption
that all molecules were compactified into identical dodeca-
hedra. The only difference between the tree molecules was
the organization of the PS sequence that decorates the outer
surface of the dodecahedron.

The spanning tree model can be extended to include this
aspect by letting the equilibrium size of the initial dodecahe-
dron depend on the compactness (i.e., the MLD) of the whole
molecule and by letting the dodecahedron be deformable.
When a pentamer attempts to bind to the dodecahedron then,
in general, it has to do some extra work by locally deforming
the dodecahedron so one of the facets of the dodecahedron
matches the size of the pentamer. As more and more pen-
tamers adhere to the dodecahedron it will shrink (or swell),
which means that this extra work per pentamer is progres-
sively reduced. Now, the assembly free energy of particles
with different overall MLD indeed will be different. Note that
the cooperativity of this effect will sharpen the onset of viral
assembly as a function of the pentamer chemical potential.
It would be interesting to investigate how in such a model
kinetic selectivity would compete with selectivity based on
free energy minimization.

There are numerous examples in cell and molecular biol-
ogy where kinetic selection is more effective than selection
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based on equilibrium thermodynamics. A well-known case is
the fidelity of DNA duplication during cell division, which
is much higher than what is expected based on thermody-
namic equilibrium considerations. During DNA duplication,
nuclease activity attempts to break the bond between newly
formed base pairs [71,72]. Since mispairing is associated with
weaker bonds, the fraction of Watson-Crick paired bonds that
survive the challenge intact is much larger than that of the
mispaired bonds. Kinetic selection by active challenging is
known as the Hopfield proofreading mechanism [73] and it
intrinsically consumes free energy. Does kinetic proofreading
apply to the spanning tree model and, if so, what is the corre-
sponding free energy source for the proofreading? Consider
the initial formation of a small RNA-associated pentamer
assembly intermediate where an MLD = 9, NP = 8 assembly
is viewed as proper pairing and MLD = 19, NP = 2 assem-
bly as a form of mispairing. Thermal fluctuations challenge
both states. Under the conditions of supersaturation shown
in Fig. 13, MLD = 9, NP = 8 assemblies of size three or
larger will slide down the assembly energy profile and form
assembled particles on a quasi-irreversible basis but a small
MLD = 19, NP = 2 assembly located somewhere on the wide
and flat activation barrier is repeatedly challenged against dis-
assembly by thermal fluctuations. There is a high probability
it will disassociate. The free energy source that allows for a
quasipermanent increased selectivity is provided here by the
supersaturated environment.
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APPENDIX A: DEMONSTRATION THAT THE SMALLEST
MLD FOR SPANNING TREES ON THE

DODECAHEDRON IS NINE

We begin by noting that for every vertex on the dodecahe-
dron there is a vertex on the opposite side of the polyhedron
that is a ladder distance five away. That is, getting from one
of the two vertices to the other requires traversing at least five
edges. Figure 17 shows such a path. For each such pairs of
vertices there are 12 minimal paths.

Now, assume that there is a spanning tree with MLD 8. In
such a case, we can pick out a path of ladder distance eight in
that tree. All other elements of the tree will consist of trees that
branch out from that path. Figure 18 is a figurative depiction
of the path along with the longest allowed branch sprouting
off each vertex on that path. The likelihood of branching off
those “side branch” paths is ignored; such branching does not
alter the argument below.

Consider first the central vertex on the ladder distance 8
path, labeled 5 in Fig. 18. The side path with ladder distance 4
is the longest that can attach to it. A longer path increases the

FIG. 17. Two maximally separated vertices on the dodecahedron
and one of the 12 shortest paths consisting of five edges that join
them.

MLD of the tree. Clearly, there is no possibility of reaching
a point a ladder distance 5 from vertex 5 along any path with
ladder distance 4, so the path shown cannot connect the central
vertex to the vertex a distance 5 away from it. Next, consider
the two sites flanking the central vertices, labeled 4 and 6.
Attached to each is the longest possible path branching out
from them, Such a path has ladder distance 3. If either of these
paths reached to the vertex a ladder distance 5 away from the
central vertex, then there would be a ladder distance 4 (or less)
path from that vertex through one of the flanking vertices to
the maximally separated vertex, and we know that no such
path exists. We can continue this argument to encompass all
allowed paths sprouting from vertices on the chosen path.
Thus, there is a vertex on the dodecahedron that cannot be a
part of the MLD 8 tree containing this path. Consequently, no
tree with MLD 8 can be a spanning tree on the dodecahedron.
The argument above can clearly be applied to the possibility of
a spanning tree with MLD less than 8. That there is a spanning
tree with MLD 9 is readily established by construction.

APPENDIX B: PROJECTED MULTIPLICITIES

Figure 19 is a plot of the number of spanning trees of the
dodecahedron as a function of the MLD for all possible values
of the NP number. Two spanning trees of the dodecahedron
that are related by a symmetry operation of the dodecahe-

1 2 3 4 5 6 7 8 9

FIG. 18. A ladder distance 8 path in the hypothetical MLD 8
spanning tree on the dodecahedron. The path is shown as a thick
line, and the nine vertices are labeled for easy reference. The thinner
vertical lines represent longest allowed paths branching off the ladder
distance 8 path.
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FIG. 19. The number of spanning trees on the dodecahedron as
function of the maximum ladder distance (MLD).

dron are treated as the same. The converse, the distribution
of wrapping numbers for all possible values of the MLD, is
shown in Fig. 20. The same spanning tree can be distributed
over the dodecahedron in different ways with different wrap-
ping numbers. The wrapping number is thus not a topological
characteristic of the secondary structure.

APPENDIX C: BOLTZMANN DISTRIBUTION

In this Appendix we discuss the equilibrium phase behav-
ior of the model for a Boltzmann distribution:

Pn = exp −�F (n)

Z
. (C1)

Here �F (n) = β�E (n) − ln m(n) − n ln c f is the dimen-
sionless free energy and Z = ∑12

n=0 exp −�F (n) the partition
sum. We will assume a solution containing only one class of
RNA molecules with total concentration rt as well as pen-
tamers with a total concentration c0. The concentration rn of
particles containing n pentamers is then rt Pn. Finally, c f is the
concentration of free pentamers and r f the concentration of
unoccupied RNA molecules. Because m(12) = 1

r12/rt = exp −�E (12)

Z
, r f /rt = 1

Z
(C2)

for c f = 1 (i.e., the reference concentration). Using these re-
lations, it can be checked that

c12
f r f

r12
= K (C3)

FIG. 20. The number of spanning trees on the dodecahedron as a
function of the wrapping number NP.

with K = exp �E (12). This relation has the form of the law
of mass action (LMA) of physical chemistry with K the dis-
sociation constant.

Conservation of tree molecules requires that r f +∑12
n=1 rn = rt , which is ensured if the probabilities sum to

one
∑12

n=0 Pn = 1. Next, conservation of pentamer molecules
requires that

c f /c0 = 1 − (D/12)
12∑

n=1

nPn (C4)

with D = 12rt/c0 the mixing ratio. Recall that if D = 1, then
there are exactly enough pentamers to encapsidate all tree
molecules. Because the concentration of free pentamers de-
pends on the Boltzmann distributions of all aggregate sizes,
the occupation probabilities for different values of n are cou-
pled. This means that the concentration of assembled particles
cannot be obtained from the LMA by itself, but would need to
be complemented by similar relations for the concentrations
of assembly intermediates.

If the intermediate occupation probabilities can be ne-
glected with respect to P0 and P12, then the conservation law
for RNA molecules reduces to P0 � (1 − P12) and that of
pentamers to c f � c0(1 − DP12). Inserting these two relations
into the LMA equation (C3) produces a closed-form expres-
sion for the concentration c f of free pentamers and hence of
assembled particles:(

c f

c0

)12(D − 1 + c f

c0

1 − c f

c0

)
=

(
K

c12
0

)
. (C5)

Because K depends only on the assembly energy of complete
particles, Eq. (C5) does not depend on the class of spanning
tree molecules.

A standard diagnostic for self-assembly processes are plots
of the concentration of free monomeric building blocks and of
assembled particles as a function of the total concentration
of building blocks [74]. Such a plot is shown in Fig. 21
for MLD = 9, NP = 8 molecules. The dots show the con-
centrations of free pentamers in solution and of pentamers
that are part of an assembled particle as a function of the
total pentamer concentration c0 computed from Eq. (C5). For
low pentamer concentrations, nearly all pentamers are free in
solution and the concentration of free pentamers is close to
the total concentration c0. As c0 increases, the concentration
of free pentamers stops increasing and then saturates. Now,
the concentration of pentamers that are part of an assembled
particle starts to increase, proportional to c0. The transition
point between these two regimes is around c0 = 0.2. This
point is known in the soft-matter physics literature as the
critical aggregation concentration (or CAC) [74].

If one again neglects assembly intermediates then it fol-
lows from Eq. (C5) that the relation c0(D) for 95% occupancy
is a hyperbola in a plane with c0 and D as coordinates:

c0(D) � 1

(1 − D P12)

(
KP12

1 − P12

)1/12

(C6)

with P12 = 0.95. The hyperbola diverges at D = 1/P12, which
is close to one for a 95% packaging fraction. It shifts to
smaller values of D as the pentamer concentration c0 is
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FIG. 21. Equilibrium self-assembly diagram for NP = 8,
MLD = 9 molecules for ε = −0.2, μ0 = −2.5, and D = 1.
Horizontal axis: total pentamer concentration c0. Vertical axis:
either the free pentamer concentration c f (blue) or the concentration
c0 − c f of pentamers that are associated with a tree molecule
(ochre). Solid lines: solution of Eq. (C5).

reduced with c0(D) always larger than K1/12. One can use

Eq. (C5) to obtain the limiting behaviors. For ( c12
0
K ) small

compared to one, the equation has a solution with c f close
to c0 given by

c f

c0
� 1 − Dc12

0

K
(C7)

which corresponds to the linear portion of the blue curve. For

( c12
0
K ) large compared to one and mixing ratio D larger than

one, the equation has a solution with c f independent of c0:

c f �
(

K

D − 1

)1/12

(C8)

which corresponds to the flat part of the blue curve. For ( c12
0
K )

large compared to one but a mixing ratio D less than one, the
equation has a different solution with c f independent of c0:

c f

c0
� 1 − D + K

c12
0

D

(1 − D)1/2
. (C9)

There is thus a change in regimes around D = 1. For the
special case that D = 1, the LMA equation reduces to(

c f

c0

)13( 1

1 − c f

c0

)
�

(
K

c12
0

)
. (C10)

A second way to display self-assembly measurements
under equilibrium conditions is in the form of a quasi-phase-
diagram that shows the dominant type of assembly as a
function of thermodynamic parameters.3 For viral assembly,
the protein and RNA concentrations are a natural choice for
such a phase diagram. For the case of the spanning tree model,

3Since a virus is a system of limited size, true phase transitions are
not possible.

FIG. 22. Quasi-phase-diagram for ε = 0.2 and μ0 = −2. Hori-
zontal axis: depletion factor D. Vertical axis: pentamer concentration
c0. Blue dots: points where 95% of the genome molecules have been
packaged according to the Boltzmann distribution. Solid blue line:
computed from Eq. (C6). In the green sector there is practically
no capsid assembly. The red star marks a possible operating point
for viral assembly inside infected cells, just above the CAC, under
conditions of excess pentamers in solution.

we will use the pentamer concentration c0 and the mixing
ratio D as thermodynamic parameters. The blue dots in Fig. 22
show points in a c0 vs D diagram where 95% of the spanning
trees are fully encapsidated. To the right of the blue dots, most
tree molecules are encapsidated and coexist with excess free
pentamers. To the left of the blue dots, most pentamers are
part of assembled particles and coexist with excess free tree
molecules. The blue dots can be viewed as “optimal mixing
states” that minimize excess free pentamers and excess tree
molecules. For high pentamer concentrations, the line of blue
dots approaches D = 1, the stoichiometric ratio.

APPENDIX D: STRUCTURAL TRANSITIONS

For ε � 1, the pentamers are most often placed on
minimum-energy sites where they make the maximum
number of edge-to-edge contacts with previously placed pen-
tamers. The resulting assembly intermediates are compact
pentamer clusters, similar or the same to the ones shown in
Fig. 2 for the Zlotnick model. An example is shown in Fig. 23.
On the other hand, for ε � 1, the first NP pentamers typically
are placed on maximum wrapping sites. This indicates the
possibility for a structure transition of assembly intermediates
as a function of ε. For example, for small ε six-pentamer clus-
ters have fivefold symmetry with one central pentamer sharing
its five edges with five other pentamers that each share three
edges with their neighbors (see the n = 6 state of Fig. 11). On
the other hand, for large ε a minimum energy n = 6 cluster
of class (1) NP = 8, MLD = 9 spanning trees has the six
pentamers placed on the six available maximum wrapping
sites of the NP = 6 spanning tree (see Fig. 4). By moving just
one pentamer, the two structures can be transformed into one
another. This transition takes place at ε = −1. For class (2),
with NP = 2, the transition is more dramatic. For small ε, the
n = 4 pentamer cluster is a compact structure with a twofold
symmetry axis, the same as the n = 4 structure shown in
Fig. 2. On the other hand, the n = 4 minimum energy structure
for large ε shown in Fig. 24 is completely different.
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FIG. 23. Assembly pathway for a NP = 8, MLD = 9 spanning
tree for the case of small ε. The first five pentamers can be placed on
sites that maximize both the number of pentamer-pentamer contacts
and pentamer-spanning tree link contacts. The sixth pentamer, shown
separately with a different perspective, makes only two spanning tree
link contacts, which allows it to still have three pentamer-pentamer
contacts. Note the similarity with Fig. 2.

This linear arrangement of pentamers has an interesting
feature. Allow tree links to rotate freely around the nodes of
the tree and allow pentamers to swivel freely around shared
edges. The pentamers of the empty-capsid partial assemblies

FIG. 24. The minimum-energy n = 4 assembly state of a class
(2) molecule for ε = 1.2.

of Fig. 2 would, for n > 2, not be able to move with respect to
each other without breaking pentamer-pentamer bonds. The
empty-capsid partial assemblies can be said to be mechani-
cally rigid. The same holds for the n = 6 structure of Fig. 4
and other small ε partial assemblies. However, this is not
the case for the four-pentamer structure shown in Fig. 24: if
this structure were allowed to fluctuate freely, then the four
pentamers could freely swivel along the three shared edges.
Structural transitions of this type as a function of ε become
more common for larger values of the MLD.
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