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Physics of microscopic vehicular traffic prediction for automated driving

Boris S. Kerner 1 and Sergey L. Klenov2

1Physics of Transport and Traffic, University of Duisburg-Essen, 47048 Duisburg, Germany
2Moscow Institute of Physics and Technology, Department of Physics, 141700 Dolgoprudny, Moscow Region, Russia

(Received 25 July 2022; accepted 9 September 2022; published 28 October 2022)

With the use of microscopic traffic simulations, physical features of microscopic traffic prediction for
automated driving that should improve traffic harmonization and safety have been found: During a short-time
prediction horizon (about 10 s), online prediction of the locations and speeds of all vehicles in some limited
area around the automated-driving vehicle is possible; this enables the automated vehicle control in complex
traffic situations in which the automated-driving vehicle is not able to make a decision based on current traffic
information without the use of the microscopic traffic prediction. Through a more detailed analysis of an
unsignalized city intersection, when the automated vehicle wants to turn right from a secondary road onto the
priority road, the statistical physics of the effect of a data uncertainty caused by errors in data measurements on
the prediction reliability has been studied: (i) probability of the prediction reliability has been found; (ii) there
is a critical uncertainty, i.e., a maximum amplitude of errors in data measurements: when the uncertainty does
not exceed the critical uncertainty, the prediction reliability probability is equal to 1, otherwise, the prediction
is not applicable for a reliable automated vehicle control; (iii) physical characteristics of the microscopic traffic
prediction, at which the critical uncertainty can be increased considerably, have been found; and (iv) there is an
optimal automated vehicle control at which the critical uncertainty reaches a maximum value.
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I. INTRODUCTION

Since the 1950s–1960s, many microscopic traffic flow
models in which the motion of each vehicle in traffic flow
can be simulated were introduced (e.g., classical car-following
models by Reuschel [1–3], Pipes [4], Kometani and Sasaki
[5–8], Chandler, Herman, Gazis, Rothery, Montroll, and Potts
[9–12], and Newell [13]. During the last 70 years, a huge
number of other car-following models were developed (see,
e.g., Refs. [14–25]). In the car-following models, the micro-
scopic characteristics of the motion of the preceding vehicle
related to a time instant have been used to determine the accel-
eration of the following vehicle that should be chosen at the
time instant. In some of the models, additionally, microscopic
characteristics of other vehicles in a vicinity of the vehicle
have been taken into account.

Recently, two other fields of the physics of vehicular
traffic have been developed: (i) automated-driving vehicles
in mixed traffic flow consisting of a random distribution of
human-driving and automated-driving vehicles [automated
vehicle (AV)] [26–33] and (ii) vehicular networking, i.e., a
vehicular network in which vehicles can communicate with
each other through vehicle-to-vehicle communication and/or
through vehicle-to-infrastructure communication; both types
of vehicular communications are called V2X communica-
tion (see, e.g., Refs. [34–40]). Through V2X communication,
an automated vehicle can have additional information about
the behaviors of other vehicles in the neighborhood of the
automated vehicle. This information can be used for short-
time prediction of a traffic situation, for example, based
on a so-called partially observable Markov decision process
[41–45] and learning algorithms [46–48], as well as many

other artificial intelligence and model approaches (see, e.g.,
Refs. [49–58]). The short-time prediction of traffic situations
in the neighborhood of the automated vehicle is required for
the planning of the trajectory of the automated vehicle.

In this paper, we study the physics of a qualitative different
approach for the short-time traffic prediction for automated
driving based on microscopic traffic simulations [59]. In this
physical approach based on the microscopic physics of vehic-
ular traffic, the microscopic traffic prediction is made through
simulations of car-following models for mixed traffic flow
[59].

Contrary to the well-known approach for microscopic traf-
fic simulations of the actual traffic situation [1–25], in this
paper we apply microscopic traffic simulations for the micro-
scopic traffic prediction made during a short-time prediction
horizon (about 10 s).

The term microscopic traffic prediction used in this paper
means that in some limited area around the automated vehicle,
the microscopic traffic prediction of the locations and speeds
of all vehicles is performed during the short-time prediction
horizon. The microscopic traffic flow model for mixed traffic
can include different mathematical rules of vehicle motion
for different types of human-driving and automated-driving
vehicles. The methodology of microscopic prediction for au-
tomated driving can also be considered an application of
vehicular networking. This is because vehicular networking is
needed for both the data reconstruction of a microscopic traf-
fic situation around the automated vehicle and for providing
the data to the vehicle.

The paper is organized as follows. In Sec. II, we present
the methodology of physical modeling of the microscopic
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prediction in vehicular traffic, discuss an application scenario
of the microscopic traffic prediction studied in the paper, and
consider a microscopic model of mixed traffic flow used for
simulations. The physics of the microscopic traffic prediction
is presented in Sec. III. The effect of the uncertainty of the data
of microscopic traffic situations on the microscopic traffic pre-
diction is considered in Sec. IV. Stochastic physical features
of the microscopic traffic prediction under data uncertainty
are revealed in Sec. V. A critical uncertainty in the data is
studied in Sec. VI. In Sec. VII, we show that there is some
optimal automated vehicle control at which the critical uncer-
tainty reaches its maximum value. In Sec. VIII, we present
a qualitative discussion of some other possible applications
of the microscopic traffic prediction (Sec. VIII A) as well as
formulating conclusions (Sec. VIII B).

II. METHODOLOGY OF PHYSICAL MODELING OF
MICROSCOPIC PREDICTION IN VEHICULAR TRAFFIC

A. General description

We assume that through vehicular networking at some time
instants

t = tp, p = 1, 2, 3, . . . , (1)

locations (including the correspondence to road lanes) and
speeds of all vehicles moving around an automated vehicle
are known. We call the multitude of the vehicle locations x
and vehicle speeds v as a microscopic traffic situation at time
instant tp. A time interval δt = tp+1 − tp that can be very
small (e.g., between 0.1 s and 1 s) should not necessarily be
a constant value; this time interval is determined by the mea-
surement technology of the microscopic traffic situation. The
methodology for the short-time microscopic traffic prediction
is as follows:

(i) A microscopic traffic situation at time instant tp is used
as an initial condition for a microscopic traffic flow model of
mixed vehicular traffic.

(ii) For any time instant tp, the microscopic traffic flow
model calculates future (predicted) microscopic traffic situ-
ations that the model predicts for a prediction horizon �Tp.
Thus, for each of the given time instants tp, the microscopic
model calculates the vehicle locations and vehicle speeds
during prediction horizon �Tp. This microscopic traffic pre-
diction is only possible when the microscopic model is able to
calculate the traffic prediction during a negligible short time
interval in comparison with time interval δt = tp+1 − tp.

It should be emphasized that the time-discrete traffic flow
model for mixed traffic used in the paper (see Sec. II C) is
able to calculate a microscopic traffic prediction during a
negligible short time interval θ < 0.005 s [60].

(iii) The prediction of the vehicle locations and vehicle
speeds are used for the calculation of the future trajectory of
the automated vehicle.

(iv) All stages (i)–(iii) explained above are repeated at the
next time instant tp+1, when a different microscopic traffic
situation is known. This microscopic traffic situation is used
as an initial condition for the microscopic traffic flow model.
Then, the model makes the microscopic traffic prediction for

vehicle locations and vehicle speeds during prediction horizon
�Tp+1 (prediction horizon �Tp can be different for different
time instants tp). Then, stages (i)–(iii) are iterated for each
new time instant tp+2, tp+3, and so on, once data for new
microscopic traffic situations are available for the automated
vehicle through the use of vehicular networking. Thus, in the
approach there is repetition of the microscopic traffic predic-
tion for any current time instant tp (1) at which microscopic
traffic situations are available. This allows us to update the
calculation of the trajectory of the automated vehicle during
the vehicle motion in mixed traffic flow.

B. Application of microscopic traffic prediction for unsignalized
intersection in city traffic

In a general case, the prediction of the motion of the lo-
cal neighbors for the automated vehicle can depend on the
behavior of the automated vehicle, whereas the behavior of
the automated vehicle depends on the motion of the neighbor
vehicles. This means that the methodology for microscopic
traffic prediction discussed in Sec. II A can only be used in
traffic situations in which either the predicted motion of the
local neighboring vehicles does not depend on the automated
vehicle motion or the dependence of the predicted motion of
the local neighbors on the automated vehicle motion is not
important for the automated vehicle control realized through
the use of the microscopic traffic prediction.

As explained in Sec. VIII A, there are a number of such
traffic situations. For each of the traffic situations, mathe-
matical conditions for the motion of the automated vehicle
following from the microscopic traffic prediction can be very
different. For this reason, we limit a study of physical features
of the microscopic traffic prediction through the analysis of a
very often case in city traffic in which the automated vehicle
(black vehicle in Fig. 1) moves initially on a secondary road
and it would like to turn right onto a priority road. There is
no traffic signal on the city intersection of these two roads.
The objective of the microscopic traffic prediction is to find
whether there is a possibility for merging the automated vehi-
cle onto the priority road without stopping at the intersection.
If such a possibility exits, then the automated vehicle motion
is controlled through the use of the microscopic traffic predic-
tion.

In this application (Fig. 1), the predicted motion of the local
neighboring vehicles calculated through microscopic predic-
tion does not depend on the automated vehicle motion. A
microscopic traffic situation measured at time instant t = tp
is qualitatively shown in Fig. 1(a). Only the local neighboring
vehicles that future motion can be relevant for the automated
vehicle control are used (these red colored vehicles are within
a red colored dashed region). In Fig. 1(b), speeds and locations
of these vehicles are put into the same region in the model of
the microscopic traffic prediction (old vehicles that were at
t < tp in the region are removed). Then, the calculation of the
microscopic traffic prediction is performed.

Through this prediction, deceleration bp of the automated
vehicle during time interval tp � t � tE is found, where tE is
a predicted time instant at which the vehicle should turn right
onto the priority road (tE � tp + �Tp) [Fig. 1(c)]. However, in
accordance with Sec. II A, the automated vehicle decelerates
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FIG. 1. Qualitative explanation of microscopic traffic prediction
for an unsignalized intersection in city traffic. (a) Microscopic traffic
situation measured at t = tp (1); only red-colored vehicles that are
in a red-colored dashed road region can affect on the motion of the
automated vehicle (black-colored vehicle). (b) The measured char-
acteristics of red-colored vehicles (vehicle speeds, vehicle locations,
vehicle lengths, and so on) in the red-colored dashed road region
shown in (a) are used in the microscopic prediction model; before,
all vehicles that were at t < tp in this dashed road region of the
microscopic prediction model are removed. (c) Through the use of
the microscopic traffic prediction, a predicted time instant tE is found
at which the vehicle should turn right onto the priority road.

with the deceleration bp only during a time interval

tp � t < tp+1, (2)

where t = tp+1 is the time instant at which the next mi-
croscopic traffic situation is known. At t = tp+1, the same
procedure of microscopic traffic prediction shown in Fig. 1 is
repeated for t = tp+1 leading to a new deceleration bp+1 and
a new predicted time instant tE at which the vehicle should
turn right onto the priority road; the new deceleration bp+1 is
applied only during the time interval tp+1 � t < tp+2, and so
on. Because microscopic traffic situations depend on time tp

(1), all predicted values (like the above-mentioned predicted
time instant tE) are functions of the time instant tp at which the
prediction is made.

It should be emphasized that in the microscopic traffic
prediction made at each t = tp (1), some safety conditions for
the automated vehicle merging at the predicted time instant tE

should be satisfied,

τ− � τ1, τ+ � τ2, (3)

where τ− is the time headway of a vehicle following the
automated vehicle on the priority road just after merging, τ+
is time headway of the automated vehicle to the preceding
vehicle on the priority road just after merging, and τ1 and τ2

are model parameters. After the automated vehicle has merged
onto the priority road, we have assumed that no microscopic
traffic prediction is needed.

C. Microscopic model of mixed traffic flow

There are a huge number of different microscopic traffic
flow models for mixed traffic (see, e.g., Refs. [61–73]). A
basic requirement of a model for simulations of the micro-
scopic traffic prediction is that the model should simulate
microscopic behavior of human drivers in different traffic
situations as close as possible to real measured traffic data.
We use the model for mixed traffic of Ref. [73] because,
as explained in Refs. [74,75], the model satisfies this basic
requirement. There are different rules of motion for human-
and automated-driving vehicles in the model. Updated rules of
motion of human-driving vehicles in a road lane are [74,76–
78]

vn+1 = max(0, min(vfree, ṽn+1 + ξn, vn + amaxτ, vs,n)), (4)

xn+1 = xn + vn+1τ. (5)

The index n corresponds to discrete time nτ, n = 0, 1, . . .,
τ = 1 s; xn and vn are, respectively, the vehicle location and
speed at time step n; amax is a maximum acceleration; gn =
x�,n − xn − d is a space gap between two vehicles following
each other; the subscript � marks variables related to the
preceding vehicle; vs,n is a safe speed at time step n; vfree is the
free flow speed in free flow, all vehicles have the same length
d; and ṽn+1 is the vehicle speed without speed fluctuations ξn:

ṽn+1 = min(vfree, vs,n, vc,n). (6)

Model functions and parameters are given in Appendix A.
Simulations show that qualitative results related to the

application in Fig. 1 are the same when rules of motion of
automated vehicles in the model of mixed traffic are described
either by the classical adaptive cruise control (ACC) model
[26–31] or by a model for ACC in the framework of the
three-phase traffic theory (called TPACC) [73]. For simplicity,
we present only results of simulations of automated vehicle
motion based on the classical ACC model that is equivalent
to Helly’s car-following model [79], in which acceleration
a(AV) of the automated vehicle is determined by the space gap
to the preceding vehicle g and the relative speed v� − v(AV)

measured by the automated vehicle as well as by a desired
time headway τ

(AV)
d of the automated vehicle to the preceding

vehicle (see, e.g., Refs. [26–31]),

a(AV) = K1
(
g − v(AV)τ

(AV)
d

) + K2
(
v� − v(AV)), (7)

where v(AV) is the speed of the automated vehicle, v� is the
speed of the preceding vehicle; here v(AV), v�, and g are time
functions; K1 and K2 are coefficients of automated vehicle
adaptation. Because the model for human-driving vehicles
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(4)–(6) is discrete in time, we simulate the model (7) with
discrete time nτ ; the discrete version of the model (7) [73] is
as follows [78]:

a(AV)
n = K1

(
gn − v(AV)

n τ
(AV)
d

) + K2
(
vl,n − v(AV)

n

)
, (8)

v(AV)
c,n = v(AV)

n + τ max
(−b(AV)

max , min
(⌊

a(AV)
n

⌋
, a(AV)

max

))
, (9)

v
(AV)
n+1 = max

(
0, min

(
vfree, v(AV)

c,n , vs,n
))

, (10)

xn+1 = xn + v
(AV)
n+1 τ, (11)

where the safe speed vs,n in (10) is the same as that for
human-driving vehicles (4) and (6) (Appendix A) and acceler-
ation and deceleration of the automated vehicle is limited by
some maximum acceleration a(AV)

max and maximum deceleration
b(AV)

max , respectively. In (4) and (10), the speed vfree = v
(priority)
free

for the priority road and vfree = v
(secondary)
free for the secondary

road that are, respectively, the same ones as those for human-
driving vehicles [60].

Models of the vehicle merging onto the priority road for
human-driving vehicles and for automated vehicles (when the
microscopic traffic prediction is not used) are given, respec-
tively, in Appendixes B 1 and B 2.

D. Simulations of microscopic traffic situations

Because measurements of microscopic traffic situations for
unsignalized intersections are not available, microscopic traf-
fic situations have been simulated with the model for mixed
traffic in Sec. II C. As qualitatively shown by the red dashed
road region in Fig. 1(a), for the microscopic traffic prediction
we have chosen only vehicles that locations x correspond to
conditions

xints − Ldata � x � xints + Ldata (12)

on the priority road and locations

x � xints − Ldata (13)

on the secondary road, where xints is the intersection location;
in all simulations, we have used Ldata = 0.3 km [80]. Speeds
v(tp) and locations x(tp) of vehicles that are within road re-
gions (12) and (13) [red vehicles in Fig. 1(b)] are denoted,
respectively, in accordance with formulas

vdata (tp) = v(tp), (14)

xdata (tp) = x(tp). (15)

In accordance with Sec. II A and the model of mixed traffic,
time in the microscopic traffic prediction denoted by t = t̃n is
a discrete value

t̃n = tp + nτ, n = 0, 1, 2, . . . (16)

that satisfies conditions tp � t̃n � tp + �Tp. Vehicle speeds
(14) and locations (15) are used for the microscopic traffic
prediction as the initial conditions related to n = 0 in (16):

xn = xdata (tp), vn = vdata (tp) at n = 0. (17)

Downstream of the red dashed road region in Figs. 1(b) and
1(c), speeds and locations of vehicles are found in the previous
prediction [green colored vehicles in Fig. 1(b)].

III. PHYSICS OF MOTION OF AUTOMATED VEHICLE
BASED ON MICROSCOPIC TRAFFIC PREDICTION

When no microscopic traffic prediction has applied, we use
a well-known rule that the automated vehicle must stop at the
intersection before turning right on the priority road [dashed
curve in Fig. 2(a)]. A qualitative different case occurs when
through the automated vehicle control based on the micro-
scopic traffic prediction the automated vehicle can turn right
onto the priority road without stopping at the road intersection
[solid curve in Fig. 2(a)]. The physics of the microscopic
traffic prediction is as follows.

(1) The determination of time instant t1 of the beginning of
the prediction. In the simulated scenario (Fig. 2), t1 = 57 s
(vertical red line t1 in Fig. 2). This is because at this time
instant the preceding vehicle labeled by i [Figs. 2(b) and 2(c)]
has merged onto the priority road and, therefore, the following
automated vehicle [black curves labeled by automated vehicle
in Figs. 2(b) and 2(c)] can choose its deceleration freely while
approaching the intersection [81].

(2) The prediction of a pair of vehicles moving on the
priority road between which the automated vehicle can merge
without a stop at the intersection. To find this pair of vehicles
(these vehicles are labeled by numbers 5 and 6 in Figs. 2 and
3), safety conditions (3) should be satisfied in which

τ− = (s− − d )/v−, τ+ = (s+ − d )/v(AV), (18)

where s+ and s− are gross space gaps between the automated
vehicle and, respectively, the preceding vehicle (vehicle 5 in
Fig. 3) and the following vehicle (vehicle 6 in Fig. 3); v− is the
speed of the following vehicle; all values in (18) are related to
a predicted time instant t = tE at which the automated vehicle
can turn right at the intersection.

(3) The prediction of time instant t = tE. In addition to
safety conditions (3), the choice of the pair of vehicles 5 and
6 should satisfy the following conditions (Fig. 3):

tmin � tE < tmax, (19)

where tmin and tmax are predicted time instants at which the
automated vehicle can reach the intersection moving, respec-
tively, with maximum acceleration (and/or maximum speed)
and with a safe speed coming to a stop at t = tmax; obviously
that tmin, tE, tmax > t1.

(4) The deceleration b1 of the automated vehicle at time
instant t1 is calculated. The condition for the calculation of
b1 is that the automated vehicle should reach the intersection
at the predicted time instant tE. Calculated deceleration b1 at
time instant t1 = 57 s is used for the prediction of automated
vehicle trajectory as shown in Fig. 4. However, in accordance
with (2), deceleration b1 of the automated vehicle at t1 = 57 s
is applied during time interval t1 � t < t2 only [Fig. 5(a)].

(5) Repetition of the predictions of the automated vehicle
trajectory made at each next time instant tp, p = 2, 3 . . ..
For each time instant tp, the predicted time instant tE and
the associated predicted deceleration bp are calculated. As
follows from (9)–(11), the automated vehicle moves with
deceleration bp within a time interval (2) in accordance with
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E is a time instant at which the automated
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of human-driving vehicles are given in Table I of Appendix A; in
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(AV)
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1.5 s, K1 = 0.3 s−2, and K2 = 0.6 s−1; a(AV)
max = 2.5 and b(AV)

max =
3 m/s2; all other parameters of the model of the automated vehicle
are the same as those in Ref. [73]. A single-lane priority road is
2.5 km long; the intersection of this road with a single-lane sec-
ondary road that is 0.5 km long is at location xints= 0.5 km; in
mixed traffic flow, there are 1% of automated vehicles randomly
distributed between human-driving vehicles. In simulations, the flow
rate on the priority and secondary roads are, respectively, 1029 and
110 vehicles/h. Poisson distribution for entering vehicles has been
used.

tmin tmax
t1 tE

xints

lo
ca

ti
o
n
 (

k
m

)

time (s)

5

6
automated
vehicle

s +

s−

0.4

0.44

0.48

0.52

53 58 63 68

FIG. 3. Results of microscopic traffic prediction made for time
instant t1 = 57 s: Trajectories of vehicles 5 and 6 moving on the
priority road between which the automated vehicle can merge at a
predicted time instant tE while satisfying conditions (3) and (19).
Dotted parts of vehicle trajectories are related to real vehicle motion
at t � t1 = 57 s, solid parts of vehicle trajectories are predicted
vehicle trajectories. Left and right dashed-dotted trajectories are
virtual trajectories of the automated vehicle moving, respectively,
with maximum acceleration (and/or maximum speed) and with a
safe speed coming to a stop. s+ = g+ + d , s− = g− + d , where
g+ and g− are the space gaps between the automated vehicle and
the preceding vehicle (vehicle 5) and following vehicle (vehicle 6)
at the predicted time instant tE, respectively. Calculated values tmin =
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equations

v(AV)
c,n = v(AV)

n + τ max
(−b(AV)

max , min
(−bp, a(AV)

max

))
, (20)

v
(AV)
n+1 = max

(
0, min

(
vfree, v(AV)

c,n

))
, (21)

and (11). The automated vehicle motion with deceleration bp

is only valid until the next traffic prediction for bp+1 is avail-
able at t = tp+1. Then, during time interval tp+1 � t < tp+2 the
vehicle moves with Eqs. (20), (21), and (11) in which instead
of the value bp the predicted deceleration bp+1 is used, and so
on.

In simulations of the microscopic traffic prediction, we
choose δt = tp+1 − tp = τ , respectively, time instants tp (1)
at which the microscopic traffic prediction is made can be
written as

tp = t1 + (p − 1)τ, p = 1, 2, . . . , pE. (22)

The repetition of the predictions of the automated vehicle tra-
jectory is made up to some maximum time instant tp denoted
in (22) by tp = tpE . Conditions for the maximum time instant
tp = tpE and for the related time instant denoted by t (real)

E at
which the automated vehicle really merges onto the priority
road are presented in Appendix C.

At t � tpE the automated vehicle decelerates with the last
predicted deceleration (Sec. C 1 of Appendix C) moving up to
the road intersection at which it turns right onto the priority
road; later, no prediction is made. In the simulated scenario
(Fig. 2), it has been found that pE = 6 (tpE = 62 s) and t (real)

E =
62.2 s.
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A dependence of predicted values on tp is illustrated in
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vehicle control during time intervals t2 � t < t3 and t3 � t <

t4, respectively. This explains why the automated vehicle de-
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can merge onto the priority road are

g̃+
n,m � v+

n τ2, (23)

g̃−
n,m � v−

n τ1, (24)

tmin � t̃n,m < tmax, (25)
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FIG. 5. Predicted automated vehicle decelerations [solid parts of
curves in (a)–(c)] for p = 1 (t1 = 57 s), tE = 62.2 s, b1 = 0.56 m/s2

(a), for p = 2 (t2 = 58 s), tE = 62.4 s, b2 = 0.66 m/s2 (b), and for
p = 3 (t3 = 59 s), tE = 62.3 s, b3 = 0.59 m/s2 (c). In (d), the final
time function of the acceleration (deceleration) of the automated
vehicle is shown; t (real)

E = 62.2 s. Parameter designations, vehicle
numbers, and model parameters are the same as those in Fig. 2.

where

g̃+
n,m = x̃+

n,m − xints − d, (26)

g̃−
n,m = xints − x̃−

n,m − d, (27)

x̃+
n,m = x+

n−1 + v+
n m�τ, m = 1, 2, . . . , M, (28)

x̃−
n,m = x−

n−1 + v−
n m�τ, m = 1, 2, . . . , M, (29)

�τ = 0.1τ = 0.1 s, M = τ/�τ = 10, the time t̃n,m in (25)

t̃n,m = t̃n−1 + m �τ, m = 1, 2, . . . , M (30)

describes the discrete time with short time step �τ within
a time interval between t̃n−1 and t̃n (16), where n =1,2,...;
superscripts + and – denote, respectively, the preceding and
following vehicles on the priority road with respect to the
intersection location xints. Conditions (23) and (24) correspond
to (3). The predicted time instant tE is found as

tE = min
n,m

(̃tn,m), (31)

where (31) is calculated under conditions (23)–(25).
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To find the minimum value (31), the speeds and locations
of vehicles on the main road [Figs. 1(b) and 1(c)] are calcu-
lated at subsequent time moments t̃n within interval tmin �
t̃n < tmax. At time t̃n it is proven whether there is a pair of
consequent vehicles on the main road for which conditions
(23)–(25) are satisfied at some index m. If yes, the value
mE = m for which t̃n,m in (31) reaches a minimum is found,
indexes nE = n − 1 and mE = m are stored, and tE is found
from (30) as

tE = t̃nE + mE�τ. (32)

If there is no pair of consequent vehicles on the main road
for which conditions (23)–(25) are satisfied, calculations are
repeated for the next time step t̃n+1, if condition t̃n+1 < tmax is
satisfied, and so on. Note that conditions (23) and (24) guar-
antee that at the predicted time instant tE the first vehicle in the
pair of consequent vehicles is downstream of the intersection
and the second one is upstream of the intersection. If no time
tE can be found from the above procedure of the microscopic
traffic prediction, the automated vehicle decelerates with the
safe speed to come to a stop at the intersection. The model for
the prediction of tmin, tmax, and bp is presented in Appendix C.

The use of the microscopic traffic prediction leads to a
speed harmonization in city traffic (Fig. 6). Through the use
of the prediction, the speeds of vehicles 7 and 8 following
the automated vehicle increase considerably [Fig. 6(b)] in
comparison with the case when no traffic prediction is used
[Fig. 6(c)].

IV. EFFECT OF UNCERTAINTY IN DATA USED FOR
MICROSCOPIC TRAFFIC PREDICTION

In Sec. III, we have assumed that vehicle speeds and loca-
tions in microscopic traffic situations that are used as initial
conditions for the microscopic traffic prediction at time in-
stants tp (22) have no errors in comparison with real vehicle
speeds and locations of microscopic traffic situations [dotted
parts of trajectories in Figs. 2(b), 2(c) 3, 4(a), and 4(b)].
In reality, there can be data latency errors and/or random
errors in measurements of the vehicle speeds and locations in
microscopic traffic situations used in the microscopic traffic
prediction. We can call the errors the uncertainty of traffic
data used in the prediction model (Fig. 1). We assume that
there should be some maximum amplitude of random errors in
measurements of the vehicle speeds and/or vehicle locations
that depend on the measurement technology.

A. Data latency

There can be a latency between the data of microscopic
traffic situations and the data used in the prediction model
(Fig. 1) at time instants tp (22). The latency denoted by τlat

(Fig. 7) can be caused by a delay in the procedure of data
measurements and the data transfer; in this case, we can
assume that τlat is a constant value, τlat � τ . The following
initial conditions are used when there is a latency in the data
used in the prediction model:

xn = xdata (tp), vn = vdata (tp) at n = 0, (33)
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FIG. 6. Speed harmonization through the use of the microscopic
prediction: (a) Automated vehicle acceleration under the use of the
prediction (solid curve) versus the case when no prediction is used
(dashed curve). (b), (c) Time dependencies of vehicle speeds under
the use of the prediction (b) versus the case when no prediction is
used (c). Vehicle numbers and model parameters are the same as
those in Fig. 2.

where

xdata (tp) = x(tp) − v(tp)τlat, (34)

vdata (tp) = v(tp) − (v(tp) − v(tp − τ ))τlat/τ. (35)
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FIG. 7. Speeds and locations of vehicles 5 and 6 in data of
microscopic traffic situations without data uncertainty (color-filled
circles labeled by 5 and 6) and under a latency in the data (empty
circles labeled by 5-lat and 6-lat) at two subsequent time instants
t1 = 57 s (left) and t2 = 58 s (right) at which the microscopic traffic
prediction is calculated. Latency τlat = 0.3 s. Vehicle numbers and
other model parameters are the same as those in Fig. 2.
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E .

Simulations show (Fig. 8) that with the increase in the data
latency the minimum speed at which the automated vehicle
merges onto the priority road through the application of the
prediction decreases [Fig. 8(c)]. However, even for latency
τlat = 0.3 s the minimum speed remains relatively high: By
τlat = 0 and 0.3 s, the minimum speeds are equal about to
22.9 km/h [curve 1 in Fig. 8(a)] and 20.5 km/h [curve 4 in
Fig. 8(a)], respectively.

B. Random errors in vehicle locations

The data uncertainty can be caused by random errors in
vehicle locations in the data of microscopic traffic situations
(Fig. 9). We assume that the errors are independent of each
other and they are described by formula ρ�x, where ρ =
rand(−1, 1) is a random number uniformly distributed be-
tween −1 and 1. Here �x is a maximum amplitude of the
errors that is assumed to be a constant value.

Random errors in vehicle locations in the data of mi-
croscopic traffic situations lead to very complex vehicle
trajectories of all vehicles with the exception of the automated
vehicle trajectory (Fig. 10). This is because the automated
vehicle is controlled through the use of the microscopic traffic
prediction.
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t1 = 57 s (left) and t2 = 58 s (right) at which the microscopic traffic
prediction is calculated. Amplitude of random errors is �x = 10 m.
Vehicle numbers and other model parameters are the same as those
in Fig. 2.
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Vehicle numbers and other model parameters are the same as those
in Fig. 2.

C. Random errors in vehicle speeds

The data uncertainty can be caused by errors in vehicle
speeds in the data of microscopic traffic situations (Fig. 11).
As in Sec. IV B, we assume that the random errors in the
vehicle speeds can be described by formula ρ�v, where
ρ = rand(−1, 1) is a random number uniformly distributed
between −1 and 1, �v is a maximum amplitude of the errors.
Random errors in vehicle speeds in the data of microscopic
traffic situations lead to very complex behavior of the speed
of all vehicles with the exception of the automated vehicle
trajectory that is controlled through the use of the microscopic
traffic prediction (Fig. 12).

D. Initial conditions for prediction under errors in data
of microscopic traffic situations

The following initial conditions for the microscopic traffic
prediction are used when there are errors in the data of micro-
scopic traffic situations:

vn = max (0, min (vfree, vdata (tp))) at n = 0, (36)

xn = min (xdata (tp), x�,n − vnτ − d ) at n = 0, (37)
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FIG. 12. Simulations of the automated vehicle control based on
the microscopic traffic prediction in accordance with the procedure
of Fig. 1, when data uncertainty is caused by random errors in
vehicle speeds in the data of microscopic traffic situations: The time
dependencies of microscopic vehicle speeds of some vehicles. �v =
3 m/s. Calculated value t (real)

E = 62.1 s. Vehicle numbers and other
model parameters are the same as those in Fig. 2.

where, under random errors in locations of vehicles within
road regions (12) and (13) (Sec. IV B), in accordance with
(22), xdata are found from formulas

xdata (tp) = x(tp) + ρ�x, p = 1, 2, . . . , pE, (38)

respectively, under random errors in speeds of vehicles within
road regions (12) and (13) (Sec. IV B), vdata are found from
formulas

vdata (tp) = v(tp) + ρ�v, p = 1, 2, . . . , pE. (39)

Equations (36) and (37) determine physical limitations for
the application of random errors in speeds and locations of
vehicles (38) and (39) in simulations: (i) the speed should
satisfy conditions 0 � vn � vfree (36) and (ii) the space gap
to the preceding vehicle cannot be less than some safety gap
that is chosen as vnτ in (37).

V. STOCHASTIC FEATURES OF MICROSCOPIC TRAFFIC
PREDICTION UNDER UNCERTAINTY IN DATA

A. Set of realizations of microscopic traffic prediction

Due to a random character of errors in vehicle locations
(and/or speeds) in the data of a microscopic traffic situation
for a particular time instant tp, the associated microscopic
traffic prediction can be considered a random realization of
the microscopic traffic prediction (automated vehicle control
with the use of such a random realization of the microscopic
traffic prediction made at tp = t1 is shown in Fig. 10).

During the whole time interval of the automated vehicle
control beginning at t = t1, there is a sequence of time instants
tp (22) at which different microscopic traffic situations are
available and, respectively, the microscopic traffic predictions
are repeated (Sec. II A). Therefore, there is a sequence of ran-
dom realizations of the microscopic traffic predictions made
at different tp (22), which can be considered a set of the
realizations of the microscopic traffic prediction.

In accordance with Sec. II A, the set of the realizations
of the microscopic traffic prediction can be considered to be
successful only when safety conditions (3) are satisfied for
each of the realizations of the set. It must be stressed that
values τ+ and τ− in (3) are related to gross space gaps s+
and s− (18) between the automated vehicle and the preced-
ing and following vehicles (respectively, vehicles 5 and 6 in
Fig. 3) found without any data uncertainty as considered in
Figs. 2–6. The microscopic traffic situations without any data
uncertainty can be considered real data of microscopic traffic
situations.

In a study presented in Figs. 2–6, no errors in the data
of microscopic traffic situations have been assumed. In the
same traffic scenario, under errors in the data, real data of
microscopic traffic situations are not known by the calculation
of the microscopic traffic prediction. Therefore, rather than
(3), the following safety conditions have to be used:

τ−
error � τ1, τ+

error � τ2, (40)

where

τ−
error = (s−

error − d )/v−, τ+
error = (s+

error − d )/v(AV), (41)

s−
error, s+

error and τ−
error, τ+

error are, respectively, gross space gaps
and time headway of the automated vehicle to the following
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errors. Trajectories of vehicles 5 and 6 with no errors are taken from
Fig. 3.

and preceding vehicles at t = tE with errors, which (as the
speeds v− and v(AV)) are calculated from the microscopic
traffic prediction in which microscopic traffic situations with
random errors have been used (trajectories 5-error and 6-error
in Fig. 13).

B. Physical limitation of the applicability of microscopic
traffic prediction

The microscopic traffic prediction can be used for the auto-
mated vehicle control only, when for each of the time instants
from the sequence of time instants tp (22) safety conditions
(3) are satisfied. Otherwise, the microscopic traffic prediction
cannot be reliably used for the automated vehicle control.

Thus, for a reliable application of the microscopic traffic
prediction, we should be sure that when safety conditions (40)
are satisfied for the predicted time headway τ+

error and τ−
error at

each of the time instants tp (22), then also safety conditions
(3) are satisfied for real time headway τ+ and τ+ [82].

In Figs. 2–6, in which no errors in the data of microscopic
traffic situations have been assumed, gross space gaps s+, s−
correspond to real values of the gross space gaps. It should
be emphasized that under errors in the data of microscopic
traffic situations, gross space gaps with errors s+

error, s−
error can

differ considerably, respectively, from real gross space gaps
s+, s−. This can be seen from Fig. 13. Nevertheless, as shown
in Fig. 14 (solid curves), safety conditions (3) are satisfied for
each of the time instants from the sequence of time instants tp

(22); therefore, the set of realizations (called set 1 below) is
applicable for the automated vehicle control.

As mentioned, in Figs. 2–6, no errors in the data of mi-
croscopic traffic situations have been assumed. In the same
traffic scenario, very different random errors in the data of
microscopic traffic situations can occur. This causes many
different sets of the random realizations of the microscopic
traffic prediction (strictly speaking, the infinite number of
sets). Therefore, in addition to set 1 (Fig. 14), we have studied
another set of the random realizations of the microscopic
traffic prediction denoted by set 2 (Fig. 15): Random errors in
the data of microscopic traffic situations in set 2 are different
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FIG. 14. Simulations of safety conditions (3) and (40) during the
time of the microscopic traffic prediction as functions of time instants
tp (22) for a set of realizations that is denoted by set 1: (a) Time
headway τ+ (solid curve) and τ+

error (dashed curve). (b) Time headway
τ− (solid curve) and τ−

error (dashed curve). In (22), pE = 6. Time
headway τ+, τ− are given by (18) and time headway τ+

error , τ−
error are

given by (41). Data for t1 = 57 s are related to Figs. 10 and 13.

from those in set 1 (Fig. 14). It has been found that under the
same scenario as that used in set 1, in set 2 it occurs that even
when safety conditions (40) used by the microscopic traffic
prediction are satisfied for each of the time instants tp (22)
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FIG. 15. Simulations of safety conditions (3) and (40) for an-
other set of realizations denoted by set 2 during the time of the
microscopic traffic prediction as functions of time instants tp (22)
under errors with �x = 10 m in vehicle locations in the data of
microscopic traffic situations: (a) Time headway τ+ (solid curve) and
τ+

error (dashed curve). (b) Time headway τ− (solid curve) and τ−
error

(dashed curve). In (22), t1 = 57 s and pE = 6. Time headway τ+, τ−

are given by (18) and time headway τ+
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error are given by (41).
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(dashed curves in Fig. 15), nevertheless, safety conditions (3)
fail for one of the time instants tp (22); this case is realized for
t3 = 59 s [value τ+(t3) = 0.12 s is shorter than τ2 = 0.5 s].
Therefore, in this case (set 2), the prediction cannot be reliably
applied for the automated vehicle control.

To understand the failure of safety conditions (3) for set
2 of random realizations at t3 = 59 s (Fig. 15), we compare
Figs. 13 and 16. In Fig. 13, the predicted space gap s+

error
between the preceding vehicle 5 and the automated vehicle
by the merging becomes shorter than the real space gap s+.
As a result, in set 1 when safety conditions (40) are satisfied,
then conditions (3) are also satisfied; this result remains true
for all other time instants tp (22) (Fig. 14). Contrarily, for
set 2 of realizations, the predicted gap s+

error at tp = t3 = 59 s
becomes longer than the real space gap s+ (Fig. 16); for this
reason, although conditions (40) are satisfied, however, safety
conditions (3) are not satisfied for set 2 (Fig. 15).

This result correlates with the behavior of characteristics
of the microscopic traffic prediction (Fig. 17): Predicted time
instants of automated vehicle merging tE, predicted automated
vehicle speed v(AV) by the merging, and predicted automated
vehicle deceleration (acceleration) as functions of time in-
stants tp (22) are, respectively, totally different (Fig. 17) for the
two sets of realizations shown in Figs. 14 and 15. Sometimes,
after a deceleration at some time instant tp, the automated
vehicle should accelerate at the next time instant tp+1 to turn
right at the intersection without the stop [see, e.g., tp = t2 =
58 s and tp+1 = t3 = 59 s on curve set 2 in Fig. 17(c)]. This
also explains different time dependencies of the automated
vehicle speed [Fig. 18(a)] and acceleration (deceleration)
[Fig. 18(b)] related to automated vehicle control with the use
of two different sets of realizations.

These results remain qualitatively the same when the data
uncertainty is caused by errors in vehicle speeds (Figs. 19 and
20). For the first set of realizations (Fig. 19), safety conditions
(3) are satisfied for each of the time instants tp (22). Thus, the
first set of realizations (Fig. 19) can be used for the automated
vehicle control. Contrarily, for the second set of realizations
(Fig. 20), safety conditions (3) are not satisfied for tp = t2 =
58 s: value τ+(t2) = 0.26 s is shorter than τ2 = 0.5 s. There-
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FIG. 17. Simulations of stochastic features of microscopic traffic
prediction under errors in vehicle locations in the data of microscopic
traffic situations. �x = 10 m. Comparison of predicted time instants
of automated vehicle merging tE (a), predicted automated vehicle
speed v(AV) by the merging (b), and predicted automated vehicle
deceleration (acceleration) (c) as functions of time instants tp (22)
for two sets of realizations: dashed curves set 1 and solid curves set
2 are related to Figs. 14 and 15, respectively. In (22), t1 = 57 s and
pE = 6.

fore, in this case (Fig. 20), the prediction cannot be reliably
applied for the automated vehicle control.

We have found that the effect of the data uncertainty on
the stochastic features of the microscopic traffic prediction
for automated driving remains qualitatively the same when
the data uncertainty is caused a combination of errors in
vehicle locations and speeds. For this reason, below, to derive
other general qualitative conclusions about the effect of the
data uncertainty on the stochastic features of the microscopic
traffic prediction, we can limit by a consideration of the er-
rors in vehicle locations in the data of microscopic traffic
situations.

As mentioned, there can be an infinite number of different
sets of realizations associated with random errors in the data
of microscopic traffic situations. Therefore, there can be a set
of realizations of the microscopic traffic prediction for which
safety conditions (3) fail at least for some of the time instants
tp (22), contrarily, safety conditions (40) are satisfied for each
of the time instants tp (22). This effect causes a basic phys-
ical limitation of the applicability of the microscopic traffic
prediction for the automated vehicle control.
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FIG. 18. Simulations of stochastic features of microscopic traffic
prediction under errors in vehicle locations in the data of microscopic
traffic situations. �x = 10 m. Comparison of the speed (a) and decel-
eration (acceleration) (b) of the automated vehicle that is controlled
based on two different microscopic traffic predictions associated with
sets of realizations 1 and 2: curves set 1 and curves set 2 are related
to Figs. 14 and 15, respectively.

VI. PROBABILISTIC DESCRIPTION OF MICROSCOPIC
TRAFFIC PREDICTION

A. Critical uncertainty in data

Simulations show that when there is no uncertainty in the
data of microscopic traffic situations, safety conditions (3) of
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FIG. 19. Simulations of safety conditions (3) and (40) as func-
tions of time instants tp (22) for first set of realizations used in Fig. 12
(�v = 3 m/s): (a) Time headway τ+ (solid curve) and τ+

error (dashed
curve). (b) Time headway τ− (solid curve) and τ−

error (dashed curve).
In (22), t1 = 57 s and pE = 6. Time headway τ+, τ− are given by
(18) and time headway τ+

error , τ−
error are given by (41).
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FIG. 20. Simulations of safety conditions (3) and (40) as func-
tions of tp (22) for another set of realizations of the microscopic
traffic prediction that is denoted by second set under errors with
�v = 3 m/s in vehicle speeds in the data of microscopic traffic
situations: (a) Time headway τ+ (solid curve) and τ+

error (dashed
curve). (b) Time headway τ− (solid curve) and τ−

error (dashed curve).
In (22), t1 = 57 s and pE = 6. Time headway τ+, τ− are given by
(18) and time headway τ+

error , τ−
error are given by (41).

the applicability of the microscopic traffic prediction for the
traffic scenario presented in Figs. 2–6 (Sec. III) are always sat-
isfied. However, in the same traffic scenario under uncertainty
in measured data of microscopic traffic situations at least
for some time instants tp (22) safety conditions (3) can fail
(Figs. 15 and 20). Therefore, for each particular traffic situa-
tion, in which the microscopic traffic prediction is applied for
automated driving, there should be some critical uncertainty
for the applicability of the microscopic traffic prediction. We
denote the critical uncertainty by �x = �xcr in the case of
errors in vehicle locations in the data of microscopic traffic
situations and by �v = �vcr in the case of errors in vehicle
speeds in the data.

The physical sense of the critical uncertainty is as fol-
lows: When the uncertainty in the data of microscopic traffic
situations is equal to or less than the critical uncertainty (�x �
�xcr or �v � �vcr), then the microscopic traffic prediction
can be reliably applied for automated driving in the partic-
ular traffic situation. Otherwise, when the uncertainty in the
data of microscopic traffic situations is larger than the critical
uncertainty (�x > �xcr or �v > �vcr), then the microscopic
traffic prediction cannot be considered as a reliably applicable
for the particular traffic situation.

To understand the definition of the critical uncertainty, we
should mention that the reliable application of the microscopic
traffic prediction for automated vehicle control can only be
ensured, if for any set of realizations safety conditions (3)
are satisfied for each of the time instants tp (22) at which the
microscopic traffic prediction is applied. This is realized when
data uncertainty does not exceed the critical uncertainty.
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FIG. 21. Simulations of the dependence of probability Papp (42)
on the uncertainty �x in vehicle locations in the data of microscopic
traffic situations used in Secs. IV and V. To calculate Papp(�x),
Napp = 200 random sets of realizations for each of the given values
of �x have been studied (solid curve 1). The choice of Napp = 200 is
explained as follows: The value of critical uncertainty �xcr = 1.5 m
calculated at Napp = 200 remains at Napp = 1000 and Napp = 10 000
(with the calculation accuracy of 0.1 m); at �x > �xcr , two curves
Papp(�x) calculated for Napp = 200 (solid curve 1) and Napp = 1000
(dashed curve 2) show a difference of about 5%.

B. Probability of the applicability of microscopic
traffic prediction

To estimate the critical uncertainty �xcr (or �vcr), we
have studied the probability of the applicability of a set of
realizations for automated vehicle control with the use of the
microscopic traffic prediction in a particular traffic situation.
This probability denoted by Papp that can also be called the
probability of the prediction reliability is equal to

Papp = napp/Napp, (42)

where Napp is the whole number of the sets of realizations
that have been studied and napp is the number of the sets of
realizations in which safety conditions (3) are satisfied for
each of the time instants tp (22).

In accordance with the definition of the critical uncertainty,

Papp = 1 at �x � �xcr (or �v � �vcr ), (43)

Papp < 1 at �x > �xcr (or �v > �vcr ). (44)

Formula (43) determines the critical uncertainty: Only when
the uncertainty does not exceed the critical uncertainty, i.e.,
Papp = 1, the microscopic traffic prediction is a reliably ap-
plicable for the automated vehicle control. Otherwise, under
condition (44) with probability 1 − Papp, a set of realizations
can randomly occur for which the microscopic traffic pre-
diction is not applicable for the automated vehicle control.
The dependence of Papp on the uncertainty �x is presented in
Fig. 21. In accordance with (43), we have found that �xcr =
1.5 m. In particular, for �x = 10 m with the probability
1 − Papp = 0.73, a set of realizations can randomly occur for
which the microscopic traffic prediction is not applicable for
the automated vehicle control (example is shown in Fig. 15)
[83].

VII. MAXIMAL CRITICAL UNCERTAINTY – PHYSICS
OF OPTIMAL AUTOMATED VEHICLE MERGING

For the merging of the automated vehicle onto the pri-
ority road, the automated vehicle must decelerate to some
speed v(AV) to ensure that the preceding vehicle (vehicle 5 in
Fig. 3) had passed the intersection and time headway τ+ to the
preceding vehicle satisfies safety conditions (3). To increase
v(AV), formula (31) is used that calculates the minimum time
tE at which the automated vehicle can merge onto the priority
road.

The critical uncertainty and, therefore, the applicability of
the microscopic traffic prediction for automated driving can be
increased through another choice of the time tE: Rather than
formula (31), for the definition of time tE we have used the
approach

tE = tE,min(1 − αE) + tE,maxαE, (45)

where αE is a constant: 0 � αE < 1, tE,min is equal to the value
tE determined through formula (31) with (23)–(25), whereas

tE,max = max
n,m

(̃tn,m). (46)

Formula (46) is also calculated under conditions (23)–(25) for
the same following and preceding vehicles, which have been
found through the use of formula (31). Indexes mmax = m and
nmax = n − 1, at which t̃n,m in (46) reaches a maximum, allow
us to find tE,max as

tE,max = tnmax + mmax�τ. (47)

After tE,min and tE,max have been found, the predicted time of
the merging of the automated vehicle tE is calculated through
formula (45). If no time tE can be found, the automated vehicle
decelerates with the safe speed to stop at the intersection.

The critical uncertainty �xcr can increase considerably
when parameter αE in (45) and, therefore, the predicted merg-
ing time tE increases (Fig. 22). The physics of this result is as
follows. The larger αE is, the longer the time highway between
the automated vehicle and the preceding vehicle (vehicle 5 in
Fig. 13) by the automated vehicle merging onto the priority
road. This causes the increase in �xcr (Fig. 22). Safety condi-
tions (3) and, therefore, condition Papp = 1 (43) are satisfied
at a larger amplitude �x of errors in vehicle locations in the
data of microscopic traffic situations as shown in Fig. 23 for
�x = 12 m that is less than �xcr = 13.2 m. This result is
in contrast with the case αE = 0 in (45), when at a lower
amplitude �x = 10 m of errors in the data probability Papp is
very small (value Papp = 0.27 in Fig. 21, Sec. VI B) and, there-
fore, the reliable application of the prediction for automated
driving is not possible. However, the reliable application of
the microscopic prediction with Papp = 1 (Fig. 23) is realized
at the cost of the increase in the number of the time instants
tp (22) at which the microscopic prediction should be made,
large random oscillations of results of the prediction (Fig. 24)
as well as the decrease in the automated vehicle speed v(AV)

(Fig. 25).
There is an optimal automated vehicle merging at which

the critical uncertainty reaches its maximum value �xcr =
�x(max)

cr = 13.2 m [Fig. 22(b)]; this optimal automated vehicle
merging is realized at some optimal predicted merging time
tE = t (opt)

E reached at optimal values αE = α
(opt)
E = 0.4–0.5
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FIG. 22. Simulations of the effect of automated vehicle merging
on critical uncertainty �xcr: (a) Dependencies of probability Papp (42)
on the uncertainty �x in vehicle locations in the data of microscopic
traffic situations under the use of (45) by automated vehicle control
through the microscopic traffic prediction; curve 1 for αE = 0 is taken
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sets of realizations for each of the given values of �x have been
studied.

in (45). When tE increases further [tE > t (opt)
E , i.e., in (45)

αE > α
(opt)
E ], safety condition τ− � τ1 in (3) can easier fail at

large errors in the data and, therefore, the critical uncertainty
decreases [Fig. 22(b)].
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FIG. 24. Continuation of Fig. 23. Simulations of stochastic
features of microscopic traffic prediction under errors in vehicle
locations in the data of microscopic microscopic situations at �x =
12 m and αE = 0.5 in (45). Comparison of predicted time instants
of automated vehicle merging tE (a), predicted automated vehicle
speed v(AV) by the merging (b), and predicted automated vehicle
deceleration (acceleration) (c) as functions of time instants tp (22)
for the same two sets of realizations as, respectively, those in Fig. 23:
dashed curves set 1 and solid curves set 2.

Up to now, we have considered the microscopic traffic
prediction with the use of only one scenario of microscopic
traffic situations denoted here by scenario 1 (dotted curves
in Figs. 2(b) and 2(c)]. For a reliable analysis of statistical
physics of the microscopic traffic prediction, we have studied
many other scenarios. We have found that all qualitative phys-
ical results of the statistical physics found above for scenario
1 remain for the other scenarios. However, there are some
quantitative differences.

An example of some important quantitative difference is
shown in Figs. 26 and 27 for a scenario called scenario 2. For
scenario 2, we have found a very small critical uncertainty
�xcr = 0.3 m for αE = 0 in (45). To understand this result,
we should note that in both scenarios 1 and 2, vehicle 5 is the
preceding vehicle for the automated vehicle. Vehicle 5 should
decelerate due to the merging of vehicle i [Figs. 2(b), 2(c),
26(a), and 26(b)). In scenario 1, vehicle i is the preceding
vehicle for vehicle 5. Contrarily, in scenario 2 the merging of
vehicle i causes the deceleration of a pair of vehicles 4 and 5
following each other. Already small errors in the locations of
vehicles 4 and 5 can lead to a large error by the prediction of
the location of vehicle 5 in comparison with the real location
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FIG. 25. Simulations of comparison of the automated vehicle
speed (a) and acceleration (deceleration) (b) under the use of (45) by
automated vehicle control through the microscopic traffic prediction.
Curves 1 related to �x = 0 (no data uncertainty) are taken from
Fig. 6 (a) (solid curve) and (b), curves 2: �x = 1.5 m and αE =
0, curves 3: �x = 4 m and αE = 0.07, curves 4: �x = 7 m and
αE = 0.14, curves 5: �x = 12 m for αE = 0.5. For all calculations,
condition �x � �xcr (43) has been satisfied (Fig. 22).

of vehicle 5 in microscopic traffic situations. As a result, at
αE = 0 in (45) conditions (3) can fail already at small errors
in the data; this causes a small critical uncertainty �xcr =
0.3 m for scenario 2 (Fig. 27) in comparison with �xcr =
1.5 m for scenario 1 [Fig. 22(b)]. However, already a short
increase in the merging time tE [increase in αE in (45)] reduces
the influence of errors in the locations of vehicles 4 and 5 in
scenario 2 considerably; therefore, �xcr increases sharply
(Fig. 27).

We have also studied the effect on the microscopic traffic
prediction caused by the existence of all three types of the
uncertainty in the data discussed above (latency, errors in
vehicle locations and speeds). It has been found that results
derived in the paper remain qualitatively the same.

VIII. DISCUSSION

A. Some other possible applications of microscopic
traffic prediction

The methodology of the microscopic traffic prediction pre-
sented and studied in this paper has been applied for a simple
example of the automated vehicle that turns right at the city
intersection (Fig. 1). Below we give several examples of other
possible applications of the microscopic traffic prediction for
automated driving [84].

(i) The automated vehicle intends to turn left at an unsignal-
ized intersection in an urban area. As in Sec. III, we should
make the microscopic prediction of vehicles moving on the
priority road only. This prediction does not depend on the
behavior of the automated vehicle.
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FIG. 26. Simulations of the automated vehicle control based
on the microscopic traffic prediction for scenario 2 at αE = 0 in
(45): (a), (b) Vehicle trajectories on priority road (a) and on sec-
ondary road (b); dotted curves–vehicle locations in microscopic
traffic situations, solid curve–trajectory of the automated vehicle.
(c) Time-dependencies of speeds of some of the vehicles. Time of
the prediction beginning is t1 = 201 s. Calculated values t (real)

E =
209.2 s, v(AV)(t (real)

E ) = 18.5 km/h. The flow rate on the priority and
secondary roads are, respectively, 1029 and 110 vehicles/h. Time
headway between preceding and following vehicles between which
the automated vehicle merges in scenarios 1 (Fig. 2) and 2 are,
respectively, about 6.4 s and 4.8 s. Other parameters are the same
as those in Fig. 2.

(ii) The automated vehicle intends to merge onto the main
road at the on-ramp. As in Sec. III, we should make the
microscopic prediction of vehicles moving on the main road
only. Thus, the predicted motion of the local neighbors on the
main road does not depend on the behavior of the automated
vehicle. However, even if through the earlier merging of other
vehicles from the on-ramp onto the main road the motion of
vehicles on the main road changes, the possible changes in
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FIG. 27. Simulations of αE function of the critical uncertainty
(filled squares) calculated in accordance with formulas (42)–(45) for
scenario 2 shown in Fig. 26. Maximal critical uncertainty �xcr =
�x(max)

cr = 6.85 m is reached at αE = α
(opt)
E ≈ 0.4. In (42), Napp =

200 random sets of realizations for each of the given values of �x
have been studied. Other parameters are the same as those in Fig. 26.

the locations and speeds of the vehicles on the main road are
available after the vehicle merging.

(iii) The automated vehicle moving in the right lane that is
the neighborhood one to the off-ramp lane intends to leave
the main road to the off-ramp. Although in this case the
predicted motion of the local neighbors moving upstream of
the automated vehicle depends on the behavior of the auto-
mated vehicle, we need the microscopic prediction of vehicles
moving downstream of the automated vehicle on the main
road and in the off-ramp lane only. However, the change in the
motion of the automated vehicle caused by the microscopic
prediction should satisfy safety conditions for the upstream
vehicles (vehicles behind the automated vehicle).

(iv) The automated vehicle moving initially in the right lane
of a multi-lane road intends to pass a slow vehicle or a broken
vehicle in the right lane. As in item (iii), in this case we need
the microscopic prediction of vehicles moving downstream of
the automated vehicle on the main road in the right lane and
the neighboring vehicles in the target lane on the main road.
Thus, the moving of the upstream vehicles is not important
for the accuracy of the microscopic prediction used by the
automated vehicle.

It should be noted that learning algorithms as well as other
methods of artificial intelligence (see, e.g., Refs. [41–58]) can
be used to increase the reliability of the application of the
microscopic traffic prediction. There can be here at least the
following future scientific directions: (1) the reduction of data
errors (e.g., with the use of Kalman filter) in microscopic
traffic situations used as initial conditions in the microscopic
traffic prediction and (2) data fusion, i.e., the fusion of histor-
ical data derived through the use of the methods of artificial
intelligence with the data of the microscopic traffic prediction.
We can assume that these applications that are out of scope of
this paper can be interesting tasks for future investigations of
the microscopic traffic prediction.

B. Conclusions

(1) The microscopic traffic prediction enables the control
of the automated-driving vehicle in mixed traffic in a complex
city traffic scenario in which the automated-driving vehicle is
not able to make a decision based on a current traffic informa-
tion without the use of the microscopic traffic prediction.

(2) For efficient control of the automated-driving vehicle
in mixed traffic, the microscopic traffic prediction should be
repeated at each of the time instants tp (22) at which a new
microscopic traffic situation is available. Therefore, the re-
sults of the microscopic traffic prediction, in particular, the
predicted automated vehicle deceleration (acceleration), are
used for the automated vehicle control only during a time
interval tp � t < tp+1 (2), i.e., before the next microscopic
traffic situation is available.

(3) The statistical physics of the effect of the uncertainty
in the data of microscopic traffic situations on the accuracy
and reliability of the microscopic traffic prediction has been
revealed:

(i) The microscopic traffic prediction can guarantee col-
lision avoidance and safety traffic even when there is a
considerable data uncertainty caused by data latency, random
errors of the vehicle locations, and/or random errors of the
vehicle speeds in the data of microscopic traffic situations.

(ii) Due to random characteristics of the microscopic traffic
prediction, there is a critical uncertainty, i.e., the maximum
amplitude of errors in the data of microscopic traffic situations
at which the microscopic traffic prediction can still reliably be
used for the automated vehicle control.

(iii) Probability Papp of the reliability of the application of
the microscopic traffic prediction has been found.

(iv) When the data uncertainty does not exceed the critical
uncertainty, then probability Papp = 1. In this case, the micro-
scopic traffic prediction is applicable for automated vehicle
control. Contrarily, when the uncertainty exceeds the critical
uncertainty, i.e., Papp < 1, however, Papp > 0, then with prob-
ability 1 − Papp there can randomly occur a realization of the
microscopic traffic prediction that is not applicable for the
reliable automated vehicle control.

(v) The critical uncertainty can be increased consider-
ably through the choice of some intelligent application of
the microscopic traffic prediction. However, the increase in
the critical uncertainty occurs at the cost of a decrease in the
automated vehicle speed.

(vi) There is some optimal automated vehicle merging at
which the critical uncertainty reaches its maximum value.

(4) There can be a diverse variety of scenarios of applica-
tions of the methodology of the microscopic traffic prediction.
The stochastic microscopic three-phase traffic flow model of
[76,77] allows us to calculate a new microscopic prediction
for the motion of the set of vehicles used in the microscopic
traffic prediction for the prediction horizon 10 s during the
time interval 0.005 s that is negligible short in comparison
with the update time (1 s) of the data of microscopic traffic
situations.

(5) The microscopic traffic prediction can lead to speed
harmonization in mixed traffic flow, increase traffic safety and
comfort.
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TABLE I. Model parameters of vehicle motion used in simulations.

τ = 1 s, d = 7.5 m/δx,

δx = 0.01 m, δv = 0.01 ms−1, δa = 0.01 ms−2,

v
(priority)
free = 12.22 ms−1/δv (44 km/h),

v
(secondary)
free = 9.167 ms−1/δv (33 km/h),

a = 0.5 ms−2/δa,

G(u, w) = max(0, �kτu + a−1u(u − w)�),

k = 3, p1 = 0.3, pb = 0.1, pa = 0.17, p(0) = 0.005,

p(a)
0 (vn) = 0.667 + 0.083 min (1, vn/v01),

p2(vn) = 0.48 + 0.32
(vn − v21),

v01 = 3 ms−1/δv, v21 = 5 ms−1/δv,

a(0) = 0.2a, a(a) = a(b) = a, �va = 2 ms−1/δv,

ka = 4, γ = 4, �v(1)
r = 2 ms−1/δv.

APPENDIX A: MODEL FOR MOTION OF HUMAN
DRIVING VEHICLES IN CITY TRAFFIC

In the models (4)–(6),

vc,n =
{

v(1)
c,n at �vn + A�,nτ < �va

v(2)
c,n at �vn + A�,nτ � �va,

(A1)

v(1)
c,n =

{
vn + �(1)

n at gn � Gn

vn + anτ at gn > Gn,
(A2)

�(1)
n = max(−bnτ, min(anτ, �vn)), (A3)

v(2)
c,n = vn + �(2)

n , (A4)

�(2)
n = kaanτ max(0, min(1, γ (gn − vnτ ))), (A5)

amax =
{

a at �vn + A�,nτ < �va

kaa at �vn + A�,nτ � �va,
(A6)

where

An+1 = (vn+1 − vn)/τ, �vn = v�,n − vn, (A7)

�va, ka, and γ are constants, Gn is the synchronization space
gap (see Table I); explanations of functions (A1)–(A6) have
been given in Ref. [85] as well as in Sec. A.12 of Appendix A
of Ref. [74]. In the model, random vehicle deceleration and
acceleration are applied depending on whether the vehicle
decelerates or accelerates, or else maintains its speed [76,77]:

ξn =
⎧⎨⎩ξa if Sn+1 = 1

−ξb if Sn+1 = −1
ξ (0) if Sn+1 = 0.

(A8)

State of vehicle motion Sn+1 in (A8) is determined by formula

Sn+1 =
⎧⎨⎩−1 if ṽn+1 < vn

1 if ṽn+1 > vn

0 if ṽn+1 = vn.

(A9)

In (A8), ξb, ξ (0), and ξa are random sources for deceleration
and acceleration that are as follows [76,77]:

ξb = a(b)τ
(pb − r), (A10)

ξ (0) = a(0)τ

⎧⎨⎩−1 if r < p(0)

1 if p(0) � r < 2p(0) and vn > 0
0 otherwise

(A11)

ξa = a(a)τ
(pa − r), (A12)

pb is probability of random vehicle deceleration, pa is prob-
ability of random vehicle acceleration, p(0) and a(0) � a are
constants, r = rand(0, 1), 
(z) = 0 at z < 0 and 
(z) = 1 at
z � 0, a(a) and a(b) are model parameters (Table I).

To simulate time delays either in vehicle acceleration or
in vehicle deceleration, an and bn are the following stochastic
functions [76,77]:

an = a
(P0 − r1), (A13)

bn = a
(P1 − r1), (A14)

P0 =
{

p0 if Sn �= 1
1 if Sn = 1,

(A15)

P1 =
{

p1 if Sn �= −1
p2 if Sn = −1,

(A16)

r1 = rand(0, 1), p1 is constant, p2 = p2(vn) is a speed func-
tion (see Table I). Equation (A13) with P0 = p0 < 1 is applied
only if the vehicle did not accelerate at the former time step
(Sn �= 1); in the latter case, a vehicle accelerates only with
some probability p0 (A15).

To calculate probability Papp (42) of the applicability of
a set of realizations for the automated vehicle control with
the use of the microscopic traffic prediction (Fig. 22), we
should exclude simulation realizations in which rather than
random errors in the data of microscopic traffic situations,
model fluctuations determine probability Papp. Such a case can
theoretically occur when due to probability of delay in accel-
eration 1 − p0 there appears randomly a successive number of
time steps denoted by κ , when a vehicle does not accelerate.
Therefore, for the microscopic traffic prediction the value of
κ should be limited in the model. To reach this goal, we
introduce in our model a new variable κn [86]:

κn+1 =
⎧⎨⎩κn + 1 if Sn �= 1 and vs,n > vn

and (v�,n > vn or gn > Gn)
0 otherwise.

(A17)

Then, probability p0 in (A15) is formulated as follows:

p0 =
{

p(a)
0 (vn) if κn+1 < 2

1 if κn+1 � 2.
(A18)

Thus, due to formulas (A17) and (A18), the successive num-
ber of time steps of the delay in acceleration of a vehicle is
limited by κ = 1. As proven in simulations, this change in
the model fluctuation description ensures that in the absence
of errors in the data (i.e., �x = �v = 0) the probability Papp

(42) is equal to 1. Therefore, only due to the appearance of
large enough errors in the data formula (44) can be valid. The
mean time delay in vehicle acceleration is equal to

τ
(acc)
del (vn) = (

2 − p(a)
0 (vn)

)
τ. (A19)

From formula (A19), it follows that the mean time delay in
vehicle acceleration from a standstill within a wide moving
jam, when in formula (A19) the speed vn = 0 (in traffic
flow modeling, the time delay in acceleration is related to a
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slow-to-start rule [88,89]), is equal to

τ
(acc)
del (0) = (

2 − p(a)
0 (0)

)
τ. (A20)

As in Refs. [76,77], probability p(a)
0 (vn) in (A18) is chosen

to be an increasing speed function (Table I). Because the
speed within synchronized flow is larger than zero, the mean
time delay in vehicle acceleration at the downstream front of
synchronized flow that we denote by

τ
(acc)
del, syn = τ

(acc)
del (vn), vn > 0 (A21)

is shorter than the mean time delay in vehicle acceleration at
the downstream front of the wide moving jam τ

(acc)
del (0):

τ
(acc)
del, syn < τ

(acc)
del (0). (A22)

As in Refs. [76,77], the safe speed vs,n in (4) is chosen in
the form

vs,n = min
(
v(safe)

n , gn/τ + v
(a)
�

)
, (A23)

where v
(a)
� is an anticipation speed of the preceding vehicle,

the function

v(safe)
n = �v(safe)(gn, v�,n)�, (A24)

v(safe)(gn, v�,n) in (A24) is related to a safe speed in models by
Gipps [90] and Krauß et al. [91,92]; a detailed consideration
of the functions v(safe)(gn, v�,n) and v

(a)
� has been presented

in Sec. A.3.5 of Appendix A of the book [74]. When a ve-
hicle moving in the secondary road is the closest one to the
intersection, vs,n is chosen as

vs,n = ⌊
v(safe)(xints − xn, 0)

⌋
. (A25)

APPENDIX B: MODEL FOR VEHICLE MERGING AT
ROAD INTERSECTION

1. Merging of human driving vehicles

The following rules for merging human-driving vehicles
from the secondary road onto the priority road at the intersec-
tion are used:

g+
n > min (v̂nτ, G(v̂n, v

+
n )), (B1)

g−
n > min (v−

n τ, G(v−
n , v̂n)), (B2)

xn−1 = xints, vn−1 = 0. (B3)

In (B1)–(B3),

g+
n = x+

n − xints − d, (B4)

g−
n = xints − x−

n − d, (B5)

v̂n = min
(
v+

n , vn + �v(1)
r

)
, (B6)

�v(1)
r is a constant (Table I).

2. Merging of automated vehicle onto priority road without
the use of prediction

Rules for merging the automated vehicle from the sec-
ondary road onto the priority road are as follows:

g̃+
n,m � v̂nτ2, (B7)

where v̂n is given by (B6) in which vn should be replaced by
v(AV)

n ,

g̃−
n,m � v−

n τ1, (B8)

xn−1 = xints, vn−1 = 0. (B9)

Conditions (B7) and (B8) correspond to (3). In (B7)–(B9),

g̃+
n,m = x̃+

n,m − xints − d, (B10)

g̃−
n,m = xints − x̃−

n,m − d, (B11)

x̃+
n,m = x+

n−1 + v+
n m�τ, m = 1, 2, . . . , M, (B12)

x̃−
n,m = x−

n−1 + v−
n m�τ, m = 1, 2, . . . , M. (B13)

Conditions (B7)–(B9) with (B10)–(B13) are checked for all
indexes m = 1, 2, . . . , M. If for one of the values m these
conditions are satisfied, the automated vehicle merges onto
the priority road with the speed v(AV)

n = v̂n, where v̂n is given
by (B6) with �v(1)

r = a(AV)
max τ (1 − m/M ). For each of the M

short time steps �τ , the location of a vehicle that is the
preceding vehicle for the automated vehicle is given by a
linear approximation (B12) between points x+

n and x+
n−1; the

similar formula (B13) is used for the following vehicle.

APPENDIX C: SOME CHARACTERISTICS
OF AUTOMATED DRIVING

1. Prediction of time instants tmin, tmax and automated
vehicle deceleration

To predict tmin and tmax at each of the time instants tp (22),
the automated vehicle motion is predicted between the current
location of the automated vehicle x(AV)(tp) and intersection
location xints. The rules (8)–(11) are used for the prediction.
To find tmin, the automated vehicle motion is simulated, when
the safe speed in (10) at t̃n � tp is chosen to be equal to the
maximum speed, vs,n = v

(secondary)
free , and acceleration a(AV)

n in
(9) is equal to

a(AV)
n = a(AV)

max . (C1)

To find tmax, the acceleration a(AV)
n in (9) is given by (C1)

and the safe speed in (10) is given by (A25). The prediction
horizon is equal to

�Tp = tmax − tp, p = 1, 2, . . . , pE. (C2)

If time tE is found from Eq. (45), the value tE is used to
calculate predicted deceleration bp required for the automated
vehicle to reach location xints at time tE,

bp =
⌊

2(xints − x(AV)(tp) − v(AV)(tp)(T + δT ))

T (T + τ ) + 2(T + δT )δT

⌋
, (C3)

where

p = 1, 2, . . . , pE − 1, (C4)

T and δT are, respectively, the integer and the fractional parts
of time TE = tE(tp) − tp: T = τ�TE/τ�, δT = TE − T .
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The microscopic traffic prediction is made until the follow-
ing inequality:

tE(tpE ) − tpE < τ (C5)

has satisfied. Index p = pE found from (C5) corresponds to
the maximum time instant tp = tpE at which the last micro-
scopic traffic prediction is performed.

2. Merging of automated vehicle onto priority
road based on prediction

After condition (C5) has been satisfied, the automated ve-
hicle moves with deceleration bp = bpE−1 (C3) in accordance
with rules (20), (21), and (11) until the automated vehicle
merges onto the priority road. The time instant t (real)

E at which
the automated vehicle merges onto the priority road is found
from conditions (B7), (B8), and (B10)–(B13) together with
condition

x(AV)(tpE ) + v(AV)(t (real)
E )m�τ � xints, (C6)

where m = 0, 1, 2, . . . , M, the speed v(AV) = v(AV)(t (real)
E ) is

found as

v(AV)
(
t (real)
E

) = max
(
0, min

(
vfree, v

(AV)(tpE ) − bpE−1m�τ
))

.

(C7)

Conditions (B7), (B8), and (B10)–(B13) together with (C6)
and (C7) are checked for different steps m = 0, 1, 2, . . . , M to
find a minimum value m = m(real)

E for which conditions (B7),
(B8), (B10)–(B13), (C6), and (C7) are satisfied. Then, the
time instant t (real)

E at which the automated vehicle merges onto
the priority road is equal to [93]

t (real)
E = tpE + m(real)

E �τ. (C8)

After the automated vehicle has turned right onto the prior-
ity road, it moves in accordance with (8)–(10). It should be
emphasized that in condition (B7) used for the calculation
of formulas (C6)–(C8) instead of formula (B6) the following
formula has been used v̂n = v(AV).
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inition of the set of vehicles used in the microscopic traffic
prediction can be an interesting task for future investigations.
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