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Complexity emerges in measures of the marking dynamics in football games
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In this article, we study the dynamics of marking in football matches. To do this, we survey and analyze
a database containing the trajectories of players from both teams on the field of play during three professional
games. We describe the dynamics through the construction of temporal bipartite networks of proximity. Based on
the introduced concept of proximity, the nodes are the players, and the links are defined between opponents that
are close enough to each other at a given moment. By studying the evolution of the heterogeneity parameter of
the networks during the game, we characterize a scaling law for the average shape of the fluctuations, unveiling
the emergence of complexity in the system. Moreover, we propose a simple model to simulate the players’
motion in the field from where we obtained the evolution of a synthetic proximity network. We show that the
model captures with a remarkable agreement the complexity of the empirical case, hence it proves to be helpful
to elucidate the underlying mechanisms responsible for the observed phenomena.
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I. INTRODUCTION

In recent years, interest in studying the emergence of
complexity in team sports competition has increased [1–9].
Prompted by the advances in data acquisition and theoretically
supported by state-of-the-art statistical tools and artificial in-
telligence techniques, this area has gone beyond academic
boundaries to positioning as a new vigorous precursor of
innovative processes in the sports industry [10].

Particularly, in the game of football, the use of network
science to describe the dynamics of a match is currently
ubiquitous, especially the utilization of the so-called pass-
ing networks [11–13]. In that framework, the information
to set the network’s links is given by the number of passes
between teammates. The network structure, in this context,
allows analysts to quantify the interaction in the field and the
team performance via the use of classical network metrics
like the clustering coefficient, the shortest path length, or the
eigenvector centrality, among others [14,15].

However, this approach considers only the interaction
among teammates, ignoring the interaction between oppo-
nents, i.e., neglecting the effect of the marking dynamic. In
this sense, the use of network science to describe the inter-
action between opponents has been rarely reported [16]. In
this context, it is necessary to highlight that the base of the
tactical system in the game of football is the marking [17],
since it defines the strategy of the team. Hence, to carry out a
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complete analysis of the game it is crucial to characterize this
phenomenon.

In this paper, we aim to study the marking dynamics using
network science. To do so, we survey a database containing
the coordinates of the players in the field at each second of
three professional games. With this information, we define
a bipartite graph [18] where the nodes are the players of
both teams, but the connections can only be between oppo-
nents. Bipartite networks are a special kind of network where
there are two distinct sets of nodes, and connections can
only be present between nodes belonging to different cate-
gories. There are multiple examples of these networks in an
ecological context [19,20], and several techniques have been
developed to generalize the methodologies usually applied in
the analysis of monopartite networks [21–23]. To establish the
connections in our proximity networks, we will use the Eu-
clidean distance of the players in the field since the opponents’
closeness is strictly related to the marking [24]. This particular
type of graph is known as a proximity network and has been
widely used to study other phenomena in complexity science
[25–29].

The manuscript is divided into three parts: In the next sec-
tion, we describe the database and give further information on
the acquisition process. In Sec. III, we first study the evolution
of the proximity networks during the game. In our analysis,
we observe and characterize statistics regularities that confirm
the emergence of complexity in the system. Secondly, we
propose a model to simulate the players’ motion in the field
and analyze the outcomes by performing the same analysis
we used to study the empirical data. Despite the model’s
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FIG. 1. Defining the range of interaction distances. For this visualization, we use the game recorded in DS1. (a) Players’ positions at
t ≈ 20. The heat map in the background shows the explored zones for the player highlighted with a star. (b) Average position of the players
from the center of mass frame of reference. Parameter δ indicates the distance between nearest opponents, and the ellipse shows the action
zone of the player star.

simplicity, we achieve a satisfactory performance, obtaining
agreement with the performance observed in the real case. In
the last section, our main results are briefly summarized.

II. DATA

We use tracking data from three professional football
games provided by the company Metrica Sports [30]. They
use artificial intelligence applied to visual recognition to
gather from video records the players’ coordinates in the pitch
of both teams with high resolution. According to the specifi-
cation provided on the company website, they work with a
resolution of 25 frames per s, 10 cm data range position, and
100% identity accuracy. The data is separated into three data
sets, hereafter referred to as DS1, DS2, and DS3, and is pub-
licly available for the community in Ref. [31]. All the data is
anonymized; there are no references to players’ names, teams,
or matches. In each game, they report 22 tracked players, 11
of one team and 11 of the other, including the goalkeepers.
The pitch resolution is 105×68 m. Notice that the provided
temporal resolution is 0.04 s. However, we averaged the data
to avoid noise, preserving a resolution of 1 s. Thus, the total
number of temporal points for DS1, DS2, and DS3 is 5800,
5646, and 5750, respectively.

III. RESULTS AND DISCUSSION

A. Interaction distance

In this section, we focus on defining the scope of the
interaction range between players. With this aim, we describe
some aspects of players’ movement during the first half of the
game recorded in DS1. Let us focus on Fig. 1. In Fig. 1(a),
we show the players on the field at t ≈ 20 min. The heat map
in the background shows the explored areas by the player of
team 1 highlighted with a star, giving an example of the typical
players’ motion in the field. Since both teams move around in
a single block, like a flock of birds, it is helpful to analyze
the system from the center of mass reference frame. From this
perspective, we calculated the players’ average position, here-
after referred to as �cn, where n indicates the nth player in the
field. The result is shown in Fig. 1(b). The ellipse surrounding

the player star is calculated from the cloud of points given
by all the positions explored by it over time. The ellipse’s
center corresponds to the player’s center, and the radii r1 and
r2 correspond to the standard deviation intervals calculated
on the two principal components of the cloud, obtained via
a principal component analysis (PCA). Note that the ellipse
measures the range of the player’s movement. We will call
this the player’s action zone.

We define δ as the distance between a player’s average po-
sition and that of its closest opponent. Note that this parameter
is an emergent of the marking dynamics and gives a measure
of the interaction distances between nearest opponents. Since
the marking dynamic is diverse due to the different players
involved, we obtain a wide variety of values for δ. However,
all the values fall into the small interval (3.88, 12) m, neglect-
ing the contribution of the goalkeepers, who do not mark
opponents. The same calculation in data sets DS2 and DS3
gives similar results. Therefore, we can conclude that this is a
good measure for the range of interaction distances where the
marking dynamic occurs.

B. Proximity networks

We now focus on describing the marking dynamics with
a bipartite temporal proximity network. In this frame, the
nodes are the players of both teams, and the links will be only
between players of different teams. To establish a link, we
proceed as follows: At every second of the game, we compute
the two-dimensional (2D) Euclidean distance between all the
pairs of opponents in the field. When the distance between two
opponents is lower than a given threshold θ , then we will set
a link between them.

To select the threshold value in our study, we explore the
range of interaction distances defined in the previous section.
Notice that the three games under analysis have a different
range but are still very similar, as we can observe in the box
plots of Fig. 2(a). For every value of θ , we define a network
at every second and compute the heterogeneity parameter
κ (t ) = 〈k2〉

〈k〉 , where k is the node degree. Then we calculate
the mean value over time and obtain the relation θ versus 〈κ〉
shown in Fig. 2(b). We observe a smooth evolution where,
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FIG. 2. Describing the marking as proximity networks for the three games recorded in DS1, DS2, and DS3. (a) Range of interaction
distances used to define the threshold range. (b) Relation between the mean value of the heterogeneity parameter 〈κ〉 and the threshold θ .
(c) Relation between the mean value of the fraction of nodes on the giant component 〈n0〉 and the threshold θ . (d) Time evolution of the
heterogeneity parameter during the game. (e–g) Proximity networks displayed in the field at different times for data sets DS1, DS2, and DS3,
respectively.

from the range of analyzed values of θ , we obtain values of
〈κ〉 into the interval (1,3). The black horizontal line in the
plot shows the theoretical percolation point, κ = 2, derived by
Molloy and Reed in Ref. [32]. For networks with no degree
correlation in the thermodynamic limit, this point defines a
continuous phase transition, where for κ < 2, all the com-
ponents in the network are small clusters of trees, and for
κ > 2, a giant component of size proportional to N emerges.
In our research, since the networks are relatively small, we
cannot frame our results in the theory of phase transitions.
However, this result evidences the emergence of complexity in
the system. Additionally, in Fig. 2(c), aiming to illustrate the
transition from small clusters to large ones, we show the mean
value of the fraction of nodes in the giant component 〈n0〉 as
a function of θ . We can see that for θ ≈ 4 m, on average less
than 20% of the nodes are in a giant component, whereas for
θ ≈ 12 m, it is more than 50%.

We now turn to analyze the temporal evolution of the het-
erogeneity parameter κ . Since we aim to compare the curves
of the three data sets, we tune the value of θ in each case
such that 〈κ〉 ≈ 2. With this approach we obtain the values
θ1 = 8.5, θ2 = 8, and θ3 = 9. In Fig. 2(d), we show the evo-
lution of κ during the 90 min (plus extra time) of the three
games. As expected, we can observe that the values fluctu-
ate around κ = 2. This behavior indicates that the network
structure oscillates between periods of high clusterization and
high defragmentation. In the Supplementary Material [33],

we incorporate animation to visualize this result. The higher
peaks in the series correspond to special situations of the game
where the players all group together, like, for instance, in
a corner kick or dead ball [34]. In this regard, we want to
highlight that κ cannot grow to the infinite. There is a limit
graph given by all the opponents connected with 22 nodes,
121 edges, and κ = 11. We can also define a static graph by
using the average position of the players. For instance, for
DS1, we have a static graph with 17 nodes, 16 edges, and
κ = 2.25. Note κ ≈ 2, as expected.

Finally, in Figs. 2(e)–2(g), we show a visualization of the
proximity network in a given time for the three data sets.
Figure 2(e) exhibits a situation of high clusterization where
the ball is in motion, Fig. 2(f) shows a case of high defrag-
mentation, and Fig. 2(g) shows a moment of the game when
the players are marking in the context of a free kick.

C. Temporal structure of the time series κ(t )

The evolution of κ (t ) bears essential information to
describe the development of the marking dynamics. In
this section, we analyze the statistical regularities of these
series.

Let us focus firstly on characterizing the successive in-
crements in the series, defined as i(t ) = κ (t + 1) − κ (t ). In
Figs. 3(a) and 3(b), we show the probability density and
the power spectrum density of I (t ) = i(t )/σκ calculated for

044308-3



CHACOMA, BILLONI, AND KUPERMAN PHYSICAL REVIEW E 106, 044308 (2022)

FIG. 3. Statistics of the successive increments I . We compare the
results obtained for DS1, DS2, and DS3 with a series of Gaussian
noise in both plots. (a) Distribution P(I ), and (b) power spectrum
density s f [I].

the three data sets. In the panels, and in order to trace a
comparison, we additionally show the results considering
Gaussian noise. We observe that the data deviates from Gaus-
sian behavior, exhibiting heavy tails in the distribution and
a decay in the power spectrum density for low values of
frequency. Additionally, we performed a detrended fluctua-
tion analysis (DFA) on the three series aiming to calculate
the generalized Hurst exponent h. We found values close to
zero, which shows that the series are antipersistent. According
to these results, the nontrivial behavior of the succession of
increments reveals a complex time evolution of κ in the three
games.

In the following, we complement these results by studying
the presence of self-similar behavior in the fluctuations. We
define an event x of the series κ (t ) as the consecutive points
starting when κ > 2 and ending when κ < 2. Note that this
is equivalent to the definition of avalanches in other contexts
[35]. In addition, given an event x, we define the event lifetime
T as the duration of the event, and the event size S as the inte-
gral under the curve. In the following, we perform a statistical
analysis of the events’ lifetime and sizes for the 1050 events
gathered from the time series of κ (t ) linked to the three data
sets.

In Figs. 4(a)–4(c), we show the distribution of events’
lifetime P(T ), the distribution of events’ sizes P(S), and the
relation T versus 〈S〉, respectively. We can observe a power-
law behavior in the three cases. According to Refs. [36,37], if

these relations follow the universal functional forms,

P(T ) ≈ T −α,

P(S) ≈ S−τ ,

〈S〉 ≈ T μ+1,

(1)

and, in addition, the following relation between the exponents
holds:

α − 1

τ − 1
= μ + 1, (2)

then we are in the presence of a self-similar process. To
analyze this hypothesis, we perform a nonlinear fit on the
empirical curves using the maximal likelihood method pro-
posed in Ref. [38]. We found that the empirical exponents
closely fulfill Eq. (2) for all values of T and S. Within the
region delimited for T ∈ (2, 32) s and S ∈ (5, 85), we obtain
full agreement with the following values for the exponents
α = 2.085, τ = 1.974, and μ = 0.115.

Therefore, from scaling arguments [39], it is expected that
the average profile of an event of lifetime T , χ := 〈x(T, t )〉,
scales as

χ = T μρ(t/T ), (3)

where events of different lifetimes rescaled by the parame-
ter μ should collapse on a single scaling function given by
ρ(t/T ). With this idea in mind, in Fig. 4(d), we show several
examples of averaged events profiles with different lifetimes
and, in Fig. 4(e), the collapse using Eq. (3). In the latter, we
normalize the profiles as χ̃ = χ/χMAX, where χMAX is the
maximum value observed in the set of all the curves in the
plot. With this data, we perform a nonlinear fit via the function

ρ(t ′) = [A t ′(1 − t ′)]μ̃, (4)

with t ′ = t/T , obtaining A = 1.37 and μ̃ = 0.125. Note that
the value obtained for μ̃ is consistent with the value of μ

obtained from Eq. (1).

D. Model

1. The equations of players’ evolution

Football dynamics can be thought of as the outcome of
a particular interaction between players. Teammates interact
while running a tactical scheme, and opponents interact on
the marking. In this section, based on the ideas of our pre-
vious work [40], we propose to model the players’ motion
in the field within the following framework: In the center of
mass frame of reference, we define �rn(t ) = [xn(t ), yn(t )]

T
and

�vn(t ) = [vx
n(t ), vy

n(t )]
T

as the position and velocity of player
n at time t . We propose that every player is bounded to (i)
a place in the field related to their natural position in the
tactical scheme of the team �bn and (ii) the other players,
both teammates and opponents. In this frame, the equation of
motion for a player n can be written as follows:

Mn �̈rn = −γn�vn + kbn(�bn − �rn) +
∑

m

′
knm(�rm − �rn), (5)

where the first term is a damping force, the second one is an
“anchor” to the player’s position, and the sum in the third
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FIG. 4. Self-similarity in the series of κ . (a and b) Probability distributions of avalanche lifetime P(T ) and avalanche size P(S). (c) Relation
between avalanches lifetime T and the mean value of the size of the avalanches 〈S〉. (d) Several examples of avalanches with a different lifetime.
(e) Collapse of the avalanches produced by rescaling. Black solid lines in (a)–(c) and (e) show the result of nonlinear fit in the drawn regions
(see main text for further details).

term is the contributions of the interaction forces related to
both teammates and opponents. We propose different inter-
action constants in the horizontal and vertical axis, thus the
parameters γn, kbn, and knm are 2D diagonal matrices such
as γn = (γ

x
n 0
0 γ

y
n

), kbn = (kx
bn 0
0 ky

bn
), and knm = (kx

nm 0
0 ky

nm
). Note

that these forces are not isotropic. Moreover, since it is ex-
pected that players have similar mass, for simplicity we will
consider Mn = 1 for all the players in the field.

2. Fitting the model’s parameters

In this section we show how to obtain the parameters γn,
kbn, knm, and �bn by fitting Eq. (5) to the data sets. To perform
this calculation, we considered the following:

(1) The velocity is calculated as �vn(t ) := �rn(t+�t )−�rn (t )
�t

(�t = 1 s).
(2) The discrete version of the system of first-order equa-

tions given by Eq. (5) provides the tool to estimate the states
of the players at time t + �t by using as inputs the real states
at time t and the model’s parameters,

�rn(t + �t )′ = �rn(t ) + �vn(t )�t

�vn(t + �t )′ = �vn(t ) +
[

− γn�vn(t ) −
(

kbn +
∑

m

′
knm

)
�rn(t )

+
∑

m

′
knm�rm(t ) + kbn�bn

]
�t,

where �rn(t + �t )′ and �vn(t + �t )′ are the model’s estima-
tions.

(3) Note that we are considering the definition of the ve-
locity expressed in item 1, �rn(t + �t ) = �rn(t + �t )′. Then, at
every step, the model’s parameters are only used to predict the
new velocities.

(4) We can choose the values of �bn such that the equilibria
point of the players is their average position �cn. By doing this,
we can calculate �bn using Eq. (5), the values of �cn, and the
other parameters.

(5) We define the error �ξn(t ) := �vn(t + �t ) − �vn(t + �t )′,
and fit γn, kbn, and knm by minimizing the sum

∑
t

∑
n |�ξn(t )|.

With this methodology, we obtain a unique set of pa-
rameters that control the players’ motion equations and,
consequently, the dynamics of the game in each data set.

3. Simulations

Once we have performed the fit to obtain the model’s
parameters, we use these outcomes to simulate the coupled
equation system given by Eq. (5). To input energy into the
system, we add a noncorrelated Gaussian noise, such that
�ξn(t ) = �σnξn, with 〈ξn(t )〉 = 0, 〈ξn(t )ξn(t ′)〉 = δ(t − t ′), and
〈ξn(t )ξm(t )〉 = 0. Here, for �σn = (σ x

n , σ
y
n ), we use the scale of

the velocity fluctuation measure in the fit. In this manner, the
noise acts as a proxy to introduce higher-order contributions
of the interaction forces into the model.
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FIG. 5. Outcomes of the simulations. (a and b) Comparison of empirical players’ action zones of both teams with those obtained from the
simulations. (c) Evolution of the heterogeneity parameter κ . In the main plot, we show a small time window of 500 s where we can visualize
some avalanches, whereas in the inset we show the entire time series. (d) Power spectrum density s f [I] and the distribution of I in the inset.

In this frame, we can write

d�rn = �vndt

d�vn =
[

−
(

knb +
∑

m

′
knm

)
�rn +

∑
m

′
knm�rm

− γn�vn + knb�bn

]
dt + �dWn, (6)

where d �Wn = �σnξndt . To solve this system of stochastic
differential equations (SDE), we use the Euler–Maruyama
algorithm for Ito equations.

We performed simulations using the set of parameters ob-
tained by fitting the first half of the game recorded in DS1. We
simulated a continuous game of 105 s. From this outcome, we
extracted the players’ trajectories to analyze. In the following,
we extend our discussion on the results. Let us focus on
Figs. 5(a) and 5(b). Here we compare the players’ empirical
action zones with those obtained from the simulations. We can
see a reasonably good approximation, which indicates that the
model allows us to reproduce the player’s motion in the field.
On the other hand, in Fig. 5(c) we show the time evolution of
parameter κ . Notice that to calculate the proximity networks,
we use θ = 8.5, the same value used for DS1. In the inset we
show the total evolution, and in the main figure, the values
for the first 500 s. In the latter we can see the emergence of
avalanches as in the empirical case. Lastly, to analyze the
temporal structure of the series, we calculate the successive

increments and study, as we did in Sec. III C, the probabil-
ity density and the power spectrum density. In Fig. 5(d) we
show these results. We can see that the data deviate from the
Gaussian behavior. Moreover, we performed a DFA analysis
to obtain the generalized Hurst exponent, which gave a value
close to zero, indicating the presence of antipersistency. These
results are consistent with the empirical case, indicating that
the model succeeds in capturing the overall statistic of the
complex evolution of the heterogeneity parameter.

4. Analysis of avalanches in the series κ(t ) obtained
from simulations

We repeat the analysis of self-similarity that we performed
in Sec. III C, but in this case using the series of κ obtained
from the simulations. In Figs. 6(a)–6(c), we show the dis-
tributions of avalanches’ lifetimes, sizes, and the relation T
versus 〈S〉, respectively. In this case, we can see a cutoff in the
distributions P(T ) and P(S), particularly evident to the naked
eye in the latter. This cutoff indicates that the model cannot
generate the larger avalanches observed in the empirical case.
This is because there are particular waiting times during the
game when the players pack all together in a field sector, for
instance, during a corner kick or dead ball. In these moments,
κ increases, shaping an avalanche that is not related to the
players’ motion in the field but to a particular dead time in the
game. Our minimalist model cannot capture this phenomenon;
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FIG. 6. Self-similarity in the series of κ obtained from simulations. (a and b) Probability distributions of avalanche lifetime P(T ) and
avalanche size P(S). (c) Relation between avalanche lifetime T and the mean value of the size of the avalanche 〈S〉. (d) Several examples of
avalanches with a different lifetime. (e) Collapse of the avalanches produced by rescaling. Black solid lines in (a)–(c) and cyan solid lines in
(e) show the result of nonlinear fit in the drawn regions. Dashed line in (e) depicts the nonlinear fit previously shown in Fig. 4(e) and is used
to compare the results with the empirical case.

therefore, we do not see the same tail in the distribution of
avalanche sizes P(S).

However, if we fit these three relations using Eq. (1), as
we did with the empirical case, and in a similar range T ∈
(2, 29) s and S ∈ (5, 73), we obtain α = 2.041, τ = 1.944,
and μ = 0.1. Note that these values fulfill the scaling relation
expressed in Eq. (2). Therefore, as in the empirical case, we
can write a scaling law to universally describe the avalanches’
profile. In Figs. 6(d) and 6(e), we show average events of dif-
ferent lifetimes and the collapse of the curves into a universal
form, respectively. We fit the collapse via Eq. (4), obtaining
μ̃ = 0.104, which is consistent with the value obtained for
the parameter μ. Additionally, in Fig. 6(e), we include the
nonlinear fit that we have previously shown in Fig. 4(e) (see
the curve in the black dashed line) to exhibit the differences
between the results of the model and the empirical case.

5. The effect of the tactical system structure in the proximity
networks and the evolution of κ.

If the process κ (t ) were a Wiener process, the average
shape of the fluctuations would be a semicircle, with μ̃ = 1/2
[39]. In our case, a value μ̃ << 1/2 indicates antipersistency,
where the evolution of the walker suffers a restitution force
that drives it to the mean value. This leads to the breakdown of
the scaling laws for large times, affecting the events’ lifetime
T and consequently the average shape of the fluctuations.
According to Ref. [39], to consider this effect, we can model

the evolution of κ (t ) such as

κ (t + 1) = κ (t ) − 1

τ
κ (t ) + ξ (t ), (7)

where ξ (t ) is a random variable and the term 1
τ

κ (t ) represents
the effect of a parabolic well which introduces a characteristic
time τ in the system. Via the image method, one can calcu-
late the analytical expression for the average fluctuation as a
function of t , T , and τ ,

χ =
√

4 τ

π

(1 − e−2t/τ )(1 − e−2(T −t )/τ )

(1 − e−2T/τ )
. (8)

Aiming to estimate the value of τ , we used Eq. (8) to
perform a nonlinear fit of the average shape of the fluctuations.
From this procedure, we obtain τ = 6.06 ± 0.07 s. Interest-
ingly, this value is on the order of magnitude of the average
ball possession time reported in Ref. [6], which is ∼13.72 s.
Therefore, the emergence of this time scale in the system
could be related to teams moving from offensive to defensive
positions or vice versa.

Note that the intrinsic marking dynamic is strictly related to
the antipersistency; the players’ going out from their centers
to mark an opponent and returning to their action zones to
cover spaces induces damped dynamics in the marking. In
other words, the constraint that the players suffer, in order to
maintain the structure of the tactical system, is responsible
for the antipersistence that we see in the time series κ (t ).
Moreover, we can observe that this effect is higher in the

044308-7



CHACOMA, BILLONI, AND KUPERMAN PHYSICAL REVIEW E 106, 044308 (2022)

model, where we explicitly rule the players’ motion with
restitution forces. It could indicate that, in the empirical case,
the players actually move around with more freedom than in
the model.

IV. CONCLUSIONS

In summarizing, we observed that the proximity network
evolves following the marking dynamics, exhibiting oscillat-
ing periods of high defragmentation and high clusterization.
To characterize this phenomenon, we calculated the hetero-
geneity parameter and found that the system evolves in a
regime similar to a transition in percolation theory. As we
previously remarked, since the system is far from the ther-
modynamic limit, we cannot frame our results in the theory
of phase transitions. Our observations, however, evidence the
emergence of complexity in the marking dynamics. We were
able to study this complex behavior by analyzing the temporal
structure of the time series of κ . We found the presence of
antipersistency and self-similarity, which we characterized by
uncovering a scaling law in the average shape of the fluctu-
ations. Lastly, we proposed a model to simulate the players’
motion on the field. From simulations, we obtained the evo-
lution of a synthetic proximity network that we analyzed with
the same methodology we used in our analysis of the empiri-
cal data. Remarkably, the model showed a good performance
in recovering the statistics of the empirical trajectories and,
consequently, the statistics of the temporal structure of the
parameter κ .

The correlations observed in the proximity network as-
sociated with the marking dynamics could be related to the
high level of coordination required to keep running the tac-
tical system. At this point, it is necessary to highlight that
the marking process cannot be only defined as a function of
the proximity between opponents. In this sense, our study
disregards several effects, hence the tactical conclusions that
result from our analysis are limited. For instance, the marking
process can be affected by the players’ positions on the field,
the moment in the match, players’ marking styles, etc. Despite
this limitation, our framework based on proximity networks
allows us to observe that at each game challenge, the entire
team will proceed in coordination to give a response. They
will tend to react optimally, according to the training precepts

received. Therefore, it is expected that, in similar situations,
they will produce equivalent responses. In our framework,
these responses are encoded in the proximity networks as
recurrent configurations and yield the memory effects we
observe in the evolution of the heterogeneity parameter.

Moreover, the presence of correlations reveals that the
players are strongly connected. These connections drive the
team to behave flexibly and adaptable to stimuli, something
crucial for the development of the game. We can compare this
“state of alert” of the teams with what occurs with a flock of
birds or a shoal of fish, in which connections among the indi-
vidual make the group stronger to avoid predators [41–44].
The difference between these cases and the dynamics of a
football team is the cognition capabilities required to achieve
this level of organization among the group’s individuals.

The emergence of complexity in the game of football is
somewhat similar to that observed in a living system. In these
systems, when the delicate equilibrium between inhibition
and promotion, cooperation and competition, is unbalanced,
something abnormal occurs. This effect is observed, for ex-
ample, in the appearance of cancer cells [45], in diseases of
the nervous system [46], in diseased mitochondria [47], etc.
When the complexity of the system is lacking, its functioning
is severely damaged. Analogously, in the case of football dy-
namics, the lack of complexity would be related to low-level
played games. Therefore, our framework provides a tool that
can help to detect a lack of performance in the teams.

Finally, we point out that other tactical-oriented types of
analysis can be performed via the study of the temporal prox-
imity network. For instance, the value of θ that brings the
marking system to the critical threshold could indicate the
type of marking: A low value can correspond to man-to-man
marking, whereas a high value can correspond to a zone or a
hybrid system. In the same line, it is possible to study the play-
ers’ performance by characterizing recurrent configurations in
the networks and the formation of small communities. In this
regard, we leave the door open to further studies on this topic.
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