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Novel predator-prey model admitting exact analytical solution
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The Lotka-Volterra predator-prey model still represents the paradigm for the description of the competition in
population dynamics. Despite its extreme simplicity, it does not admit an analytical solution, and for this reason,
numerical integration methods are usually adopted to apply it to various fields of science. The aim of the present
work is to investigate the existence of new predator-prey models sharing the broad features of the standard
Lotka-Volterra model and, at the same time, offer the advantage of possessing exact analytical solutions. To this
purpose, a general Hamiltonian formalism, which is suitable for treating a large class of predator-prey models
in population dynamics within the same framework, has been developed as a first step. The only existing model
having the property of admitting a simple exact analytical solution, is identified within the above class of models.
The solution of this special predator-prey model is obtained explicitly, in terms of known elementary functions,
and its main properties are studied. Finally, the generalization of this model, based on the concept of power-law
competition, as well as its extension to the case of N-component competition systems, are considered.
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I. INTRODUCTION

The standard Lotka-Volterra (LV) predator-prey model is
described by the bilinear first-order coupled differential equa-
tions

d x1

d t
= c12 x1 x2 − c11 x1, (1.1)

d x2

d t
= −c21 x1 x2 + c22 x2, (1.2)

where the positive functions x1 = x1(t ) and x2 = x2(t ) repre-
sent the predator and the pray populations, respectively, while
ci j are positive constants describing the interaction between
the two populations.

The above deterministic model was created in the third
decade of the twentieth century in the field of ecology [1,2].
Almost a century after it was first proposed it still attracts
the interest of the scientific community, and intense research
activity has been carried out on this model up to the present
day [3–12].

Ecology undoubtedly represents the field in which the LV
model has been used the most and in a systematic way, but its
versatility has allowed it to be used for the study of an ever
increasing variety of physical, natural and artificial systems,
such as in plasma physics [13], in spin-wave patterns [14],
in the formation of crystallization fronts [15], in multimode
dynamics in optical systems [16], in neural networks [17], etc.
A very large, but not exhaustive, list of applications of the LV
model can be found in Refs. [18,19].

The undisputed success of the LV model has not prevented
researchers from going further and proposing generalizations
of the model in order to describe some empirically observed
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phenomenologies, especially in the field of ecology and biol-
ogy [20–24]. A huge debate is currently ongoing in ecology
on how to model predation, and the discussion on how the
predator’s consumption rate (known as functional response)
can be influenced by the predator and the prey population
densities, has been stimulated by some works [25–29]. In
prey-dependent models the functional response is independent
of predator population size while in the predator-dependent
models the functional response depends on both predator
and prey population sizes. Special case of predator-dependent
models are the so called ratio-depended models (ratio of
prey population size to predator population size) promoted
by Arditi and Ginzburg. A critical discussion on the principal
predator-prey models and limits of their validity can be found
in Ref. [26]. Mathematical generalizations of the LV model
has recently been considered in the framework of fractional
calculus [30,31].

An old but very efficient and simple tool that is used in
the construction of ordinary differential equations, and which
is suitable for describing the evolution of populations, is un-
doubtedly the formalism of power-law functions. It is worth
noting that the first equation, describing the evolution of a
population, proposed by Verhulst in 1838, contains a term
governing the saturation of the population, which is a second-
degree power-law of the population function. In the last two
decades of the twentieth century, the formalism of power laws
was systematically employed to propose population evolution
models described by coupled, first-order, ordinary nonlinear
differential equation systems [32]. This formulism was first
introduced in theoretical biochemistry [33–36]. In ecology,
an important generalization of the LV system, involving the
power-law formalism, was proposed in 1988 by Brenig [37].

Despite its apparent simplicity, the LV model is far from
being understood. It does not admit analytical solution and,
for this reason, its solution is obtained numerically or in an
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approximate way by considering its linearized version. These
difficulties have not prevented interest in the LV model, which
still represents the paradigm for describing the phenomenon
of predator-prey competition. However, a common feature of
all the models that generalize the LV one is that they do not
lead to analytical solutions as well.

Knowledge of the possible analytical solution, in terms of
known elementary functions of an evolution model of compet-
ing populations is important from, and not only the practical
point of view because of the possibility of conducting quick
comparison with empirical data. The existence of a simple
analytical solution is also extremely important for a model,
from a theoretical point of view, as it allows us to better
understand the nature of the competition mechanism. This
ultimately gives an added value to the model itself, as it makes
it more transparent.

The aim of the present work is to propose a novel predator-
prey model that captures the main features and symmetries
of the standard LV model and, at the same time, has the
additional property of admitting a simple analytical solution,
in terms of known elementary functions. Furthermore, the
generalization of this model, in the context of the power-law
function formalism, yields a second, more general, model that
presents a simple Hamiltonian form, suitable for numerical
evaluation.

The paper is organized as follows: First, we introduce a
general class of Hamiltonian predator-prey models, where
the competition terms are expressed through two arbitrary
functions and its main properties are studied. In particular,
we obtain the first integral of motion of this class of models
and focus on their Hamiltonian formalism. Subsequently, we
identify the only existing model, within this general class of
models, admitting an exact analytical solution and obtain it
in explicit form. Then, as a first extension of this integrable
model, a class of models involving power-law competition
rates, is proposed. Finally a further extension of the formalism
developed for the here proposed predator-prey system, in the
case of an arbitrary number of interacting populations, is also
studied.

II. A GENERAL CLASS OF PREDATOR-PREY MODELS

Four fundamental properties of the standard LV model
immediately emerge from a direct inspection of the two equa-
tions expressing the rate of change of the two predator-prey
populations:

(i) The rate of change of each population is assumed to be
the difference between rate of growth and rate of loss.

(ii) The competition term plays the growth rate role for the
predator and of loss rate role for the prey, and it is obtained
by considering the product of the contribution of the two
populations.

(iii) The contribution of the two populations in the expres-
sions of the rate terms is quantified through two characteristic
functions.

(iv) The two characteristic functions of the competing
populations are assumed to be linear functions of the related
populations fi(xi ) = xi.

Hereafter, we consider a class of predator-prey models for
which only the first three properties of the standard LV model

continue to apply, i.e., (i), (ii), and (iii). The fourth property
is released, so that the new class of predator-prey models is
obtained, starting from the equations that define the LV model
and after substituting xi → fi(xi ), in all the rate term, in the
right-hand side of Eqs. (1.1) and (1.2), thus obtaining

d x1

d t
= c12 f1(x1) f2(x2) − c11 f1(x1), (2.1)

d x2

d t
= −c21 f1(x1) f2(x2) + c22 f2(x2). (2.2)

The above coupled differential equations describe a class of
predator-prey models that capture many of the features of the
standard LV one. This class of models is very general, because
of the arbitrariness of the two characteristic functions fi(xi )
that obey the conditions fi(0) = 0 and d fi(xi )/d xi > 0.

The two coupled first-order differential Eqs. (2.1) and (2.2)
can be easily uncoupled obtaining the two second- order dif-
ferential equations for the predator and prey populations. First
we introduce the transformed populations wi = wi(t ) defined
through wi = fi(xi ) with i = 1, 2 and the auxiliary functions
�i(w) according to

d �i(w)

d w
= 1

w f ′
i

(
f −1
i (w)

) (2.3)

f ′
i (xi ) and f −1

i (xi ) indicating the derivative and the inverse
function of fi(xi ), respectively. Then the introduction of the
two nonlinear first-order differential operators

Di j (w) = cii

ci j
+ 1

ci j

d �i(w)

d w

d w

d t
(2.4)

permits us to write the predator evolution equation in the form
of the following nonlinear second-order differential equation

D21(D12(w1)) + w1 = λ21 (2.5)

with λi j = 2 cii/ci j . The prey evolution equation follows from
the predator one by exchanging the indexes 1 ↔ 2 and invert-
ing time t → −t . It is remarkable that the dynamics of the
predator-pray system is univocally fixed by the forms of the
two functions fi(x) or equivalently by the forms of the two
functions �i(w).

III. HAMILTONIAN FORMALISM

To introduce the Hamiltonian formalism of the above gen-
eral class of models we first obtain the first integral of motion
of the system. By direct comparison of Eqs. (2.1) and (2.2),
the differential equation follows as

d x2

d x1
= − f2(x2)

f1(x1)

c21 f1(x1) − c22

c12 f2(x2) − c11
. (3.1)

After separation of the variables(
c12 − c11

f2(x2)

)
dx2 +

(
c21 − c22

f1(x1)

)
dx1 = 0, (3.2)

and integration, the first integral of motion is obtained in the
form

H = c21 x1 − c22 F1(x1) + c12 x2 − c11 F2(x2), (3.3)
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where H is the integration constant while the Fi(xi ) functions
are defined according to

dFi(xi )

dxi
= 1

fi(xi )
. (3.4)

The quantity H , can be viewed as a function of the two
variables xi, i.e., H = H (x1, x2) and, after taking into account
the expression of H given by Eq. (3.3), the definition (3.4),
and the evolution equations (2.1) and (2.2) it follows that

d H

d t
= ∂ H

∂ x1

d x1

d t
+ ∂ H

∂ x2

d x2

d t
= 0, (3.5)

so that we can conclude that H is a conserved quantity
whose value H0, depends on the initial conditions. Thus, equa-
tion H (x1, x2) = H0 defines, in the phase space, i.e., the x1x2

plane, a level curve of the function H (x1, x2) that is the orbit
of the system.

By employing the above introduced functions Fi(xi ), the
predator-prey evolution Eqs. (2.1), (2.2) can be written in the
form

d F1(x1 )
d t = c12 f2(x2) − c11, (3.6)

d F2(x2 )
d t = c22 − c21 f1(x1). (3.7)

The introduction of the transformation

yi = Fi(xi ), (3.8)

appears natural at this point. The evolution equations for the
transformed populations yi = yi(t ) become

d y1

d t
= c12 φ2(y2) − c11, (3.9)

d y2

d t
= −c21 φ1(y1) + c22, (3.10)

with φi(yi ) = fi(�i(yi )) and �i(yi ) = F−1
i (yi ) being the in-

verse function of Fi(xi ).
As a consequence, the inverse transformations of the ones

defined through Eq. (3.8) assume the form

xi = �i(yi ), (3.11)

so that the conserved quantity H of the system governed by
evolution Eqs. (2.1) and (2.2), if expressed in terms of the
transformed populations yi, takes the form

H = c21 �1(y1) − c22 y1 + c12 �2(y2) − c11 y2. (3.12)

An alternative expression of the function φi(yi ) follows
easily, after taking into account Eqs. (3.4) and (3.8). It thus
obtains

φi(yi )= fi(�i(yi )) = fi(xi ) = 1
d Fi (xi )

d xi

= d xi

d yi
, (3.13)

and after taking into account Eq. (3.11), it follows

φi(yi ) = d �i(yi )

d yi
. (3.14)

The thus obtained direct differential link between the φi(yi )
and �i(yi ) functions, permits us to write evolution equa-

tions (3.9) and (3.10), for the transformed populations yi in
canonical form

d y1

d t
= ∂ H

∂ y2
, (3.15)

d y2

d t
= −∂ H

∂ y1
. (3.16)

We can then conclude that the conserved quantity H , is the
Hamiltonian of the transformed canonical system {yi(t )}. In
other words, transformation (3.8) maps the real system {xi(t )}
into the canonical one {yi(t )}.

It is remarkable that, according to the present for-
malism, any predator-prey system described by evolution
equations (2.1) and (2.2), is to associated one and only one
canonical system, whose dynamics is governed by evolution
equations (3.9) and (3.10). The nature of the predator-prey
competition is fixed by the two functions fi(xi ). Furthermore,
the functions fi(xi ) univocally determine the link between the
real and the canonical system by fixing the functions Fi(xi )
and �i(xi ) and also the functions φi(xi ) which govern the
competition dynamics for the canonical system, according to
the scheme

fi(xi ) ⇐⇒ Fi(xi ) ⇐⇒ �i(yi ) ⇐⇒ φi(yi ). (3.17)

It is worth noting that the transformations that allows
the real system to be mapped to the canonical system, i.e.,
the functions �i(yi ) can be obtained directly from the func-
tions fi(xi ). Indeed, Eq. (3.14), after taking into account that
φi(yi ) = fi(�i(yi )), assumes the form

d �i(yi )

d yi
= fi(�i(yi )). (3.18)

Finally, from the last differential equation and after taking
into account Eq. (3.14), it easily follows also the direct link
between the functions fi(xi ) and φi(yi )

φi(yi ) = fi

(∫ yi

0
φi(w) dw

)
. (3.19)

Starting from a given predator-prey system, in which fi(xi )
is fixed, the two latter equations can be employed to obtain the
associated Hamiltonian system. For instance, in the case of the
standard LV system, described by Eqs. (1.1) and (1.2), where
fi(xi ) = xi, we obtain �i(z) = exp(z) and φi(z) = exp(z), by
employing Eqs. (3.18) and (3.19), respectively. The evolution
equations for the canonical counterpart of the standard LV
model, then reads

d y1

d t
= c12 exp(y2) − c11, (3.20)

d y2

d t
= c22 − c21 exp(y1). (3.21)

The introduction of the Hamiltonian formalism is not of
great utility for the standard LV model, from the computa-
tional point of view. The system, also in its canonical form,
already known in literature [38], continues to not admit any
analytical solution. Interestingly, the Hamiltonian formalism
turns out to be very useful for the construction of a new,
exactly solvable, predator-prey model, as will be seen below.
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IV. THE NEW EXACTLY SOLVABLE MODEL

Hereafter, we are interested in identifying the predator-prey
model among the infinity of models described by Eqs. (2.1)
and (2.2), if it exists, that admits an explicit analytical solu-
tion. This requirement can be imposed on the Hamiltonian
system so that, starting from a solvable Hamiltonian system,
we can go back to identify the corresponding real system
by exploiting the transformation that links the two systems.
The existence of an analytical solution for the Hamiltonian
system described by Eqs. (3.9) and (3.10), can be imposed by
requiring it to be linear, i.e.,

φi(yi ) = 2 yi. (4.1)

The nonessential multiplicative constant has been chosen
equal to 2, in such a way that the transformation allowing
to pass from the Hamiltonian system to the real one has the
following simple form:

�i(yi ) = y2
i , (4.2)

as imposed by Eq. (3.14).
Starting from the above expression of the functions

φi(yi ) or �i(yi ) and by employing Eqs. (3.19) and (3.18),
respectively, the functions f(xi ) follows immediately. For in-
stance, after substituting the expression of �(yi ), as given
by Eq. (4.2), into Eq. (3.18), it obtains the functional equa-
tion 2 yi = fi(y2

i ), which yields

fi(xi ) = 2
√

xi. (4.3)

From Eq. (3.4) and the expression of fi(xi ), it follows that

Fi(xi ) = √
xi. (4.4)

At this point, after posing γii = 2 cii, γi j = 4 ci j with i =
1, 2, j = 1, 2 and i �= j, for simplicity, we can write the evo-
lution equations for the real system

d x1

d t
= γ12

√
x1

√
x2 − γ11

√
x1 , (4.5)

d x2

d t
= −γ21

√
x1

√
x2 + γ22

√
x2, (4.6)

and for the corresponding Hamiltonian system

d y1

d t
= γ12

2
y2 − γ11

2
, (4.7)

d y2

d t
= −γ21

2
y1 + γ22

2
, (4.8)

together with the quadratic transformation

xi = y2
i , (4.9)

that links the two systems.
It is remarkable that evolution equations (4.5) and (4.6)

describe a new simple but different from the standard LV
predator-prey model. Interestingly, this new model captures
the main features of the LV model and additionally has the
property to admit an exact analytical solution, which can be
expressed in terms of known elementary functions. It is impor-
tant to note that the discovery of the above integrable model
does not exclude the existence of other integrable models
within the class described by Eqs (2.1) and (2.2).

The conserved quantity H assumes, for the two systems,
the forms

H = γ21

4
x1 − γ22

2

√
x1 + γ12

4
x2 − γ11

2

√
x2, (4.10)

and

H = γ21

4
y2

1 − γ22

2
y1 + γ12

4
y2

2 − γ11

2
y2. (4.11)

The above expressions of H defines the orbits of the system
in the two x1x2 and y1y2 phase spaces. After some tedious but
simple algebra, and after posing

y1c = γ22

γ21
y2c = γ11

γ12
, (4.12)

h = H + γ 2
11

4 γ12
+ γ 2

22

4 γ21
, (4.13)

and

a1 =
√

4 h

γ21
a2 =

√
4 h

γ12
, (4.14)

Eq. (4.11), which defines the orbit of the Hamiltonian system
in the y1y2 plane, assumes the form

(y1 − y1c)2

a2
1

+ (y2 − y2c)2

a2
2

= 1, (4.15)

thus indicating that the orbit is an ellipse.
The solution of the linear system of Eqs. (4.7) and (4.8) is

given by

y1 = y1c + a1 sin(ω t + θ0), (4.16)

y2 = y2c + a2 cos(ω t + θ0), (4.17)

where the frequency ω is given by

ω = 1
2

√
γ12γ21, (4.18)

while θ0 is related to the initial conditions, according to
sin(θ0) = (y10 − y1c)/a1 and cos(θ0) = (y20 − y2c)/a2.

After substitution of the expressions of θ0, y1c, y2c, a1 and
a2 in Eqs. (4.16) and (4.17), the time evolution of the Hamil-
tonian populations yi can be obtained, in terms of the initial
conditions yi0 and the model parameters γi j . Finally, from the
quadratic transformation given by Eq. (4.9), we immediately
obtain the time evolution of xi

x1 =
[
γ22

γ21
+

(√
x10 − γ22

γ21

)
cos(ω t )

+
√

γ12

γ21

(√
x20 − γ11

γ12

)
sin(ω t )

]2

, (4.19)

x2 =
[

γ11

γ12
+

(√
x20 − γ11

γ12

)
cos(ω t )

−
√

γ21

γ12

(√
x10 − γ22

γ21

)
sin(ω t )

]2

, (4.20)

The above obtained functions, xi = xi(t ), represent the general
exact analytical solution of the predator-prey system de-
scribed by evolution equations (4.5) and (4.6). It is remarkable
that the competition rates in the present model are described
through the characteristic sublinear functions fi(xi ) = √

xi
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which substitute the linear functions fi(xi ) = xi appearing in
the standard LV model. This simple substitution is sufficient to
generate a predator-prey model admitting an exact analytical
solution.

The existence of the above constructed diffeomorphism
linking the real nonlinear dynamical system (exhibiting an
elliptic fixed point) and the Hamiltonian linear system (with
a center), is guaranteed by the Poincare-Bendixson theorem.
This diffeomorphism is obtained here together with the solu-
tion of the real dynamic system and its frequency in closed
form. For the standard LV system, the frequency and period
can only be estimated numerically after evaluating a com-
plicated integral [39]. The need to have the expression of
the period of the standard system of LV in a closed form is
strongly felt and has led towards the proposal of asymptotic
analytic expressions that provide only approximate estima-
tions [40]. This highlights the usefulness of having in closed
form the solution and the frequency of the system described
by the model proposed here, especially in view of its applica-
tions.

V. POWER-LAW PREDATOR-PREY MODEL

An important predator-prey model is obtained when fi(xi )
are power-law functions, i.e., fi(xi ) ∝ xαi

i , with αi > 0. In
such a case, Fi(xi ), �i(xi ) and φi(xi ) also become power-law
functions, i.e.,

fi(xi ) = 1

1 − αi
xαi

i , (5.1)

Fi(xi ) = x1−αi
i , (5.2)

�i(yi ) = y
1

1−αi
i , (5.3)

φi(yi ) = 1

1 − αi
y

αi
1−αi
i . (5.4)

After posing γii = cii/(1 − αi ), γi j = ci j/(1 − αi )(1 −
α j ), with j �= i and i = 1, 2, j = 1, 2, Eqs. (4.5) and (4.6), that
define the competition model, assume a particularly simple
form

d x1

d t
= γ12 xα1

1 xα2
2 − γ11 xα1

1 , (5.5)

d x2

d t
= −γ21 xα1

1 xα2
2 + γ22 xα2

2 , (5.6)

while the first integral of motion becomes

H = (1 − α1)(1 − α2)γ21 x1 − (1 − α2)γ22 x1−α1
1

+ (1 − α1)(1 − α2)γ12 x2 − (1 − α1)γ11 x1−α2
2 . (5.7)

The associated canonical system can be introduced by
considering the transformation yi = x1−αi

i so that, after posing
βi = αi/(1 − αi ) and ηi j = γi j/(1 + βi ), the evolution equa-
tions become

d y1

d t
= η12 yβ2

2 − η11, (5.8)

d y2

d t
= −η21 yβ1

1 + η22, (5.9)

while the Hamiltonian of the system assumes the form

H = η21

1 + β1
y1+β1

1 − η22 y1 + η12

1 + β2
y1+β2

2 − η11 y2. (5.10)

The above power-law predator-prey model is described by
two coupled differential equations which do not admit any
analytical solution, except for the special previously examined
case corresponding to αi = 1/2. The model is form invari-
ant describing power-law interaction also in its Hamiltonian
version and belongs to the class of models described by
Eqs (2.1) and (2.2). As a consequence, compared to other
more general and complex power-law models considered in
the literature [33–37], it has the advantage of admitting a
Hamiltonian formalism with its first integral easily obtained
in closed form. Last but not least, this simple model represents
a two-parameter interpolation between the standard LV model
(αi = 1) and the model (αi = 1/2), proposed in the previous
section, which shows the solution in closed form.

VI. N-COMPONENT MODELS

The interaction between N distinct populations within the
LV model is described by means of the following N coupled
nonlinear differential equation

d xi

d t
= λi xi + xi

N∑
j=1

Ai j x j, (6.1)

with i = 1, 2, ..., N , while the bilinear term Ai jxix j , represents
the competition between the populations xi and x j . An im-
portant generalization of the above N-component model was
proposed in Ref. [37], involving power-law functions, whose
solution can be obtained by employing numerical integration
methods.

Hereafter, we briefly consider the extension of the previ-
ously introduced power-law model to N-component systems.
The evolution equations of the system read

d xi

d t
= λi xαi

i + xαi
i

N∑
j=1

Ai j x
α j

j , (6.2)

which can be obtained, starting from Eq. (6.1), describing
the LV model, by performing the xi → xαi

i substitution, on its
right-hand side.

In the following we are not interested in the Hamiltonian
formalism of the power-law competition system, but instead
we focus on the transformation zi = x1−αi

i , which preserves
the power-law form of the system. The evolution equations for
the transformed system simplifies to

(1 + βi )
d zi

d t
= λi +

N∑
j=1

Ai j z
β j

j , (6.3)

with βi = αi/(1 − αi ). The above equations have a form suit-
able for numerical integration.

It is remarkable that, as in the previously considered case
of two-component systems, the N-component systems, for
αi = 1/2 which implies βi = 1, also admit analytical solu-
tions, in terms of known elementary functions. The evolution
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equations of the real system become

d xi

d t
= λi

√
xi + √

xi

N∑
j=1

Ai j
√

x j, (6.4)

while the system of the equations governing the transformed
system becomes linear, i.e.,

d zi

d t
= 1

2
λi + 1

2

N∑
j=1

Ai j z j, (6.5)

so that its analytical solution is easy to obtain. Finally, the
transformation xi = z2

i permits us to obtain the analytical and
explicit solution, of the real power-law competition model
described by Eq. (6.4).

VII. CONCLUDING REMARKS

Within the general class of Hamiltonian predator-prey
models described by Eqs. (2.1) and (2.2) an integrable model

has been identified. This model described by Eqs. (4.5) and
(4.6), captures the main features of the standard LV model
with the important advantage of admitting the exact analytical
solution given by Eqs. (4.19) and (4.20).

Two extensions of this model have been considered.
The first one regards its generalization to the case of two-
component systems with arbitrary power-law competition
rates, which leads to the evolution equations in the form
given by Eqs. (5.5) and (5.6). The second extension of the
model regards N-component systems governed by evolution
equations (6.2).

Future perspectives and developments of the above models
may be related to both their application to specific fields of
science where the LV model is usually employed, as well as to
their further extensions. Regarding the possible extensions of
the here considered models, one can wish and welcome their
future stochastic, fractional and diffusive generalizations. Fur-
thermore, by modifying some of the rate terms or by adding
new rate terms to the evolution equations of the models, it
may be possible to treat specifical empirically observed phe-
nomenologies (Allee, Holling, etc.).
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