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Protein drift-diffusion dynamics and phase separation in curved cell membranes and dendritic
spines: Hybrid discrete-continuum methods
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We develop methods for investigating protein drift-diffusion dynamics in heterogeneous cell membranes and
the roles played by geometry, diffusion, chemical kinetics, and phase separation. Our hybrid stochastic numerical
methods combine discrete particle descriptions with continuum-level models for tracking the individual protein
drift-diffusion dynamics when coupled to continuum fields. We show how our approaches can be used to inves-
tigate phenomena motivated by protein kinetics within dendritic spines. The spine geometry is hypothesized to
play an important biological role regulating synaptic strength, protein kinetics, and self-assembly of clusters. We
perform simulation studies for model spine geometries varying the neck size to investigate how phase-separation
and protein organization is influenced by different shapes. We also show how our methods can be used to
study the roles of geometry in reaction-diffusion systems including Turing instabilities. Our methods provide
general approaches for investigating protein kinetics and drift-diffusion dynamics within curved membrane
structures.
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I. INTRODUCTION

In cellular biology, the morphological shapes of cell mem-
branes play important roles in protein transport and kinetics.
Cell membranes often take on shapes having characteristic
geometries or topologies associated with biological function
[1–7]. Membranes arising in cell biology consist of heteroge-
neous mixtures of lipids, proteins, and other small molecules
[1]. The individual and collective dynamics of membrane
associated molecules carry out diverse functions in cellular
processes ranging from signaling to motility [1,8–12]. Mem-
branes are effectively two dimensional fluid-elastic structures
resulting in processes that can be significantly different than
their counterparts occurring in bulk three-dimensional fluids
[13–16]. Investigating such cellular processes using computa-
tional simulation requires the ability to capture these effects
and the geometric and topological contributions of curved
membrane structures to protein drift-diffusion dynamics and
kinetics.

We introduce computational methods based on a hybrid
approach coupling discrete and continuum descriptions. For
low-concentration species, we track individual proteins as
discrete particles. For other species, we track contributions us-
ing continuum fields. We circumvent many of the challenges
of differential geometry and directly approximating surface
partial differential equation (PDEs) by developing discrete
localized models that capture geometric effects. In this way,
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behaviors of our model emerge on larger length scales in a
manner capturing the relevant underlying physical phenom-
ena, while avoiding some of the more common challenges
associated with direct application of PDE discretizations and
differential geometry. We also provide stochastic local models
to account for discrete effects and other fluctuations.

Many computational methods have been introduced for
studying membranes. Methods modeling at the level of
continuum fields and PDE descriptions include continuum
concentration and phase fields in vesicles in Ref. [17], protein
aggregation in Ref. [18], and phase separation in Ref. [19].
Methods modeling at the level of particles include Monte
Carlo (MC) methods and kinetic MC in Refs. [20–27],
molecular dynamics studies in Refs. [28–30], and coarse-
grained models in Refs. [31,32]. Some work has been done
on hybrid discrete-continuum approaches for membranes in
Refs. [33–39] and taking into account geometric effects
in Refs. [36,40] and through point-cloud representations in
Refs. [27,41–44].

Our methods provide new ways for handling hybrid
discrete-continuum stochastic descriptions for protein drift-
diffusion dynamics and kinetics within heterogeneous curved
membranes. We focus particularly on the roles played by
phase separation, geometry, and fluctuations arising from
discrete number effects. We develop stochastic methods for
bidirectional coupling between protein dynamics and evolving
phase fields. For capturing geometric contributions for general
shapes, we also introduce numerical approaches using the
induced metric from the embedding space which allows for
avoiding the need for potentially cumbersome calculations
using explicit expressions from differential geometry. We also
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introduce methods for tracking proteins both at the level of
continuum mean-field concentration fields and beyond mean-
field theory at the level of discrete individual proteins with
stochastic trajectories.

Our work is motivated by understanding protein inter-
actions within cell curved membranes, such as neuronal
dendritic spines. Dendritic spines are small ∼500 nm struc-
tures that are attached along the larger shaft of the dendrites
of neurons [45,46]. These are critical structures in the brain
mediating the input of synaptic communications between
neurons. Dendritic spines have unique morphologies that
physiologically change in molecular composition, size, and
shape to modulate the synaptic strength between neurons as
part of long-term learning and memory [46–49]. The impor-
tant connection between membrane geometry and synaptic
strength is an active area of current theoretical and experi-
mental research [50–62]. Recent advances in microscopy and
single-particle tracking techniques are providing some indica-
tors of the underlying processes regulating protein transport
and kinetics within spines [47,63–69].

A hypothesis which we explore with our methods is that
protein complexes can locally nucleate liquid-liquid phase
separations that couple to proteins to influence both diffu-
sive transport and kinetics. Our work is motivated by the
recent observations concerning the roles of SynGAP binding
to PSD-95 resulting in complexes that phase separate playing
a role in organizing proteins in dendritic spines in forming
the postsynaptic density [70,71]. In our initial work presented
here, we do not commit in models yet to specific proteins
but focus more generally on mechanisms by which protein
diffusion and phase separation can drive cluster formation and
augment reaction kinetics consistent with such observations.
For exploring such hypotheses, we focus on the development
of methods for quantitative biophysical models and compu-
tational simulations capable of investigating such effects. For
this purpose, we develop spatiotemporal biophysical models
using our introduced hybrid discrete-continuum approach to
investigate the roles of geometry and phase separation in
protein diffusion and kinetics.

We discuss details for our modeling approach for protein
drift-diffusion dynamics in Sec. II and our simulation studies
in Sec. III. We discuss the drift-diffusion dynamics of proteins
coupled to phase fields and discretizations for curved mem-
branes having general shapes in Secs. II A, II B, II C, and II D.
We investigate the accuracy of our numerical approximations
in Sec. II E. We demonstrate how our methods can be used to
compute first passage times and other statistics for membranes
of general shape, in some cases without the need for costly
Monte Carlo sampling, in Sec. II F.

We perform simulations using our methods of discrete and
continuum systems in Sec. III. We develop continuum field
methods for reaction-diffusion systems with pattern forming
Turing instabilities capturing the contributions of geometry in
Sec. III A. We develop mechanistic models for dendritic spine
shapes and perform simulations to investigate the roles of geo-
metric effects, heterogeneities arising from phase separation,
and discrete number effects in Sec. III B and Sec. III C. The
introduced methods provide general approaches for investi-
gating protein transport and kinetics within heterogeneous cell
membranes.

FIG. 1. Markov-chain discretization of particle drift diffusion on
curved surfaces. The surface is discretized using a triangulation with
random walks between centriods xi and x j having jump rates Mi j

determined by the local geometry (top left) which can be expressed
as a Markov chain (bottom). The Markov-chain discretization yields
a backward equation for � allowing readily for computation of
first-passage times τ (FPTs) for reaching the boundary ∂� and other
statistics without the need in some cases for Monte Carlo sampling
(top right).

II. HYBRID DISCRETE PARTICLE-CONTINUUM
APPROACH FOR CURVED SURFACES

We develop models using a hybrid discrete particle and
continuum field approach for investigating transport and reac-
tions within curved surfaces, see Fig. 1. For low-concentration
chemical species, we introduce approaches for modeling at
the level of tracking individual particles. For larger concentra-
tions, we develop continuum field descriptions and methods
for curved surfaces. We also account for the bidirectional
coupling between the discrete particles and continuum fields.

A. Particle drift-diffusion dynamics

We discuss a few results related to the drift-diffusion dy-
namics of particles useful in developing our methods. We
then approximate the particle dynamics using a Markov-chain
process [72] with jump rates based on estimating the local
geometry, see Fig. 1.

The drift-diffusion dynamics of a particle immersed within
a viscous fluid is given by the Langevin equation [73,74],

m dVt = −γ Vt dt − ∇U (Xt ) dt +
√

2kBT γ dWt , (1)

where dXt = Vt dt . This is to be interpreted as an Itô process
[73,75]. The γ is the drag, U (x) is a potential energy, kB is
Boltzmann’s constant, and T is the temperature [74]. The dWt

are increments of the Wiener process [73,75]. The diffusion
coefficient is given by D = kBT/γ .

We remark that in some cases the protein diffusion can
also be influenced by local protein-induced deformations of
the membrane [16], crowding effects (super-sub-diffusive and
other regimes) [76,77] or cytoskeletal interactions [24,78].
Our methods could be combined with such models for local
deformation and crowding by augmenting the Markov-chain
jump rates. In the present work, we treat the membrane as
having on average an effectively constant shape. We focus on
models in the normal diffusive regime with explicit modeling
of protein species, binding partners, or obstacles. We treat
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additional contributions through effective diffusion coeffi-
cients or in the formulated protein interaction forces.

When m/γ � �2/D, where � is the radius of the particle,
the inertial contributions are negligible. In this regime, the
Langevin equation can be reduced to the overdamped Smolu-
chowski equation

dXt = − 1

γ
∇U (Xt ) dt +

√
2D dWt . (2)

This can be expressed in terms of probability densities ρ(x, t )
for when Xt = x. This satisfies the Fokker-Planck (FP) equa-
tion,

∂ρ

∂t
= −∇ · J, J =

(
− 1

γ
∇U

)
ρ − D∇ρ. (3)

When U = 0, this has the well-known Green’s function for
Euclidean space

K (x′, x; t ) = 1

(4πDt )d/2
exp

[
− (x′ − x)2

4Dt

]
. (4)

From the FP equation, the K (x′, x; t ) has the interpretation
of the probability of a particle starting with X0 = x and dif-
fusing to location Xt = x′ over the time duration t . We will
use a related approach to determine our Markov-chain jump
rates. The FP equation has a steady-state ρ∗ with detailed
balance if

J[ρ∗] = −γ −1∇Uρ∗ − D∇ρ∗ = 0. (5)

For a smooth U (x) with a sufficient growth rate as |x| → ∞,
the FP equation has steady state with detailed balance for the
distribution

ρ∗(x) = 1

Z
exp

[
−U (x)

kT

]
. (6)

This is the Gibbs-Boltzmann distribution, and Z is the par-
tition function normalizing this to be a probability density
[74].

B. Markov chain discretization for particle drift-diffusion
dynamics on curved surfaces

We model the drift-diffusion dynamics of individual par-
ticles on curved surfaces using discrete Markov chains with
the jump rates based on the local geometry. The surface
is discretized into a triangulated mesh and each particle is
tracked by the triangle which it occupies. We use that the
surface metric is induced by the surrounding embedding space
[79,80]. We use for the local jump rates

Mi j = Ci exp

(
−|xi − x j |2

ε2

)
. (7)

To approximate the diffusion over the timescale 
t on the
surface M, we use ε = √

4D
t . The xi ∈ M are the centers
of the surface triangulation. The Ci denotes the normalization
constant when summing over index j ensuring that M is a
right stochastic matrix [72].

We remark in our methods the approach of using the
induced metric from the embedding allows for capturing
the geometric contributions while avoiding the potentially
cumbersome expressions that can arise from a more explicit

treatment using differential geometry. Our methods utilize that
the distances between points on the surface correspond to
the arc-length determined by the path as measured using the
embedding space and its associated notion of distance. As a
result, in our methods the discretized surface inherits its met-
ric without the need for further analytic derivations. Further
properties of our methods include that the discretizations for
curved surfaces are based on Markov-chain transitions and as
a consequence will have mass conservation up to numerical
round-off errors.

The kernel Mi j has been shown in the limit of refining
the surface sampling to approximate diffusion under the sur-
face Laplace-Beltrami operator D
M [81,82]. This has been
shown to have the accuracy

lim
N→∞

N∑
j=1

(Mi j − Ii j )u j = ε2

4

Mu(xi ) + O

(
1

N1/2
, ε4

)
.

(8)

The O holds with ε → 0. The N is the number of points
sampling M subject to a uniformity condition [42,81,82].
The u j = u(x j ) samples a smooth test function u. Intuitively,
this follows since the stochastic matrix M converges to the
operator as exp(ε2
M/4) = exp(D
t
M) � I + D
t
M,
where 
t = ε2

4D and 
 = ∇ · ∇ is the standard Laplacian. The
last two terms are motivated by the Taylor expansions of the
exponential and the geometric terms as ε → 0.

Since the the surface properties will only be approximated
when there are a sufficient number of sample points in the
support of the kernel, for a given N there is a trade-off in
the choice of ε. If ε is too large, then the approximation will
not be of local surface properties. If ε is too small, then only
the center point will contribute significantly to the kernel.
We investigate further this trade-off in ε and the resulting
approximation accuracy in Sec. II E.

We remark that our approach can also readily be modified
to obtain models for proteins in super-sub-diffusive regimes.
One way this can be accomplished is by constructing random
walks that are nonlocal on the mesh having long-tails or
making state transitions between additional nonspatial states.
These models could be constructed from theoretical consid-
erations or empirical observations of autocorrelation statistics
[76].

C. Detailed balance and area corrections

To incorporate the contributions of the drift arising from
U in Eq. (1), we consider the Gibbs-Boltzmann distribution
expressed as ρ(x) = Z−1 exp[−βU (x)], with β = (kBT )−1

the inverse thermal energy. We seek discretizations pre-
serving statistical structure, such as detailed balance as in
Refs. [83,84]. For our curved surfaces, we seek discretizations
for methods that have at steady-state the surface Gibbs-
Boltzmann distribution with detailed balance [74]. We can
express the evolution of the discrete probability in terms of
net fluxes as

p(n+1)
i = p(n)

i +
∑
j, j �=i

J (n)
i j , J (n)

i j = p(n)
j Mji − p(n)

i Mi j . (9)
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At steady-state p(n+1)
k = p(n)

k = p∗
k we design our transition

rates so that the we have a discrete surface Gibbs-Boltzmann
distribution with approximate detailed balance. The discrete
detailed balance Ji j = 0 gives the conditions

p∗
i = exp (−βUi )Ai/Z,

Mi j

Mji
= p∗

j

p∗
i

= exp (−βUj )Aj

exp (−βUi )Ai
, (10)

where Uk = U (xk ) and Z = ∑
i exp(−βUi )Ai.

Motivated by these conditions, we discretize using the tran-
sition rates

Mi j =Ci exp

(
−|xi − x j |2

ε2

)
× exp

[
U (xi ) − U (x j )

2kBT

]

× exp

(
1

2
ln

Aj

Ai

)
, (11)

where Ci normalizes the Mi j to be a probability when
summing over the index j. The conditions hold up to the
normalization ratio Ci/Cj → 1 as the discretization is refined
with N → ∞, ε → 0.

D. Chemical reactions and field coupling

We also formulate methods for capturing chemical re-
actions. We introduce for each particle Xi(t ) an associated
“state” variable Si(t ). The Si(t ) can be thought of tracking the
chemical species to which Xi belongs at time t . We consider
a collection of chemical reactions C = {c�}m

�=1. For c� we
model the reaction using a Smoluchowski reaction radius r�

and probability p�. For a second-order reaction, this means if
two particles X n

i and X n
j have ‖X n

i − X n
j ‖ < r�, then we take

probability p� for a reaction to occur. For first-order reactions,
we just take p� = p�(
t ) for each particle for the probability
a reaction occurs over the time step.

We also allow for coupling of the particles to underlying
fields q = q(x, t ). We discretize q in time and space using the
lattice with qn

a ∼ q(xa, tn). As we discuss in later sections,
the fields can influence the local jump rates and reactions.
The evolution of the field is modeled using qn+1 = 
(qn). The
case of multiple fields can be handled by taking q to be vector
valued. We shall discuss in more detail specific evolution
models for concentration fields in Sec. III A and phase fields
in Sec. III B. We give a summary of the steps in our method in
Algorithm 1.

E. Approximation errors

To obtain accurate diffusive dynamics we consider how
parameter choices influence the jump rates and the ap-
proximation of the Laplace-Beltrami operator discussed in
Sec. II C. We investigate the accuracy of the surface discretiza-
tions and the trade-offs in the choice of ε between sufficient
sampling and maintaining locality. We perform our studies
for the surface of the unit sphere S2, which has the Laplace-
Beltrami operator 
M with eigenfunctions corresponding to
the spherical harmonics [80,85,86]. In the comparisons, our
numerical operator M is obtained from Eq. (11) and the
scalings indicated in Eq. (8) to yield the approximation L =
(M − I ) � (ε2/4)
M. In practice for efficient calculations,
the Mi j is constructed by truncating the kernel only to use

Algorithm 1. Hybrid Reaction-Diffusion Method

X 0
i ← initialize particle positions.

S0
i ← initialize particle states.

q0 ← initialize fields.
n ← 0.
while n < numsteps do
� Update particles using jump rates from Sec. II C.
X n+1

i ← xb,
Pr X n+1

i = xb|X n
i = xa = Mba(qn, {Sn

k }).
� Check for chemical reactions C and update the states.
Sn+1

i ← sa,
Pr Sn+1

i = sa|X n+1
i = xb, {X n

k }k �=i, {Sn
k }.

� Update the fields.
qn+1 ← 
(qn).
n ← n + 1.
end while

neighbors x j within the distance r0 with |xi − x j | < r0. We
consider the errors for a test function v given by

eLB[v] =
[

4

ε2
(M − I ) − 
S2

]
v. (12)

In Fig. 2, we show the relative errors based on εrel =
‖eLB[v]‖1/‖
S2 [v]‖1, where ‖ · ‖1 is the L1-norm averaging
over the surface. We consider case when v is the spherical
harmonic corresponding to v = v(x, y, z) = z restricted to the
surface. The sphere is discretized using a triangular mesh with
nearly uniform elements having N = 100 000 nodal points.
We consider how the error varies for different choices of ε ∈
[0.25, 2.0] and r0 ∈ [0.5, 2.0]. Letting δx = mini j |xi − x j |,
we find that when ε � δx there are insufficient number of
points in the support of the kernel to estimate the surface
geometry and the error becomes large. We find when ε � δx

FIG. 2. Approximation of the Laplace-Beltrami operator for ε

and r0. Shown is the relative error of the Markov-chain surface dis-
cretization on the unit sphere S2 compared with the Laplace-Beltrami
differential operator. The case without area correction in Eq. (10) are
shown as solid lines and the case with the area correction are shown
with dotted lines. In approximating using Eq. (7), there is a trade-off
in making ε sufficiently large to contain enough points sampling the
surface while maintaining locality. For the truncation radius r0 � 1.5
the optimum is around ε � 1.

044402-4



PROTEIN DRIFT-DIFFUSION DYNAMICS AND PHASE … PHYSICAL REVIEW E 106, 044402 (2022)

is large there are many points within the support of the kernel,
but the area of support is not localized enough to provide a
good estimate of the operator. We also show both the case
with and without the area correction terms. We find for our
relatively uniform triangulations these give comparable over-
all errors here. For our discretizations of the sphere based
on N = 10 000 points and r0 � 1.5, we find that the optimal
choice is ε � 1, see Fig. 2.

F. Role of geometry in first-passage times and other statistics

We perform analysis to develop some results showing how
our methods can be used for investigating the role of geometry
of the first-passage times and other statistics associated with
the drift-diffusion dynamics of particles on curved surfaces.
Our Markov-chain discretizations allow in some cases for
computing efficiently statistics without the need to resort to
Monte Carlo sampling, provided the state space is not too
large. We consider statistics of the form

u(n)
i = E

{
f [X (N )] +

N−1∑
k=n

g(X (k), t )

∣∣∣∣∣ X (n) = xi

}
. (13)

Let u(k) be the column vector with components [u(k)]i = u(k)
i .

The f , g : M → R are any two smooth functions on the
surface M. Let [f]i = f (xi ) and [g(�)]i = g(xi, �) be column
vectors. We also consider statistics of the form

w
(�)
i = E

{
f [X (τ� )] +

τ�−1∑
k=0

g(X (k) )

∣∣∣∣∣ X (0) = xi

}
. (14)

For the domain �, the τ� = inf{k � 0 | X (k) �∈ �} is the stop-
ping time index for the process to reach the boundary ∂�.
Each of these statistics can be computed without sampling by
the following results.

Theorem 1. The statistics u(k) of Eq. (13) satisfies

u(n−1) = Mu(n) + g(n−1), (15)

u(N ) = f . (16)

Proof. (see Appendix) �
Theorem 2. The statistics w(�) in Eq. (14) satisfies

(M̂ − Î )w = −g, (17)

∂w = f . (18)

The ∂w extracts entries for all indices with xi ∈ ∂�. The M̂, Î
refers to the matrix only with the rows with indices in the
interior of �.

Proof. (see Appendix) �
In the case that f = 0, g = 1, this becomes the first-passage

time (FPT statistic wi = E[τ� | X (0) = xi]. These results al-
low for the statistics of Eqs. (13) and (14) to be computed
efficiently without the need for Monte Carlo sampling pro-
vided the state space is not too large.

Motivated by observations that the neck geometry appears
to be a strong factor in compartmentalization in dendritic
spines [68,87], we compute the first passage times of protein
diffusions for different spine shapes in Fig. 3. The geometries
were generated from isosurfaces in a technique commonly

FIG. 3. First-passage times for spine shapes. First passage times
are computed when a protein starts at the top of the bulblike head
region and reaches the boundary. To investigate the role of the neck
region verses other aspects of the shapes, three cases are considered
for the boundary location, (i) at the base of the spine, (ii) in the
middle of the neck, and (iii) within the spherical head region just
above the neck. The results show that the neck region plays the
dominant role in the geometry. As the neck narrows, the diffusion of
the protein to leave the head region and enter the tubular domain has
a first-passage time that significantly increases from the geometry.

referred to as meatballs [88]. We used several spheres to
form the tubular region and another sphere for the bulb re-
gion. The geometry was obtained as the isosurface using the
level set function of the form f (x) = ∑

k φk (|x − xk|), where
φ(r) = ck/r2. The surface was triangulated at a refined spatial
resolution to obtain around N = 29 000 nodal points for each
shape.

First passage times are computed for when a protein starts
at the top of the head region with the bulblike shape and
reaches the boundary. To investigate the role played by the
neck region compared to the influence of the other aspects
of the geometry, three cases are considered for the boundary
location. These are boundaries located (i) at the base of the
spine, (ii) in the middle of the neck, and (iii) within the
spherical head just above the neck. These results indicate that
compared to the other geometric features, the width of the
neck region plays the dominant role in the first passage times.
As the neck narrows, the first-passage time for the protein
diffusion significantly increases from these changes in the
geometry, see Fig. 3.

III. SIMULATIONS

A. Turing instabilities on curved surfaces

We show how our discretization approach can be used
to develop methods for performing simulations of general
reaction-diffusion processes on curved surfaces of differ-
ent shapes. We consider reaction diffusion, such as the
pattern formation process based on Turing’s instability mech-
anism [89], where the geometry and topology of the domain
can impact the patterns that are obtained [90,91]. Consider
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the system with two molecular species with concentrations
u, v,

∂u

∂t
= Du
Mu + f (u, v),

∂v

∂t
= Dv
Mv + g(u, v). (19)

The diffusivities Du and Dv will in general be different.
Through the nonlinear reaction terms, the difference in dif-
fusivity can cause the homogeneously mixed concentrations
to become unstable resulting in pattern generation [89,90].

We consider Gray-Scott reactions [92], which can exhibit
different patterns depending on the initial conditions and in-
teractions with noise and other perturbations [90,93]. For the
Gray-Scott reactions [92], the terms are f (u, v) = −uv2 +
a(1 − u) and g(u, v) = uv2 − (a + b)v. The rate parameters
a, b are for the chemical reactions u + 2v

a−→ 3v and v
b−→ p.

We start with a homogeneous steady-state solution for the
system (u, v) = (1, 0), and add small perturbations based on
uniform random noise ±10% of the steady state at each loca-
tion xi within a region � ⊆ �. Throughout our simulations,
we choose a = 0.04, b = 0.06, guided by the parameters
of the phase diagram of Ref. [94]. We investigate how the
Gray-Scott patterns are influenced by different geometries and
topologies.

Using our Markov-chain discretizations, we develop nu-
merical methods for the spatiotemporal evolution of the
concentration fields. By Eq. (7), we obtain a stochastic ma-
trix M. The overall idea is to model the concentrations by
u(x, t ) = (nu/A)pu(x, t ), v(x, t ) = (nv/A)pv (x, t ), where A is
the surface area. The p = [pu, pv], with [pn]i = p(xi, tn), are
obtained from the probability evolution for the Markov chain
given by pn = pn+1M. In this way, we obtain a model that
approximates the diffusive evolution of the continuous con-
centration fields.

To model the full reaction-diffusion system in our simula-
tions, we split the time-step integration into a diffusive step
and a reaction step. For the diffusive step 
t , we use our
Markov-chain discretization in Sec. II C to update the con-
centration fields q = (u, v). This provides a mean-field model
for the concentration field, with qn+1/2 = 
1(qn) correspond-
ing to un+1/2 = unM, vn+1/2 = vnM. The M is the transition
matrix for the surface diffusion derived in Sec. II C. For the
reactions, we use the smaller time steps δt = 
t/nrk which
are integrated with the fourth-order Runge-Kutta method RK4
[95,96]. This gives qn+1 = 
2(qn+1/2). We alternate between
these steps in our simulations to obtain qn+1 = 
(qn) =

2[
1(qn)].

As we discussed in Sec. II B, the M approximates the
Laplace-Beltrami operator. This ensures with enough spatial
resolution the evolution will approximate diffusion on a sur-
face. One way to view our model is as a meshfree way to
discretize the surface reaction-diffusion PDEs. This provides
simulation methods corresponding to the mean-field concen-
tration fields of the protein species.

Our approaches for the diffusion also can be used more
generally to go beyond the mean-field model by using dis-
crete particle simulations with individual random walkers.
These would have the same distribution as our continuum
model when taking appropriate limits. Our methods allow
for either (i) to perform stochastic simulations of random
walks tracking individual particles to account for discrete

FIG. 4. Role of topology and geometry on pattern formulation.
The Gray-Scott reaction diffusion shows different patterns depending
on the shape of the surface. Shown are the cases of (i) square, (ii)
cylinder, (iii) sphere, and (iv) torus. The surfaces have area one
and when there are edges we use reflecting boundary conditions.
For the shapes (i) and (ii) spotted patterns emerge having roughly a
hexagonal pattern. For spherical topology (iii) a regular hexagonal
pattern without defects is no longer possible, and instead striped
patterns mix with spots. For the case of a torus (iv), which can sustain
a hexagonal pattern in principle, the heterogeneity of the curvature
appears to drive the formation of localized stripelike patterns. These
results indicate that both the geometry and topology can significantly
impact pattern formation.

spatiotemporal fluctuations from finite number effects or (ii)
to perform deterministic simulations tracking the probability
distribution of the walkers. For the reaction-diffusion studies
we use approach (ii). For later studies involving phase separa-
tion, we use approach (i).

We consider the Gray-Scott reaction-diffusion process on
the following geometries: (i) flat sheet with boundaries, (ii)
finite cylinder with boundaries, (iii) surface of a sphere, and
(iv) surface of a torus; see Fig. 4. The surfaces have area
one and when there are boundary edges we use reflecting
boundary conditions. For shapes (i) and (ii) spotted patterns
emerge having roughly a hexagonal pattern. For the spherical
topology (iii) a regular hexagonal pattern without defects is no
longer possible, and instead striped patterns mix with spots.
For the case of a torus (iv), which can sustain a hexagonal
pattern in principle, the heterogeneity of the curvature ap-
pears to drive the formation of localized stripelike patterns.
The results obtained with our methods indicate that both the
geometry (curvature and scale effects) and the topology can
impact significantly the pattern formation process.

We remark that Turing instabilities as a mechanism for pat-
tern formation were originally motivated by a linear stability
analysis on periodic domain performed by A. M. Turing in
Ref. [89]. Extending the analysis to general manifolds is non-
trivial given the challenges of analyzing even for the linearized
dynamics the eigenfunctions and eigenvalues associated with
the Laplace-Beltrami–based diffusions and roles of curvature
and topology. Some work in this direction has been done in
the literature in the case of specialized geometry, such as
the sphere [97,98]. The results of our methods for Turing
instabilities yield patterns comparable to those seen in such
previous studies. In the spherical case we find that there is a
transition from striped to spotted patterns in the sphere size
[99]. We also find that the hexagonal spotted patterns with
defects manifest with arrangements similar to Refs. [97,98].

We also consider more complicated shapes for the Gray-
Scott reactions given by our mechanistic dendritic spine
geometries with different neck sizes, see Figs. 5 and 6. These
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FIG. 5. Evolution of Turing instabilities for Gray-Scott reactions.
Shown is the evolution of the reaction-diffusion pattern formation
process on the dendritic spine shape having the narrowest neck, label
A (notation the same as in Fig. 3). The pattern progresses first by
forming within the bulblike head region and then spreads through
the neck to form patterning on the tubular part of the domain. The
time steps are shown for n = 0, 400, 800, 1200, 1600, 2000.

shapes consist of a bulblike head region (representing the
spine) which is connected by a neck structure to a tubelike
region (representing the dendrite). We vary the shapes by
changing the thickness of the necklike structure joining the
two regions. The evolution of the pattern formation process
for the geometry with the narrowest and widest neck shapes
are shown in Fig. 5. For the narrowest necks, the confinement
in the head region appears to result in stripelike patterns that
also extend through the neck. In the larger tubelike region, the
spotted patterns form intermixed with the stripe pattern, see
Fig. 6. These results indicate how local regions can exhibit
different patterning depending on the local geometry.

FIG. 6. Gray-Scott reaction-diffusion pattern formation on den-
dritic spine neck shapes. Starting with the steady state (u∗, v∗) =
(1, 0), given this is stationary and the evolution is deterministic,
we apply a perturbation in the shape of a circular patch on the
top of the head region with the bulblike shape with (u, v) = (0.5 ±
10%, 0.25 ± 10%). The perturbations are independent uniform vari-
ates at each lattice site. The reactions settle down into the patterns
shown for time step 2000. Striped patterns manifest near the base of
the head region and mixed spotted patterns within the tubular region.

B. Dendritic spines and protein kinetics

We develop a mechanistic model for dendritic spines to
investigate the dependence of protein transport and kinetics on
geometry and heterogeneities arising from phase separation.
Our investigations are motivated from experiments on Syn-
GAP and PSD-95 proteins, where phase separation may play
a role in driving receptor organization [70]. Phase separation
can arise from nucleation or modulating local concentrations
in the cell membrane, which is a heterogeneous mixture of
lipids, proteins, and other small molecules [1,100,101].

In our mechanistic model, we investigate how the spine
geometry and phase separation can influence reaction kinetics.
We start with a two species system. The A and B molecular
species are tracked at the individual particle level. In the
absence of phase separation, this would diffuse freely over
the membrane surface. As a starting point, we study the basic
chemical kinetics A + B → C. The discrete particles react
with probability p when coming within a reaction distance
r < r0. This is motivated by Smoluchowski reaction kinetics
[102–105].

To model such effects at a coarse level, we track a con-
tinuum phase field φ = φ(x, t ) which can couple to the local
diffusive motions of the discrete protein particles. We consider
in our initial model the case of a local order parameter asso-
ciated with phase separation based on Ginzburg-Landau (GL)
theory [106,107]. Other phase-separation phenomena and ap-
proaches also could be considered in principle within our
framework, such as the second-order Allen-Cahn [108] or the
conservative fourth-order Cahn-Hilliard [109], with additional
work on the numerical methods for the operators on curved
surfaces and coupling with the Markov-chain discretization
[110]. For notational convenience, we will denote q � φ(x),
so q : M → R for the phase variable map for the curved
surface M. This gives at lattice site i, qi � φ(xi ). The GL
functional is V̂0[φ] = ∫

M[∇φ(x)]2 + V̂2[φ](x)dx. The first
term accounts for a line tension between phases and the sec-
ond term drives the phase to ±1 with local energy density
V̂2[φ] = K (1 − φ2)2. To capture similar effects as V̂0[q], we
use the simplified discrete model

V0[q] = 1

n2

∑
i

∑
j �=i

V1[qi, q j] + 1

n

∑
i

V2[qi], (20)

with

V1[qi, q j] = α1Wi j (qi − q j )
2, V2[q] = α2(1 − q2)2. (21)

The first term models the interfacial tension, where the coeffi-
cient Wi j = W (ri j ) decays in ri j = |xi − x j |. The second term
models the order parameter which locally is at a minimum for
q = ±1. The α1, α2 > 0 control the strength of the interfacial
tension and the phase variable ordering. We use for the decay
coefficient Wi j = exp(−r2

i j/ε
2) which is truncated for large

ri j � ε.
To couple protein motions X(t ) and their ability to induce

local phase ordering in q, we use the free-energy term

V (i)
3 [q, X ] = α3[qi − (−1)]2ηa(xi − X ). (22)

The α3 > 0 controls the strength of this coupling. The ηa gives
a kernel function with support localized around the protein
location X = X (t ). This term drives the phase field toward
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FIG. 7. Chemical kinetics and phase separation. We consider
chemical kinetics where molecular species A, B diffuse freely and
react to form C by A + B → C. The molecular species C can nucleate
phase q = −1. The drift diffusion of C is coupled to the local phase
by Eq. (22). This results in a bidirectional confinement force from
the phase field q acting on C to keep within regions with q = −1.
This also results in an equal-and-opposite force acting on the phase
field from Eq. (22) driving nucleation and phase separation.

q = −1 in a region around the protein location X (t ). We use
ηa(r) = exp(−r2/a2) and

V3[q, X ] = 1

n

∑
i

V (i)
3 [q, X ]. (23)

The free energy for full system (q, X ) with protein configura-
tion X and phase field q is

V [q, X ] = V0[q] +
∑

k

V3[q, X k]. (24)

The discrete protein positions [X]k = X k are updated using
the Markov-chain discretization in Eq. (11) for the drift-
diffusion dynamics. The energy for the protein configuration
is given by U (X) = V [q, X]. The time evolution of the phase
field is given by

dqi

dt
= −∇qiV [q, X ]. (25)

This is discretized and integrated over subtime steps δt =

t/nrk using Runge-Kutta RK4 [95,96]. Modeling the dis-
crete system using the common free energy V ensures the
bidirectional coupling gives equal-and-opposite forces be-
tween the phase field q and the proteins X .

We perform simulations to investigate how the dendritic
spine geometry impacts the protein reaction kinetics and
phase separation, see Figs. 4–7 and Tables I–IV. The proteins
couple to the phase separation by having the ability to drive
nucleation of local patches with q = −1 near the protein lo-

TABLE I. Parameters for Gray-Scott Reaction-Diffusion System
in Fig. 4.

Parameter Description Value

εu Diffusion scale for u 1.0 × 10−2

εv Diffusion scale for v 5.0 × 10−3

r0 Diffusion cut-off radius 1.0
a u + 2v → 3v reaction rate 4.0 × 10−2

b v → p reaction rate 6.0 × 10−2

Tsim Total time duration 5.0 × 103


t Time step 1.0 × 10−1

nrk Runge-Kutta steps 100

TABLE II. Parameters for Gray-Scott Reaction-Diffusion Sys-
tem in Figs. 5 and 6.

Parameter Description Value

εu Diffusion scale for u 1.0 × 10−1

εv Diffusion scale for v 5.0 × 10−2

r0 Diffusion cut-off radius 1.0
a u + 2v → 3v reaction rate 4.0 × 10−2

b v → p reaction rate 6.0 × 10−2

Tsim Total time duration 2.0

t Time step 1.0 × 10−3

nrk Runge-Kutta steps 1

cation X (t ). The geometries were chosen with the neck region
taking on shapes varying from narrow to wide, see Fig. 4.
The protein species A, B are modeled as originating in the top
head region of the spine. This could arise for instance if these
species correspond to tracking proteins only after they have
become activated in this region. The proteins can then diffuse
and may induce local phase separation through the coupling
V3. The proteins can also interact to form a complex which is
tracked by molecular species C.

We show how the phase separation proceeds over time
as the size of the neck region varies in Fig. 8. As the neck
region narrows, the protein diffusion and the phase separation
are restricted to be localized in the head region. As the neck
becomes wide, the protein diffusion and phase separation can
readily proceed to spread more rapidly into the tubular region;
see Figs. 8 and 9. Further effects arise from the coupling of the
proteins with the local phase.

The protein dynamics are impacted by both the geometry
and the local phase. In our simulation studies, the coupling
coefficients are taken to be αA

3 = αB
3 = 0 and αC

3 = 1.0. For
this case C can nucleate phase separation nearby since it
prefers the phase field have q = −1. This also results for C
experiencing a trapping force within regions with q = −1,
from the free energy in Eq. (22). This restricts the movements
of C. The evolution of the creation of of molecular species C
is shown in Fig. 10. The number of C formed and retained in
the head region is significantly impacted by the neck geometry
and phase separation. When the neck is narrow, the confine-
ment of A, B and the phase separation to the head region, both

TABLE III. Parameters for Dendritic Spine Phase Separation.

Parameter Description Value

α1 GL phase interfacial tension 1.0 × 106

α2 GL phase polarity 1.0 × 104

α3 GL protein-phase coupling 1.0
a Protein phase radius 0.1
N A, B initial protein count 1000
ε Diffusion scale for proteins 0.1
r0 Diffusion cut-off radius 0.5
p A + B → C reaction probability 0.01
Tsim Total time duration 200.0

t Time step 0.1
nrk Runge-Kutta steps 100
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TABLE IV. Parameters for the dendritic spine phase separation
simulations.

Parameter Description Value

α1 GL phase interfacial tension 1.0 × 106

α2 GL phase polarity 1.0 × 104

α3 GL protein-phase coupling 0 – 10.0
a Protein phase radius 0.1
N A, B initial protein count 1000
ε Diffusion scale for proteins 0.1
r0 Diffusion cut-off radius 0.5
p A + A → 2A reaction probability 0.001
q A → B decay probability 0.001
Tsim Total time duration 200.0

t Time step 0.1
nrk Runge-Kutta steps 100

enhances the creation of C by more frequent A − B encounters
and in C’s retention to the head region from the phase trapping
forces. As the neck becomes wide, the A, B can diffuse more
freely and when the phase does nucleate it can more rapidly
spread throughout the whole domain. This results in a much
smaller number of C being created and retained in the head
region.

Our basic mechanistic model shows that the morphology
and phase separation can interact to serve together to enhance
retaining proteins near the top of the dendritic spine. These
results are expected to carry over to more complicated chemi-
cal kinetic systems. The further interactions among diffusion,
kinetics, phase separation, and the geometry can regulate in
different ways the spatial arrangements and the local effective
rates of reactions in curved cell membranes.

FIG. 8. Dendritic spine model: Role of geometry in phase sepa-
ration. The dendritic spine model consists of a head region connected
by a neck region to a tubular domain. The active proteins A, B in the
model all originate at the top of the head region. The phase separation
occurring in the two cases is shown for (i) a narrow neck constricting
the protein diffusion and spread of the phase separation (top) and (ii)
a wide neck through which the proteins can readily diffuse and the
phase can separate (bottom). The phase q = 1 is red and q = −1 is
blue; shown are time steps 50, 300, and 2000. At around time step
∼300 (middle), the the protein diffusion and phase separation comes
into contact with the neck region. In the narrow case, the neck region
acts effectively like an entropic barrier for the diffusion arising from
the geometry.

FIG. 9. Dendritic spine model: Average phase. The proteins C
can nucleate phase with q = −1. Shown are how the geometry im-
pacts phase evolution for five different sizes for the neck region with
labels A–F ordered from narrowest to widest as in Fig. 6. The phase
separation is found to slow down considerably for the narrowest neck
(label A) relative to the widest neck (label F). The differences emerge
around around time step ∼300, when the bulblike head region is
saturated. We see over the 2000 time steps the widest neck results
in almost the entire domain including the tubular region converting
to phase q = −1. For the narrowest neck shape, we see at time step
2000 the phase separation is primarily isolated to the head head
region and surrounding area, while the rest of the domain remains
primarily q = 1. The average is taken over the entire surface.

C. Protein clustering and role of phase separation

We investigate how phase separation can impact protein
kinetics and clustering. Consider the case of states where
proteins in state A are in an active state receptive to binding

FIG. 10. Dendritic spine model: Proteins C in the head region.
Shown are the number of proteins C within the bulblike head re-
gion over time. We see the reactions producing C proceed almost
independent of the geometry up to time step ∼300. Afterwards, the
shapes with the narrowest necks results in far more C proteins being
produced and retained within the head region. This shows how phase
separation can serve to enhance retaining proteins near the top of the
spine.
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FIG. 11. Dendritic spine model: Shown are the number of pro-
teins 2A within the bulblike head region over time. We see that
increasing the interaction strength α3 (legend) between proteins A
and the phase field promotes the formation of clusters 2A.

and proteins in state B are dormant. Consider the competing
reactions for forming dimers,

A + A
p−→ 2A, A

q−→ B. (26)

The p and q denote here the reaction probabilities. The
protein-phase-field interactions are modeled using our ap-
proach in Sec. III B. We take the phase field to impact the
proteins in states A and 2A with the same strength, αA

3 = α2A
3 .

In contrast, we take proteins in the dormant state B to not
interact with the phase field, αB

3 = 0. To study the effects
of the phase field, we vary αA

3 over the range from 0.0 (no
interaction) to 1 × 101 (strong interaction). We investigate in
simulations the number of dimers 2A proteins that are formed
over time for different levels of phase-field interaction αA

3 and
as the phase separation progresses. The 2A counts are given
in Fig. 11. We find in the strongest coupling cases the phase
field can significantly impact the reaction kinetics promoting
clustering and dimer formation. The details of the parameters
used in our simulations are given in Table IV.

The results show that phase-field separation can play sig-
nificant roles impacting reaction kinetics within membranes.
In this case promoting the formation of clusters. The under-
lying mechanisms has to do with the formation for proteins
of local environments with initially small phase-separated
domains that serve to confine the diffusion of the proteins.
Relative to free diffusion over the entire membrane surface,
the phase confinement results in diffusion with the phase
domain and more frequent encounters between coconfined
proteins. In this way, the binding kinetics are enhances relative
to the free diffusion. From the greater slope in the increase
in the number of clusters formed for case αA

3 = 1 × 101 vs
αA

3 = 0, we see the phases have the greatest impact when
there are small phase domains. The smaller domains results in
more frequent encounters between confined proteins. As the
phase separation progresses the domains become larger and
merge with the effect of phase coupling on the reactions
become less pronounced.

These results show how phase separation and domain for-
mation can be utilized within cell membranes to significantly
augment the reaction kinetics without changing the reaction
characteristics of the individual proteins. These simulation
methods provide further ways to investigate the collective
kinetics of proteins and the roles played by phase composition
and the membrane geometry.

IV. CONCLUSIONS

We have developed biophysical models for investigating
protein kinetics within heterogeneous cell membranes of ar-
bitrary shape. The introduced methods allow for studying at
the continuum and discrete protein-level the drift-diffusion
dynamics and reaction kinetics taking into account the roles
of geometry and coupling to membrane phase separation. We
have shown that coupling of kinetics to phase separation and
geometry can significantly enhance or inhibit reactions and
cluster formation processes. These initial results suggest a
few mechanisms by which biological membranes may utilize
phase separation and geometry to drive kinetics and organiza-
tion of proteins within cell membranes.
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APPENDIX: RESULTS ON STATISTICS OF MARKOV
CHAINS AND BACKWARD EQUATIONS

We discretize the particle drift-diffusion dynamics on the
surface using a Markov chain with jump rates Mi j . The FPT
and other statistics can be computed efficiently from the
Markov chain without the need for Monte Carlo sampling
when the discrete state space is not too large. We show how
results similar to the backward-Kolmogorov PDEs [75] can be
obtained for our discrete Markov chains.

Theorem 1. Let u be a column vector with components in
i associated with the statistics

u(n)
i = E

[
f (X (N ) ) +

N−1∑
t=n

g(X (t ), t )

∣∣∣∣ X (n) = xi

]
. (A1)

The statistics u(k) satisfy

u(n−1) = Mu(n) + g(n−1), (A2)

u(N ) = f . (A3)

The M is the right-stochastic matrix of the Markov chain. For
a given choice of functions f , g, we collect the values [f]i =
f (xi ) and [g(�)]i = g(xi, �) as column vectors f, g(�).
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Proof. For the initial condition X (n) = xi, let the matrix
P(m) have the components P(m)

i j = p(m)
j . For m � n, the p(m)

j is

the solution of p(�+1) = p(�)M, starting with p(n)
j = [p](n)

j = δi j .
The δi j is the Kronecker δ function. For m = n, we have
P(n)

i j = δi j . This gives

u(n)
i = E

[
f (X (N ) ) +

N−1∑
t=n

g(X (t ), t )

∣∣∣∣ X (n) = xi

]

=
∑

j

P(N )
i j f (x j ) +

N−1∑
t=n

∑
j

P(t )
i j g(x j, t )

=
∑

j

∑
k

P(n)
ik (MN−n)k j f (x j )

+
N−1∑
t=n

∑
j

∑
k

P(n)
ik (Mt−n)k jg(x j, t )

=
∑

j

(MN−n)i j f (x j ) +
N−1∑
t=n

∑
j

(Mt−n)i jg(x j, t )

=
[

MN−nf +
N−1∑
t=n

Mt−ng(t )

]
i

= [
Mu(n+1) + g(n)

]
i. (A4)

At time t = N , only the term with f contributes and we obtain
u(N )

i = [f]i. �
Theorem 2. Let w be a column vector with components

associated with the first-passage-time statistics

wi ≡ E

[
f (X (τ� ) ) +

τ�−1∑
t=0

g(X (t ) )

∣∣∣∣ X (0) = xi

]
, (A5)

where τ� = inf{k � 0 | X (k) /∈ �}. The w satisfies the linear
equation

(M̂ − Î )w = −g, (A6)

∂w = f . (A7)

The ∂w extracts entries for all indices with xi ∈ ∂�. The M̂
refers to the rows with indices in the interior of �.

Proof. Since the equation is linear, we will first consider
the case with f = 0, g �= 0 and then the case with f �= 0, g =
0. The general solution is then the sum of these two cases. For
the case with f = 0, g �= 0 we have

wi = E

[
τ−1∑
t=0

g(X (t ) )

∣∣∣∣ X (0) = xi

]

=
∞∑

n=0

E

[
n−1∑
t=0

g(X (t ) )

∣∣∣∣ X (0) = xi, τ = n

]
Pr{τ = n}

=
∞∑

n=0

g(xi ) Pr{τ = n}

+
∞∑

n=0

∑
x j∈�

Pr{X (1) = x j | X (0) = xi} Pr{τ = n}

× E

[
n−1∑
t=1

g(X (t ) )

∣∣∣∣ X (0) = xi, X (1) = x j, τ = n

]

= g(xi ) +
∑
x j∈�

Mi j

∞∑
n=0

Pr{τ = n}

× E

[
n−1∑
t=1

g(X (t ) )

∣∣∣∣ X (0) = xi, X (1) = x j, τ = n

]

= g(xi ) +
∑
x j∈�

Mi jw j . (A8)

In matrix form,

ŵ = g + M̂w, (A9)

where ŵ, M̂ refers to the entries in the rows with indices of
points in the interior of the domain �. This can be expressed
as

(M̂ − Î )w = −g. (A10)

The Î is the linear map that extracts entries within the interior
of the domain �.

We next consider the case with f �= 0 and g = 0. Similarly,
this follows from

wi = E

[
f (X (τ ) )

∣∣∣∣ X (0) = xi

]

=
∞∑

n=0

E

[
f (X (n) )

∣∣∣∣ X (0) = xi, τ = n

]
Pr{τ = n}

=
∞∑

n=0

∑
x j∈�

Pr{X (1) = x j | X (0) = xi} Pr{τ = n}

× E

[
f (X (n) )

∣∣∣∣ X (0) = xi, X (1) = x j, τ = n

]

=
∑
x j∈�

Mi j

∞∑
n=0

Pr{τ = n}

× E

[
f (X (n) )

∣∣∣∣ X (1) = x j, τ = n

]

=
∑
x j∈�

Mi jw j . (A11)

For xi ∈ ∂� we have wi = E[ f (X (τ ) ) | X (0) = xi] = f (xi ),
since τ = 0 in this case. In matrix form this gives ∂w = f and

(M̂ − Î )w = 0. (A12)

The ∂w extracts the entries with indices i corresponding to
the boundary ∂�. Putting both cases together we have that w
satisfies for general f, g the linear system

(M̂ − Î )w = −g

∂w = f . (A13)

�
These results provide approaches for computing efficiently

the statistics u and w without the need in some cases for
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Monte Carlo sampling when the state space is not too large.
These results provide an analog of the backward-Kolmogorov

PDEs in the setting of our Markov-chain discretizations of
particle drift-diffusion dynamics on curved surfaces.
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