
PHYSICAL REVIEW E 106, 044306 (2022)

Sketch-based community detection in evolving networks

Andre Beckus 1,* and George K. Atia 1,2,†

1Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, USA
2Department of Computer Science, University of Central Florida, Orlando, Florida 32816, USA

(Received 10 July 2022; accepted 8 September 2022; published 24 October 2022)

We consider an approach for community detection in time-varying networks. At its core, this approach
maintains a small sketch graph to capture the essential community structure found in each snapshot of the
full network. We demonstrate how the sketch can be used to explicitly identify six key community events
which typically occur during network evolution: growth, shrinkage, merging, splitting, birth, and death. Based
on these detection techniques, we formulate a community detection algorithm which can process a network
concurrently exhibiting all processes. One advantage afforded by the sketch-based algorithm is the efficient
handling of large networks. Whereas detecting events in the full graph may be computationally expensive, the
small size of the sketch allows changes to be quickly assessed. A second advantage occurs in networks containing
clusters of disproportionate size. The sketch is constructed such that there is equal representation of each cluster,
thus reducing the possibility that the small clusters are lost in the estimate. We present a new standardized
benchmark based on the stochastic block model which models the addition and deletion of nodes, as well as
the birth and death of communities. When coupled with existing benchmarks, this new benchmark provides a
comprehensive suite of tests encompassing all six community events. We provide analysis and a set of numerical
results demonstrating the advantages of our approach both in runtime and in the handling of small clusters.

DOI: 10.1103/PhysRevE.106.044306

I. INTRODUCTION

The detection of community structure in networks has
garnered a great deal of attention, leading to a vast array
of algorithms. Much of the focus has been on static net-
works, where the goal is to identify groups of nodes within
which connections are dense and between which connections
are relatively sparse. However, it is often the case that net-
works evolve with time. For example, edges in social media
networks appear and disappear to reflect ever-changing friend-
ships, and gene expression networks continuously evolve in
response to external stimuli [1,2]. In this dynamic setting,
new sequential algorithms are needed to track the community
structure underlying each temporal snapshot of the network.
Here we propose a sketch-based approach.

Sketching involves the construction of a small synopsis of
a full dataset [3]. Notably, this technique has been used in
static community detection [4,5], where a sketch subgraph
is generated by sampling nodes from the full network. The
sketch is clustered using an existing community detection
algorithm, and the community membership of the nodes in the
full network are inferred based on the estimated communities
in the sketch. Here we propose the use of an evolving sketch
to detect and handle the six canonical community events ob-
served in dynamic networks [6]: growth, shrinkage, merging,
splitting, birth, and death. This dynamic approach addresses
two pervasive issues in community detection.

*abeckus@knights.ucf.edu
†george.atia@ucf.edu

One important concern in community detection is the abil-
ity to process large graphs. Many static methods become
infeasibly slow when processing a large network, thus mo-
tivating a search for efficient algorithms [7]. The extra time
dimension inherent to the dynamic setting only makes this
search for efficiency more pressing. However, time-evolving
networks also offer a distinct advantage not found in the static
domain. Specifically, evolving networks often possess tem-
poral smoothness in which the community structure changes
gradually [8]. In this case, previous snapshots offer prior
information which can aid in the clustering of subsequent
snapshots. We present a method which relies on a small sketch
to convey information regarding previous snapshots. By using
a small sketch, the algorithm can detect the main community
events without requiring the full graph to be examined, thus
reducing the required computational complexity. If the sketch
size and number of clusters are fixed, then the complexity of
our algorithm scales linearly in network size.

Another typical issue found in community detection is the
detection of small clusters [9]. If a community shrinks too
small, then it may become lost, i.e., the community may be
absorbed into a larger community in the estimated partition.
We show that once a community is captured in the sketch, it
can be tracked even if the community becomes very small.

We use dynamic benchmarks as a means for evaluating
the proposed algorithm with respect to the canonical network
events. The first four events are included in the benchmarks
of Ref. [10], which are based on the well-known stochastic
block model (SBM) [11]. Here we propose a new dynamic
SBM benchmark which captures the last two events of birth
and death. An important feature of this proposed benchmark
is that the size of the network varies with time, a characteristic

2470-0045/2022/106(4)/044306(16) 044306-1 ©2022 American Physical Society

https://orcid.org/0000-0001-7182-0776
https://orcid.org/0000-0001-7958-9855
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.044306&domain=pdf&date_stamp=2022-10-24
https://doi.org/10.1103/PhysRevE.106.044306

ANDRE BECKUS AND GEORGE K. ATIA PHYSICAL REVIEW E 106, 044306 (2022)

not found in the existing benchmarks. In addition to modeling
the birth event, this benchmark incrementally adds new nodes
to the network which join existing communities, a feature also
not seen in Ref. [10].

This paper is organized as follows. In Sec. II, we sum-
marize existing community detection algorithms for evolving
networks. Section III describes the network model, and
Sec. IV summarizes SBM benchmarks which capture key
evolutionary processes. In Sec. V, we describe the sketch-
based approach and formulate techniques by which sketches
can detect events and track evolutionary processes. Section VI
presents the proposed algorithm based on these tracking
techniques. We analyze the algorithm in Sec. VII, present
numerical results in Sec. VIII, and conclude in Sec. IX.
Appendix A describes the static clustering used as a part of the
main algorithm, and Appendix B provides details on the main
algorithm itself. Appendix C derives the results found in the
analysis of Sec. VII. Appendix D provides additional details
regarding the algorithms we compare against in the numerical
results.

II. RELATED WORK: COMMUNITY DETECTION IN
EVOLVING NETWORKS

A number of algorithms have been proposed for com-
munity detection in evolving networks (see Refs. [8,12] for
comprehensive surveys). One straightforward approach en-
tails the independent clustering of each snapshot using a static
clustering algorithm. The communities in the current snap-
shot are matched to the previous communities such that there
is continuity in the community identities. This category of
algorithm contains a number of variants beginning with the
classic work of Ref. [13].

More recently, many algorithms take a more sophisticated
“dependent” approach, in which previous snapshots are ac-
counted for in the clustering of the current snapshot. These
algorithms have the potential to outperform independent com-
munity detection algorithms, since they incorporate previous
knowledge directly in the clustering step.

One approach commonly seen in this category is the
representation of each snapshot using a compact graph. In
Ref. [14], a small weighted graph is constructed after clus-
tering a given snapshot, with each community represented
by a single “supernode.” The weights of the edges between
supernodes indicate the cumulative number of edges between
the corresponding communities. These supernodes are then
incorporated into the next snapshot’s graph, thus carrying
forward information from the previous estimates. A similar
idea can be seen in dynamic methods built around the static
Louvain algorithm [15], for example as seen in Ref. [16].
The extension of the Louvain algorithm to time-varying net-
works follows naturally from its reliance on supernodes. Our
approach also uses a small representative graph, however,
using an altogether different idea of sketching, as described
in Sec. V.

The model used in this paper is based on the SBM [11].
Several recent algorithms have been developed based on
dynamic SBM-based models. The dynamic models of
Refs. [17,18] specify that nodes move between a fixed set of
communities according to a stationary transition probability

matrix. In addition to allowing the movement of nodes be-
tween communities, the models of Refs. [19,20] also allow
the edge probabilities of the communities to vary. Nonethe-
less, these works focus on the case where individual nodes
only change community membership, i.e., the communities
undergo the grow and shrink processes. Although Ref. [21] is
able to track communities which are also merging and split-
ting, it still does not allow varying numbers of nodes across
the snapshots. The algorithm of Ref. [22] allows nodes to join
or leave the graph but requires that all snapshots be known
when invoking the algorithm. We emphasize that our proposed
algorithm is online in nature, i.e., it performs community
detection iteratively on one snapshot at a time, while carrying
forward the clustering results from previous snapshots.

III. TEMPORAL NETWORK MODEL

At time t , the network snapshot is represented by graph
G(t) = (V (t), E (t)), where V (t) is the set of nodes in exis-
tence at time t , and E (t) is the set of edges between these
nodes. Let Ĉ(t) = { Ĉu(t) | u ∈ {1, . . . , q̂(t)} } be the partition
at time t , with Ĉu(t) denoting the set of nodes in community
u, and q̂(t) the number of communities.

In each snapshot, an edge exists between nodes within
a community with probability pin. Nodes in community u
are connected to nodes in a different community u′ with
probability pu,u′ (t). An evolutionary process may vary the
intercommunity edge density pu,u′ (t) so long as the resulting
graph adheres to the SBM. We discuss one such process in
Sec. IV B. A pair of communities u, u′ are considered to be
merged if

pin − pu,u′ (t) <

√
2[pin + pu,u′ (t)]∣∣Ĉu(t)

∣∣ + ∣∣Ĉu′ (t)
∣∣ . (1)

When communities are of equal size, this condition cor-
responds to the asymptotic weak detectability limit (see
Ref. [10] for a discussion of this bound in the context of
merging and splitting communities). For simplicity, here, we
average the community sizes when they are of unequal size.

The following events may occur at time t .
(i) Node movement between communities A set of nodes

Vu→u′ (t) belonging to community u may move to commu-
nity u′. The edges connected to these nodes are regenerated
according to the SBM based on the new community member-
ships.

(ii) New nodes and community birth A set of nodes
V +(t) may join the graph. A subset Vbirth(t) ⊆ V +(t) of these
nodes join new communities. The remaining nodes V +(t) \
Vbirth(t) join existing communities. The edges of nodes in
V +(t) are generated according to the SBM.

(iii) Removed nodes and community death A set of
nodes V −(t) may be removed from the graph. Death occurs
when all nodes in a particular community are removed.

(iv) Merge and split of communities The merge event
occurs for communities u, u′ when pu,u′ (t) increases such
that (1) becomes true. Likewise, the split event occurs when
pu,u′ (t) decreases such that (1) becomes false.

044306-2

SKETCH-BASED COMMUNITY DETECTION IN EVOLVING … PHYSICAL REVIEW E 106, 044306 (2022)

Note that many of the model variables are functions of time
t . Where there is no ambiguity, we omit this time parameter
to simplify the exposition.

IV. EVOLUTIONARY PROCESSES: BENCHMARKS

For the purpose of illustrating and analyzing the proposed
algorithm, we consider here specific examples of evolutionary
processes. These are realized by four benchmark networks,
i.e., parameterized sequences of snapshots with known com-
munity partitions for validating and comparing community
detection algorithms. The grow-shrink and merge-split bench-
marks are defined in Ref. [10], whereas we present the
birth-death process here for the first time.

Each benchmark consists of an evolving network contain-
ing 2n total nodes. The underlying process is driven by a
periodic triangular waveform

x(t) =
{

2t∗, 0 � t∗ < 1/2,

2 − 2t∗, 1/2 � t∗ < 1,
(2)

where

t∗ ≡ (t/τ + φ) mod 1, (3)

τ is the period of the waveform, and φ controls the phase of
the waveform. We will assume that φ = 0 unless otherwise
specified.

A. Grow-shrink benchmark

The grow-shrink benchmark moves nodes between a pair
of communities denoted A and B, thus growing and shrink-
ing the communities. At each time step the first community
contains

nA = n − n f [2x(t + τ/4) − 1] (4)

nodes, whereas the second community contains nB = 2n − nA

nodes. Nodes lost from the first community are transferred
to the second community, and vice versa. The parameter
f ∈ [0, 1] controls the variation in community sizes. For t ∈
{0, τ/2, τ } the sizes of the communities are equal. At time t =
τ/4, a fraction f of nodes in community A will have moved to
community B, whereas at time t = 3τ/4 the opposite holds.

B. Merge-split benchmark

The merge-split benchmark has two communities denoted
A and B, each of size n, with intracommunity edge density pin.
Initially, the intercommunity edge density is pA,B(0) = pout.
New edges are gradually added between the two communi-
ties until they are completely merged at time t = τ/2 with
pA,B(τ/2) = pin. Then the process reverses and the new edges
are removed until the communities are completely split again
at time t = τ .

The intercommunity edges are placed in the following way.
The number of intercommunity edges mum in the unmerged
state are drawn according to a binomial distribution with pa-
rameters n2 and pout. The number of edges mm in the merged
state is similarly drawn, except using probability pin. The
number of edges at time t is then determined by

m∗(t) = [1 − x(t)]mum + x(t)mm, (5)

where the edges are placed uniformly at random. In this way,
the edge density between the two communities is pA,B(t) =

(a) Birth-Death benchmark

M
er

g
e-

S
p

li
t

G
ro

w
-S

h
ri

n
k

B
ir

th
-D

ea
th

t = 0 t = τ/4 t = τ/2 t = 3τ/4 t = τ

(b) Mixed (three benchmarks)

t = 0 t = τ/4 t = τ/2 t = 3τ/4 t = τ

A

B

FIG. 1. (a) Schematic representation of the birth-death bench-
mark, showing the two communities labeled A and B. (b) Schematic
representation of the mixed benchmark, which stacks the grow-
shrink, merge-split, and birth-death benchmarks.

m∗(t)/n2. The communities are considered merged at the de-
tectability limit (1).

C. Birth-death benchmark

We now propose a new benchmark which realizes the
birth and death of communities, as well as the addition and
removal of nodes from the network. A schematic diagram of
the birth-death benchmark is shown in Fig. 1(a). The bench-
mark contains two communities which pass into and out of
existence. The size of the first community is

nA =
{

0, x(t + τ/4) � 1 − γ /2,

n[1 − x(t + τ/4)], otherwise, (6)

where nA = 0 designates a nonexistent community and
parameter γ ∈ [0, 1] controls the minimum size of the com-
munity. The community starts at time t = 0 with n/2 nodes.
Nodes are removed from the network, until the community
shrinks to size γ n/2 at time t = τ (1 − γ)/4. At this point,
the community dies and all of its remaining nodes are deleted
from the network. At time t = τ (1 + γ)/4, a new set of
γ n/2 nodes is added to the network and used to recreate the
community. New nodes are gradually created and added to
the community until it reaches size n. At this point, nodes
are again removed from the community until it contains n/2
nodes, and the process repeats.

The second community is of size

nB =
{

0, x(t + τ/4) < γ/2
n x(t + τ/4), otherwise. (7)

044306-3

ANDRE BECKUS AND GEORGE K. ATIA PHYSICAL REVIEW E 106, 044306 (2022)

0 20 40 60 80 100

time t

200

400

600

800

1000

1200

N
o
d
e
 I

D
(a) Full graph planted partitions

(b) Sketch planted partitions

M
erg

e-
S

p
lit

G
ro

w
-

S
h
rin

k
B

irth
-

D
eath

0 20 40 60 80 100

time t

40

80

120

160

200

240

N
o

d
e

ID

FIG. 2. (a) Planted partitions for full graphs of the mixed bench-
mark network. Each vertical slice indicates the planted partition at
time t . The model parameters are n = 200, q̂ = 6, f = 0.9, and
γ = 0.2. (b) Sketches produced with n′ = 40. Each vertical slice
indicates the planted partitions in sketch S(t). White regions indicate
that the corresponding node does not exist at time t .

This community undergoes essentially the same process as the
first community except with a phase shift of τ/2.

D. Mixed benchmark

To model concurrent processes capturing all of the events,
we present a mixed benchmark which is created by “stacking”
the grow-shrink, merge-split, and birth-death benchmarks. A
schematic of this mixed benchmark is shown in Fig. 1(b). The
benchmark has a maximum of 6n nodes. The first 4n nodes
contain the grow-shrink and merge-split benchmarks as pre-
viously described, whereas the last 2n nodes participate in the
birth-death process (the actual number of nodes varies with
time due to addition and deletion of nodes in the birth-death
benchmark). We show an example of this mixed benchmark
in Fig. 2(a).

V. SKETCH-BASED TRACKING OF EVOLUTIONARY
PROCESSES

Our algorithm relies on a small representative sketch of
the full network. The sketch captures important information
which can be used to detect network events and track the
processes by which the network evolves. Meanwhile, the
smaller size of the sketch allows these checks to be performed
quickly without requiring a complete assessment of the entire
network. The estimates of the communities in snapshot t
are C(t) = {Cu(t) | u ∈ {1, . . . , q(t)} }, where q(t) is the es-
timated number of communities at time t . We first describe

the sketch, and then describe how this sketch can be used to
detect specific events.

The sketch consists of a set of nodes sampled from the full
network. At each time step, this set is updated such that it
contains an equal number of nodes n′ from each community.
The set of nodes in the sketch at time t is denoted S (t),
and the subset of these nodes from community u is denoted
C′

u(t) = S (t) ∩ Cu(t). We refer to this as sketch community u.
An example sketch time series is shown in Fig. 2(b), where
nodes have been sampled from the mixed benchmark shown
in Fig. 2(a).

For this example, we build the sketches using knowl-
edge of the planted community partitions. The proposed
algorithm has no such knowledge, and therefore must build
the sketches based on estimates of the true communities.
We will present an actual sketch produced by the proposed
algorithm in Sec. VIII D.

A. Inferring community membership of nodes

We show in this section how the sketch may be used to
infer community membership of any node i ∈ V (t) in network
snapshot G(t). To this end, we calculate

si,v (t) = |{ (i, j) ∈ E (t) | j ∈ C′
v (t −1) }|

|C′
v (t −1)| (8)

to evaluate the connectivity of node i to each sketch commu-
nity v. Let u be the true community assignment of node i.
Since

E[si,v (t)] =
{

pin, v = u,

pu,v (t), v 	= u,
(9)

it follows that si,v (t) provides a point estimate of the prob-
ability that there is an edge between node i and any node
j ∈ C′

v (t − 1). Node i can then be assigned to the community
u′ with which connectivity is greatest, i.e., where

u′ = arg max1�v�q(t)si,v (t). (10)

The proposed algorithm uses (10) to assign communities to
new nodes joining the network, as well as to identify nodes
which have changed community membership.

We finish this section by noting that the variance
in si,v (t) is

Var(si,v (t)) =
{ pin (1−pin)

|C′
v (t−1)| , v = u,

pu,v (t)[1−pu,v (t)]
|C′

v (t−1)| , v 	= u.
(11)

The variance grows as the sketch communities shrink, thus
motivating the use of equal-sized communities in the sketch.

B. Detecting the split event

Suppose that community u is undergoing a split into two
separate communities u and u′. To detect the emerging clusters
we can use the spectrum of the nonbacktracking matrix as
described in Ref. [23]. Let Gu be the subgraph of G(t) induced
by the latest estimate Cu(t − 1), and A be the adjacency matrix
of Gu. Given diagonal matrix D containing the degrees of
nodes in A, and identity matrix I, define

B′ =
(

0 D−I
−I A

)
. (12)

044306-4

SKETCH-BASED COMMUNITY DETECTION IN EVOLVING … PHYSICAL REVIEW E 106, 044306 (2022)

Full graph

Sketch

Full graph

Sketch

100

200

300

400

N
o
d
e

ID

0 20 40 60 80 100
time t

0

0.1

0.2

0.3

0.4

0.5

E
ff

ec
ti

v
e

E
d
g
e

D
en

si
ty

Estimate

Actual

pu,u'p
in

(b)

(a)

(c)

-20

-10

0

10

20

Decision

Threshold

S
k
etch

d
etectab

ility

F
u
ll g

rap
h
 d

etectab
ility

2
 -

11
/2

FIG. 3. (a) Planted partitions of the merge-split benchmark. For
reference, the detectability limits that formally define the splits in the
benchmark are shown as vertical dashed and dotted lines. Network
parameters are q̂ = 2, n = 200, pin = 0.5, and pout = 0.05. (b) Ac-
tual and estimated values of λ2 − √

λ1 at each time step. When the
gap is greater than the decision threshold (horizontal dashed red line),
the community is considered split. The sketch is constructed using
n′ = 50 nodes sampled uniformly at random from each of the two
communities at each time step. (c) Actual and estimated values of
pin, pu,u′ at each time step.

Suppose the emerging communities are each of size n, and
define λ1, λ2 as the largest and second largest eigenvalues of
B′, respectively. If

n[pin − pu,u′ (t)]2 > pin + pu,u′ (t), (13)

then in the limit as n → ∞ with npin and npu,u′ (t) con-
stant, λ1 → n[pin + pu,u′ (t)] and λ2 → n[pin − pu,u′ (t)] such
that [23]

λ2 >
√

λ1. (14)

Although condition (14) is only valid in the limit of infinite
sized graphs, it can still serve as a reliable split indicator
for a given sequence of network realizations. We show an
example of this in Fig. 3. The planted partitions are shown
in Fig. 3(a), and the dashed blue line in Fig. 3(b) shows the
corresponding gap λ2 − √

λ1 for each time step. The value
of this gap increases as the process moves in either direction

away from the fully merged state at t = 50, and toward the
fully split states at t ∈ {0, τ }. Decision threshold (14) is shown
as a horizontal dashed line. As can be seen, the split is detected
fairly close to the full graph detectability limit.

Rather than calculating the eigenvalues for the full network
(at great computational cost), we propose to instead detect the
split using the sketch. We apply the same procedure as de-
scribed above, but instead substitute Cu(t − 1) with C′

u(t − 1).
The estimate based on the sketch is shown in Fig. 3(b) as a
solid orange line. Note that the time of detection in the sketch
diverges from that in the full graph as the community sizes
in the sketch decrease. We analyze this dependence on sketch
size in Sec. VII.

C. Detecting the merge event

Suppose that communities u, u′ are merging. To detect the
merge event, we exploit the fact that the two communities are
already known at time t − 1. This means that we can estimate
pin and pu,u′ (t) and use these estimates to directly check
condition (1) to detect a merge event. The sketch allows us
to quickly calculate point estimates of the edge probabilities
using the expressions

p̂in = 2
∑q(t)

v=1 |{(i, j) ∈ E (t) | i, j ∈ C′
v (t − 1)}|∑q(t)

v=1 |C′
v (t − 1)|(|C′

v (t − 1)| − 1)
, (15)

p̂u,u′ (t) = |{ (i, j)∈E (t) | i∈C′
u(t −1), j ∈ C′

u′ (t −1) }|
|C′

u(t −1)||C′
u′ (t −1)| .

(16)

Figure 3(c) shows the actual (dashed blue line) and esti-
mated (solid orange line) values of pin for the example in
Fig. 3(a). The actual (dashed purple line) and estimated (solid
green line) values of pu,u′ (t) are also shown in the sample plot.
In both cases, the estimates track the actual values well.

D. Detecting the birth event

Consider a node i ∈ V +(t), which is joining the network. If
the node joins an existing community u, then E[si,u(t)] = pin,
and we can detect this occurrence by checking if si,u(t) �
p̂in − 3σ̂ , where p̂in is the estimate from (15), and σ̂ =√

p̂in(1 − p̂in)/n′ is an estimate of the standard deviation of
si,u(t). On the other hand, if i ∈ Vbirth(t), then the expectation
E[si,v (t)] will equal the intercommunity edge density between
the new community and any existing community v. This sug-
gests that we can identify the set of nodes that are joining
newborn communities using the expression

V̂birth(t) = {i ∈ V +(t) | si,v (t) < p̂in − 3σ̂ ,

∀v ∈ {1, . . . , q(t)}}. (17)

VI. PROPOSED ALGORITHM

We first discuss preliminaries. The proposed algorithm
invokes a function StaticCluster(G), which performs clus-
tering of a static graph G to produce community estimates
C = {C1, . . . ,Cq}. We implement this function using spectral
techniques based on the nonbacktracking matrix [23], along
with enhancements to provide more robust estimation of the
number of communities (details of the function are given

044306-5

ANDRE BECKUS AND GEORGE K. ATIA PHYSICAL REVIEW E 106, 044306 (2022)

in Appendix A). The computational cost of this function is
dominated by the eigendecomposition, which is cubic in the
size of graph G. We now summarize the main steps of the
proposed algorithm. We provide an assessment of the compu-
tational complexity for each step, and comment on the overall
complexity at the end. A detailed algorithm listing is provided
in Appendix B.

MainAlgorithm
Input: Initial sketch size N ′. Sketch community size n′.
Graph snapshots G(t), t = 0, 1, . . .

(1) Cluster initial snapshot. Build sketch G′ by sampling N ′

nodes from G(0) uniformly at random. Invoke
StaticCluster(G′) to obtain community estimates C ′ for the
sketch. Use (10) to infer the community memberships C(0)
of all nodes in G(0) based on community estimates C ′.
Complexity: By executing StaticCluster solely on the
sketch, we reduce the running time of this expensive step to
only O(N ′3 + N ′|V (0)|). The first term corresponds to
clustering of the sketch, and the second term corresponds to
inference on the full graph.

(2) For each snapshot G(t), t = 1, 2, . . . do
(3) Update sketch. Update the sketch to include n′ nodes

sampled uniformly at random from each community.
(4) Birth detection. Identify newborn communities by

calculating V̂birth as in (17). Since there may be more than
one community born at the same time, we cluster the
graph induced by V̂birth using StaticCluster. To keep
running time low, we use the same sketch-based approach
as in Step 1.
Complexity: The clustering of the nodes in V̂birth incurs the
dominant cost. We use a sketch consisting of n′ nodes
from V̂birth, and so the clustering will take time
O(q(t)3n′3 + q(t)n′|V (t)|)

(5) Infer community membership of new and moved
nodes. Use the estimator (10) to infer community
membership of each node i ∈ V (t) \ V̂birth. Note that this
set includes existing nodes, which may have changed
community membership, as well as new nodes V +(t)
which are joining existing communities.
Complexity: Calculation of the similarity metric si,u(t) for
a single community u and single node i takes time O(n′).
Therefore, this step is O(q(t) n′|V (t)|) in total.

(6) Split detection. For each community u, build graph G′

induced by C′
u(t). From this induced graph, build B′ as

defined in (12). Calculate the eigenvalues λ1, λ2 of B′. If
λ2 >

√
λ1, then a split event is declared. In this case,

invoke StaticCluster(G′) to identify the emerging
communities in the sketch, and then use (10) to identify
nodes in the full graph belonging to these emerging
communities.
Complexity: In the worst case, for each sketch community
we must perform an eigendecomposition, estimate the
partitions, and infer community membership in the full
graph. Thus, this step is O(q(t)n′(n′2 + |V (t)|)) in total.

(7) Merge detection. For each pair of communities u, u′,
consider the communities merged if

p̂in − p̂u,u′ < d

√
2(p̂in + p̂u,u′)

|Cu| + |Cu′ | , (18)

where we use estimates of the intracommunity edge
density p̂in, and the intercommunity edge density p̂u,u′ .
Condition (18) is similar to (1), except with an additional
scaling parameter d in the right-hand side. If d = 1, then
a shrinking density gap p̂in − p̂u,u′ causes erratic behavior
during node inference, resulting in nodes incorrectly
being moved between the pair of merging communities.
This in turn corrupts the estimates p̂in, p̂u,u′ . We set d = 2
to trigger the merge earlier and avoid this issue.
Complexity: Constructing the estimates takes O(n′2) time,
whereas checking the merge condition for all pairs takes
O(q(t)2) time.

(8) Build estimate C(t) using results of Steps 4–7.
Output: Partitions C(t), t = 0, 1, . . .

Suppose that q and N are the maximum number of com-
munities and nodes, respectively, in any given snapshot. We
furthermore assume that N ′ is at most qn′. Then, the compu-
tational complexity for estimating a single partition C(t) at
time t � 0 is O(qn′(q2n′2 + N)). For the first iteration, this
is the time required for executing step 1, whereas for each
subsequent iteration, this is the total time required to execute
steps (3)–(8). Contrast this with clustering the full snapshot
graph, which is O(N

3
) for each iteration. If q
 N and we use

a small sketch, then this results in an orderwise improvement
in complexity.

VII. ANALYSIS

In this section, we provide performance guarantees for the
proposed algorithm, as well as guidelines for setting sketch
size. To simplify analysis we take the sketch to be balanced
at all time steps, i.e., |C′

u(t)| = n′ for each community u and
time t . Furthermore, we suppose that the graph at the previous
time step has been correctly clustered, i.e., C(t − 1)= Ĉ(t −1).
Unless otherwise specified, it is assumed that pu,u′ (t)= pout

for any two communities u and u′. The average degree of such
a snapshot with q̂ communities is c = n′(pin + q̂ pout). The
following approximation is made to provide clearer results.

Assumption 1. Each of si,u(t), p̂in, and p̂u,u′ is well approx-
imated by a normal random variable having the same mean
and variance.

This assumption follows from the fact that the listed
variables are driven by binomial random variables. The un-
derlying distributions of these random variables will generally
have enough symmetry to be well approximated by normal
distributions [24]. More details are provided in Appendix C.

We now provide definitions used in this section. De-
note by �−1(·) the inverse cumulative distribution function
of the standard normal distribution. Specifically, given a
standard normal random variable Z and probability α, we
have P (Z � �−1(α))=α. Consider a graph with N nodes
and q̂ equal-sized communities Ĉ = { Ĉv | v ∈ {1, . . . , q̂} }.
The agreement with an estimated community partition C =
{Cv | v ∈ {1, . . . , q̂} } is defined as [25]

A
(
Ĉ, C

) = 1

N
max

π

q̂∑
v=1

∣∣Ĉv ∩ Cπ (v)

∣∣, (19)

044306-6

SKETCH-BASED COMMUNITY DETECTION IN EVOLVING … PHYSICAL REVIEW E 106, 044306 (2022)

(b)(a)

0 100 200 300 400

c

200

400

600

800

1000

N
'

10 20 30

x

0.99

1

A

FIG. 4. Plot of agreement for community estimates produced by
StaticCluster(G′), where sketch graph G′ is produced by randomly
sampling N ′ nodes from the full graph. The edge densities are deter-
mined from average degree c and ratio x = pin/pout. Plots are shown
for (a) varying c with x = 5 and (b) varying x with c = 200.

where π ranges over the permutations on q̂ elements (this
permutation is necessary since the community indices may
be ordered arbitrarily). Exact recovery is solved by an
algorithm if it produces community estimates such that
P (A(Ĉ, C) = 1) → 1 as N → ∞. In this section, we use 20
trials for each experiment. Detailed derivations for the results
in this section are deferred to Appendix C.

A. Estimating communities in the initial sketch

This section provides guidelines for choosing initial sketch
size. For simplicity, we consider the symmetric case in which
every community has n nodes. Suppose that an initial sketch
has been constructed by sampling N ′ nodes from G(0). If a =
pinN ′
ln(N ′) and b = poutN ′

ln(N ′) are held constant, then exact recovery of
the planted partition is efficiently solvable in the initial sketch
provided (

√
a−√

b)2 > q̂(0) [25]. Although this bound is only
exact in the limit, it can still be used to estimate values of N ′
for which agreement will remain high. Specifically, for fixed
N ′, pin, pout, this bound becomes

N ′

ln(N ′)
> q̂(0)(

√
pin − √

pout)
−2. (20)

Either a small density gap pin−pout or a large number
of communities q̂(0) can make the initial estimate unre-
liable. These issues can be mitigated by increasing the
sketch size.

We demonstrate the efficacy of (20) in Fig. 4. We produce
a sketch from a graph with two communities of size n=2500,
and plot agreement between the estimated and planted com-
munities. The blue line indicates the boundary of (20). Indeed,
the agreement remains high (exceeding 0.998) whenever this
condition holds.

We note that if the initial snapshot is imbalanced, i.e.,
with communities of different size, the sampling inversely
proportional to node degree (SPIN) sampling method [5] may
be used in place of uniform random sampling. This method
can improve the success rate by sampling more uniformly
across communities.

0 200 400 600
c

100

200

300

400

500

n'

P(success)

0.99

1

(b)(a)

0 200 400 600
c

100

200

300

400

500

n'

P(success)

0.99

1

(b)(a)

10 20 30
x

FIG. 5. Empirical estimate of the probability of successfully de-
tecting a node joining a new community. The edge densities are
determined from average degree c and ratio x = pin/pout. Plots are
shown for (a) varying average degree c with x = 5 and (b) varying x
with c = 200.

B. Birth detection

Suppose that one or more new communities are born at
time t , and take a node i∈Vbirth which belongs to one of these

communities. Let σp̂in =
√

2pin (1−pin)
q̂(t)n′(n′−1) be the standard deviation

of estimator p̂in. Then the probability that node i is correctly
identified as belonging to Vbirth is at least α if

n′ �
(

�−1(1−β)
√

pout(1 − pout) + 3
√

p+(1 − p−)

p− − pout

)2

,

(21)

where β = (1 − α)/[2(q̂ (t) − 1)] and

p± = pin ± �−1

(
1 − β

2

)
σp̂in . (22)

Note that the sufficient number of samples in (21) is inde-
pendent of community size in the full graph. This allows for
the detection of new communities even when they are of a
very small size. This advantage is illustrated further in the
numerical results of Sec. VIII B.

Figure 5 shows results in which a new community with 500
nodes joins a graph containing two existing communities of
size n=2500. The plots indicate the fraction of nodes in Vbirth

which are correctly identified as belonging to the newborn
community. The red line shows the boundary of condition (21)
with α=0.99, and shows excellent agreement with the numer-
ical results.

As the density gap pin−pout shrinks, a larger sketch will
be required to reliably detect which nodes belong to newborn
communities. In fact, as n′ →∞, we have σp̂in →0 such that
p± → p̂in, and the right-hand side of (21) converges to(

�−1(1−β)
√

pout(1−pout) + 3
√

pin(1−pin)

pin−pout

)2

. (23)

In this regime, the denominator depends solely on the square
of the density gap.

C. Inferring community membership

We next consider the required sketch size to successfully
infer community membership of individual nodes using (10).

044306-7

ANDRE BECKUS AND GEORGE K. ATIA PHYSICAL REVIEW E 106, 044306 (2022)

(b)(a)

0 200 400 600

m'
(b)(a)

0 200 400 600

m'
0 100 200 300 400

c

100

200

300

400

500

n'

P(success)

0.99

1

FIG. 6. Plots show empirical estimate of success probability
of (10) over 105 trials. Sketch graph G′ is produced by randomly
sampling N ′ nodes from a network with the same parameters as
in Fig. 4. Let m′

1→2 = m′
2→1 = m′, i.e., m′ nodes move from one

community to the other at each time step, and pin =5pout. (a) Varying
average degree c with m′ = 0. (b) Varying m′ with c = 300.

Define m′
u→u′ = |Vu→u′ (t) ∩ S (t −1)|, i.e., the number of

nodes in the sketch that are moving from u to u′. The analysis
here will use the following simplification.

Assumption 2. In place of random variable m′
u→u′ , we use

its expected value E[m′
u→u′] = n′|Vu→u′ |/|Ĉu(t −1)|.

We denote the minimum community size in a given snap-
shot by nmin = min1�v�q̂(t) |Ĉv (t)|.

Suppose that at most m nodes move between any two
pairs of communities, i.e., |Vv→w(t)| � m for 1 � v,w �
q̂(t). Then (10) correctly identifies the community of a given
node i /∈ S (t) with probability � α provided that

n′ � x

[
�−1

(
1 − 1−α

q̂(t)−1

)
μ

]2

, (24)

where

μ = (pin − pout)

(
1 − m q̂ (t)

nmin

)
, (25)

x = pin(1 − pin) + pout(1 − pout) (26)

+ m
pin(1 − pin) − pout(1 − pout)

nmin
. (27)

Variable μ serves as a lower bound on the expected value of
si,u(t) − si,v (t) for v 	= u, whereas x

n′ serves as an upper bound
on the standard deviation. Both a small density gap pin−pout

and a large number of moving nodes m can make inference
less reliable. In these situations, an increased sketch size will
be required to keep the probability of misclassification low.

Figure 6 shows the inference success rate of (10) for a
network containing two communities of size n=2500. In
Fig. 6(a), m = 0 (no nodes move between communities),
whereas Fig. 6(b) varies the number of moving nodes. The red
lines indicate the boundary of (24) with α = 0.99, and show
excellent agreement with the numerical results. As m → 0,
this boundary converges to[

�−1

(
1 − 1 − α

q̂(t) − 1

)]2(pin(1 − pin) + pout(1 − pout)

(pin − pout)2

)
,

(28)

0.4 0.45 0.50 0.2 0.4 0.4 0.45 0.50 0.2 0.4

100

200

300

400

500

n'

p
u,u'

p
u,u'

(b)(a)

com
m
unities

D
etected

1

2

FIG. 7. Detected number of communities for a pair of commu-
nities undergoing the merge-split process. Detection is based on
(a) split condition (14) and (b) merge condition (18).

which is independent of community size in the full graph. This
advantage will be illustrated further in the numerical results
of Sec. VIII B. In this case, the primary driver of performance
becomes the density gap pin − pout.

D. Split detection

Consider a network with a single community undergoing a
split into two equal-sized communities u and u′. An important
consideration is the smallest value of pu,u′ at which the com-
munities will be considered split according to (14). Using a
similar argument as for the initial sketch, in practice we may
use the exact recovery limit to approximate this lower bound.
Likewise, we can use the asymptotic detectability threshold as
an approximate upper bound. Following this line of reasoning,
it is likely that the split will be detected for some pu,u′ bounded
according to

pin + 1

2n′ −
√

2pin

n′ + 1

4n′2 > pu,u′ >

(
√

pin −
√

ln(2n′)
n′

)2

.

(29)

Increased sketch size will tend to allow earlier detection of the
split, i.e., for smaller values of pin − pu,u′ .

Figure 7(a) shows a plot of the estimated number of
communities from (14) for a sketch with two communities
containing n′ nodes each (the detected number of communi-
ties is 2 if the condition holds, and 1 otherwise). Along the
horizontal axis, we vary pu,u′ within [0, pin], where pin =0.5.
The blue and green lines show the lower and upper bounds
in (29), respectively. The split is indeed detected for a value
of pu,u′ within these bounds.

E. Merge detection

Finally, suppose that two equal-sized communities u, u′ are
merging into one community. We consider the value of pu,u′

at which condition (18) detects a merge. This condition will
hold with probability � α if

pu,u′ � pin+�−1

(
1− 1−α

2

)
σm+ d2

2n
− d

√
2pin

n
+ d2

n2
,

(30)

044306-8

SKETCH-BASED COMMUNITY DETECTION IN EVOLVING … PHYSICAL REVIEW E 106, 044306 (2022)

where we use the the standard deviation of p̂in ± p̂u,u′ ,

σm =
√

2pin(1 − pin)

q̂(t)n′(n′ − 1)
+ pu,u′ (1 − pu,u′)

(n′)2
. (31)

However, it is also important to consider when (18) reliably
identifies the communities as being split. This occurs with
probability � α if

pu,u′ � pin−�−1

(
1− 1−α

2

)
σm+ d2

2n
− d

√
2pin

n
+ d2

n2
.

(32)

To illustrate the significance of bounds (30) and (32),
Fig. 7(b) shows the detected number of communities for a
pair of communities with n=2500 nodes each [the detected
number of communities is 1 if (18) holds, and 2 otherwise].
The red line indicates the boundary of (30), and the yellow
line indicates the boundary of (32), for α = 0.9. When pu,u′

falls in the gap between these bounds, the detection tends
to be unreliable. However, the size of this gap can be re-
duced by using larger sketch sizes to drive down the standard
deviation σm.

VIII. NUMERICAL RESULTS

We compare against four algorithms from the literature,
each of which uses a different means for carrying forward
information from one snapshot to the next. First, we use the
classic Bayesian approach found in Yang et al. [17]. Second,
we run the algorithm of Dinh et al. [14]. This algorithm uses
a sketchlike concept by consolidating known communities
into “supernodes” within a weighted graph. These supernodes
are then incorporated into the next snapshot. Third, we use
evolutionary clustering based on structural perturbation and
resource allocation similarity (ESPRA), which is based on
structural perturbation theory [26]. This algorithm defines an
objective function which explicitly balances two similarities:
one which encourages temporal smoothness across snapshots
and one that takes into account only the community structure
in the latest snapshot. Last, we independently cluster each
snapshot as described in such works as Ref. [13,27]. This
algorithm, referred to here as (Independent), estimates the
communities in the current snapshot using StaticCluster and
then matches the estimates in adjacent snapshots using the
Jaccard similarity coefficient [28]. Although StaticCluster
performs optimally in certain regimes, the main weakness of
(Independent) is that it completely ignores information from
the previous snapshot when clustering the current snapshot.

Further details regarding these algorithms are provided in
Appendix D. Unless otherwise specified, all plots show an
average over 20 independent runs. We set the initial sketch
size to N ′ = q̂(0)n′.

A. Performance with small clusters

We first consider the performance of the proposed
algorithm in the presence of small communities. We use
normalized agreement to compare the planted communities
Ĉ = { Ĉv | v ∈ {1, . . . , q̂} } and estimated communities C =
{Cv | v ∈ {1, . . . , q̂} }. Sets Ĉ and C are padded with empty

0 20 40 60 80 100
time t

250

500

750

1000

N
o

d
e
 I

D

FIG. 8. Planted partitions for a double-stacked version of the
grow-shrink benchmark, with n = 250, f = 0.95, q̂ = 4, pin = 0.4,
and pout =0.1.

communities such that |Ĉ|=|C|. Then, normalized agreement
is defined as [25]

Ã = 1

q̂
max

π

q̂∑
v=1|Ĉv|>0

∣∣Ĉv ∩ Cπ (v)

∣∣∣∣Ĉv

∣∣ , (33)

where π ranges over the permutations on q̂ elements. The
normalized agreement for the snapshot at time t is denoted
Ã(t). Unlike the agreement metric defined earlier in (21), nor-
malized agreement proves useful for quantifying performance
in the presence of small clusters, since each community con-
stitutes a fraction 1

q̂(t) of the normalized agreement, regardless
of community size.

For summarizing the overall deviation in the actual and
estimate communities for a snapshot sequence, we use the
average-squared error

EÃ = 1

T

T∑
t=1

[1 − Ã(t)]2, (34)

where T is the total number of snapshots.

1. Grow-shrink benchmark

We use two concurrent instances of the grow-shrink
benchmark with phase φ=0 for the first instance and φ = τ/2
for the second instance. Figure 8 shows planted partitions for
an example with f = 0.95. The community detection results
are shown for all algorithms in Fig. 9(a), where the value
of EÃ is plotted as a function of f . The proposed algorithm
has EÃ < 0.02 for all values of f , whereas the other algo-
rithms exhibit significantly larger values of EÃ especially for
larger f .

To gain further insight into the behavior of the algorithms,
we plot a heat map of Ã(t) for each algorithm in Figs. 9(b)–
9(f), with f varied along the vertical axis and time t along
the horizontal. Increasing values of f result in smaller com-
munities at times t = τ/4 and t = 3τ/4 when the graph is
most imbalanced. It is exactly around these times that the
algorithms tend to perform worst. (Independent) often loses
track of the small clusters at t = τ/4 and t = 3τ/4, resulting
in a merge of communities and a sharp drop in agreement.

044306-9

ANDRE BECKUS AND GEORGE K. ATIA PHYSICAL REVIEW E 106, 044306 (2022)

0.5 0.6 0.7 0.8 0.9
f

0

0.1

0.2

0.3
(b) Proposed (c) Yang et al. [17]

(e) ESPRA(d) Dinh et al. [14] (f) (Independent)

(a)
Proposed

Yang et al. [17]

Dinh et al. [14]

ESPRA

(Independent)

0 20 40 60 80 100
time t

0.5

0.6

0.7

0.8

0.9

f

0 20 40 60 80 100
time t

0 20 40 60 80 100
time t

0.5

0.6

0.7

0.8

0.9

f

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
time t

0 20 40 60 80 100
time t

FIG. 9. Results for varying f in the grow-shrink example in Fig. 8. For the proposed algorithm we set n′ = 50. Plot of EÃ is shown in (a).
Panels (b) through (f) show ensemble averages of Ã(t) as a function of time along the horizontal axis and f along the vertical axis for each
algorithm.

The algorithm is not capable of detecting splits, and so does
not recover.

2. Birth-death benchmark

We now present analogous examples for the birth-death
benchmark. One means for producing small clusters is by
using small values of γ , such that each community is
small immediately after birth and before death. An exam-
ple is shown in Fig. 10(a), with γ = 0.1. We execute the
algorithms and show the estimated number of communi-
ties for each snapshot in Fig. 10(b). The algorithm of Ref.
[14] tends to absorb small communities into the larger com-
munities, as exhibited by the drop in estimated number of
communities after birth and before death. Meanwhile, the pro-
posed algorithm provides a near-perfect estimate. We expand
on this example by plotting EÃ as a function of γ in Fig. 10(c).
The proposed algorithm has EÃ < 0.003 for all values of γ .
We omit (Independent), Yang et al. [17], and ESPRA as they
cannot handle graphs of changing size, nor new communities.

B. Scalability

To demonstrate the scalability of the proposed algo-
rithm, let us consider the minimum community size over all
snapshots

nmin = min
1�t�T

min
1�v�q̂(t)

∣∣Ĉv (t)
∣∣. (35)

We run the grow-shrink benchmark using the same parame-
ters as in Sec. VIII A 1, except with f = 1 − n

nmin
such that

the minimum cluster sizes are fixed at nmin = 200. Table I
shows the value of EÃ as a function of n, averaged over five
trials. There is a small increase in EÃ as n increases, due

to a corresponding increase in the number of moving nodes
(as described in Sec. VII C). Nonetheless, EÃ remains below
5.5×10−5 despite a dramatic increase in imbalance of the full
graph and despite the fact that the sketch size remains fixed.

Likewise, we run the birth-death benchmark with the pa-
rameters of Sec. VIII A 2 but with γ = 2 nmin/n such that
nmin =20 regardless of graph size. The smallest community
size is attained immediately before death and after birth. The
results are shown in Table I. Unlike the results for the grow-
shrink benchmark, there is no increase in EÃ. This is consistent
with the analysis in Sec. VII B, which showed no dependence
on community size in the full graph.

For both benchmarks, Table I shows only a sublinear in-
crease in runtime as community size n increases, owing to
the fixed sketch size. To expand on this result, we run all
of the algorithms on the grow-shrink benchmark, and show
the results as a function of n in Fig. 11. As expected, the
proposed algorithm finishes very fast, in under two seconds
for all cases. On the other hand, algorithms [17], ESPRA, and
(Independent) all cluster the full graph, and therefore scale
superlinearly with network size. Although Ref. [14] clusters a
graph of reduced size at each time step, nodes having changed
edges are left as singleton nodes. In this example, the large
number of edge changes forces a correspondingly large num-
ber of nodes to remain singletons, thus requiring the static
clustering step to operate on large networks.

C. Merge-split detection

We next execute the algorithms on the merge-split bench-
mark, with two concurrent instances as shown in Fig. 12(a).
The plot in Fig. 12(b) shows the estimated number of com-
munities as a function of time for the proposed algorithm, as

044306-10

SKETCH-BASED COMMUNITY DETECTION IN EVOLVING … PHYSICAL REVIEW E 106, 044306 (2022)

0 20 40 60 80 100
time t

2

2.5

3

3.5

4

0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

E
st

im
at

ed
 #

C
o
m

m
u
n
it

ie
s

250

500

750

1000
N

o
d

e
ID

(a)

(b)

(c)

Proposed

Dinh et al. [14]

Proposed

Dinh et al. [14]

FIG. 10. (a) Planted partitions for a double-stacked version of the
birth-death benchmark, with γ = 0.1. For the first instance, we use
phase shift φ=0, whereas for the second instance we use φ = τ/2.
Both instances have parameters q̂ = 4, pin = 0.5, and pout = 0.05.
We set n′ = 50, which leads to a maximum sketch size of 200
nodes. (b) Ensemble average of number of communities estimated by
algorithm plot as a function of time. (c) Squared error of normalized
agreement EÃ is shown for varying γ .

well as for Ref. [14] and ESPRA. We omit (Independent) and
Ref. [17] as they cannot handle the merge and split processes.
Although the benchmark groundtruth undergoes an instanta-
neous transition between merged and split states, the network
itself gradually interpolates between these states. This dis-
crepancy in timescales, along with the fact that the benchmark
sets the transition at the theoretical detectability limit, means
we cannot expect the estimated partitions to exactly match the
planted partitions. Indeed, all three algorithms overestimate
the span of time during which the communities are merged.

The estimates of the proposed algorithm are shown in
Fig. 12(c), where we can see that nodes start being mis-
classified at t =13. This is expected due to the shrinking
gap between pin and the intercommunity edge densities, as
described in Sec. VI. Nonetheless, the proposed algorithm
detects the merge much closer to the benchmark’s merge time
than the other two algorithms. We note that using larger values
of d in condition (18) will result in an earlier detection of the
merge. In this way, d can act as a tuning parameter to adjust
the sensitivity of the merge detection.

For studying the performance of the algorithms’ split de-
tection, we show the exact recovery limit for the sketch as
a vertical white dashed line in Fig. 12(a). The proposed

TABLE I. Scalability of proposed algorithm.

Benchmark n EÃ Runtime (normalized)

Grow-shrink (nmin = 200) 250 3.0×10−7 1
1000 7.2×10−7 1.2
2000 4.6×10−6 2.2
3000 5.5×10−5 3.7

Birth-death (nmin = 20) 250 1.6×10−5 1
1000 2.4×10−5 1.2
2000 2.6×10−7 1.6
3000 2.6×10−7 1.7

algorithm detects the split close to this limit, although we
point out that the detection could be shifted earlier by increas-
ing the sketch size. Despite clustering the full network, for
which estimation should be easier, ESPRA does not exceed
the performance of the proposed algorithm, and Ref. [14] fares
even worst.

D. Mixed benchmark

So far, our results have considered individual benchmarks
in isolation. We now run the proposed algorithm on the mixed
benchmark from Fig. 2(a), which has concurrent birth-death,
grow-shrink and merge-split processes. The partition esti-
mates are shown in Fig. 13(a). Most of the mismatch occurs
in the merge-split communities, which is consistent with our
earlier results.

The sketches produced by the proposed algorithm are
shown in Fig. 13(b). The sketch nodes are sorted vertically
according to their planted communities, with the color indi-
cating the estimated community of the corresponding node.
The deviation from the ideal sketch in Fig. 2(b) lies mostly

200 500 1000 2000 5000
n

10
0

10
1

10
2

10
3

10
4

10
5

R
u
n
ti

m
e

in
 s

ec
o
n
d
s

Proposed

Yang et al. [17]

Dinh et al. [14]

ESPRA

(Independent)

FIG. 11. Timing results for the grow-shrink benchmark with q̂ =
2, pin = 0.5, pout = 0.05, f = 0.5. For the proposed algorithm we
set n′ = 100, leading to a total sketch size of 200 nodes. Due to the
large runtimes in the four algorithms we compare against, only 10
iterations of the algorithms are performed, and time is averaged over
five trials. Note that logarithmic scales are used for both axes. All
algorithms had perfect community estimates for all network sizes,
except for ESPRA which still had less than 1% misclassified nodes
per snapshot.

044306-11

ANDRE BECKUS AND GEORGE K. ATIA PHYSICAL REVIEW E 106, 044306 (2022)

200

400

600

800

1000

N
o
d
e

ID
(a)

(b)

200

400

600

800

1000
N

o
d
e
 I

D

0 20 40 60 80 100

time t

2

2.5

3

3.5

4

E
st

im
at

ed
 #

C
o
m

m
u
n
it

ie
s

(c)

Groundtruth

Proposed

Dinh et al. [14]

ESPRA

E
x
act R

eco
v
ery

S
k
etch

FIG. 12. (a) Planted partitions for a double-stacked version of
the merge-split benchmark. The parameters of the model are q̂ = 4,
n = 250, pin = 0.5, and pout = 0.05. We set n′ =50 for the proposed
algorithm. This results in a sketch size of 100 in the merged state,
and 200 in the split state. The exact recovery limit for the sketch,
based on (21), is shown as a dashed white vertical line. (b) The
estimated number of communities at each time step for the proposed
algorithms, as well for Ref. [14] and ESPRA. (c) The estimated
partitions for the proposed algorithm.

inside the merge-split communities, due to the errors present
in the estimates of the full graph.

The estimated partitions for Ref. [14] are presented in
Fig. 13(c). As with the earlier results, Ref. [14] encounters
difficulties in correctly identifying the small clusters in the
grow-shrink and birth-death communities.

IX. CONCLUSION

This paper concerned a sketch-based approach for com-
munity detection in time-evolving networks. We presented
an SBM-based model along with possible evolutionary pro-
cesses which may occur within this model. We then proposed
sketch-based techniques for tracking these processes, as well
as an algorithm incorporating these techniques to produce
community estimates for concurrent processes. We provided
an analysis to guide the choice of sketch size, and generated
numerical results comparing the proposed algorithm to full-
scale community detection algorithms.

We conclude by briefly noting possible extensions. First, an
arbitrary community detection algorithm may be used in place
of StaticCluster, provided that it can estimate the number
of communities. Second, a straightforward extension to the
network model and algorithm would allow the intracommu-
nity edge density pin to vary for each community. Third, our

200

400

600

800

1000

1200

N
o

d
e

ID

0 20 40 60 80 100

time t

40

80

120

160

200

240

S
k

et
ch

 N
o

d
e

ID

0 20 40 60 80 100
time t

200

400

600

800

1000

1200
N

o
d
e

ID

(a)

(b)

(c)

FIG. 13. Results for mixed benchmark with pin = 0.5 and pout =
0.05. Estimated partitions produced by the proposed algorithm are
shown for (a) the full network and (b) the sketches produced by the
proposed algorithm. The estimated partitions produced by Ref. [14]
are shown in (c).

approach is extendable to other graph models as well, for
example the Degree Corrected SBM (DCSBM) [29]. This can
be accomplished by substituting a suitable sampling technique
for constructing DCSBM sketches (e.g., the sampling method
of Ref. [30]), a similarity definition between nodes in the
full network and the sketch communities, and an appropriate
technique for determining when clusters split or merge.

ACKNOWLEDGMENTS

This work was supported by NSF CAREER Award No.
CCF-1552497 and NSF Award No. CCF-2106339. The
University of Central Florida Advanced Research Computing
Center provided computational resources that contributed to
results reported herein.

044306-12

SKETCH-BASED COMMUNITY DETECTION IN EVOLVING … PHYSICAL REVIEW E 106, 044306 (2022)

APPENDIX A: STATIC CLUSTERING

We use the following algorithm to perform static clustering
of graph G with N nodes.

StaticCluster(G)
(1) Construct B′ from G using (12).
(2) Calculate eigenvalues λ1, λ2, . . . , λN and corresponding

eigenvectors of B′.
(3) Calculate q as the maximum value of i such that λi >

√
λ1.

(4) for i = 1 . . . q do
(5) Build matrix M from the i normalized eigenvectors of B′

corresponding to eigenvalues λ1, . . . , λi. Apply k-means
clustering to M to obtain community estimates
Ci = {Cv | v ∈ {1, . . . , i} } We repeat 100 iterations with
three random initializations and take the best result.

(6) Calculate modularity Qi of G with partition Ci. Modularity
is defined as in Sec. IV of Ref. [31].

(7) end for
(8) j ← arg max1�i�qQi

(9) Return estimate C j .

Steps (1)–(3) estimate the number of communities q, and
are as described in Ref. [23]. We find that adding Steps
(4)–(7) provides a more reliable estimate of the number of
communities. These steps repeat k-means clustering, varying
the number of clusters up to q, and then return the partition
giving the highest modularity.

Figure 14 compares the proposed function StaticCluster
(solid lines), against the standard approach (dashed lines). The
standard approach only uses k-means to identify q communi-
ties, rather than executing Steps (4)–(7). The plot shows the
fraction of runs in which the estimated number of commu-
nities is correct of 20 runs. As can be seen, the proposed
algorithm identifies the correct number of communities for
much smaller values of average degree c.

The additional steps do not increase the complexity of the
algorithm. In particular, the time for Steps (4)–(7) is O(Nq̂ 3),
where q̂ is the actual number of communities. We assume
that q̂
 n′, such that the eigendecomposition is still the

20 40 60 80 100
c

C
o
rr

ec
t

E
st

im
at

e

Proposed
Standard

q = 2 q = 4 q = 6

0

0.5

1

FIG. 14. Results showing improved performance of the proposed
static clustering algorithm afforded by the modularity-based heuristic
in Steps (4)–(7). We generate a graph G with 800 nodes divided into
q equal-sized communities, and pin = 5pout.

dominant cost, making the computational complexity of the
algorithm O(N3).

APPENDIX B: MAIN ALGORITHM: DETAILS

Two helper functions are needed. The first, Sample(G, N ′),
returns a set of N ′ nodes sampled uniformly at random from
G. The second infers community membership of nodes in the
full graph G based on the sketch community estimates C ′, as
described in Sec. V A. This function is defined as follows:

Infer(G, C ′)
(1) Cv ← ∅ for v ∈ {1, . . . , q}
(2) for each node i ∈ V do

(3) w ← arg maxv∈{1,...,q}
|{ (i, j)∈E | j∈C′

v }|
|C′

v |
(4) Cw ← Cw ∪ {i}
(5) end for
(6) return partition C = {Cv | v = 1, . . . , q }

We use the following definition: given a graph G = (V, E)
and node set V ′ ⊂V , the subgraph of G induced by V ′ is
denoted G[V ′]. The complete definition of MainAlgorithm
follows.

(1) G ← G(0)
(2) S ′ ← Sample(G, N ′)
(3) C(0) ← Infer(G, StaticCluster(G[S ′]))
(4) Build sketch set S(0) by sampling n′ nodes uniformly at

random from each community C ∈ C(0). If n′ > |C|, then
include all nodes from C.

(5) r ← |C(0)|.
(6) for t = 1, 2, . . . do
(7) G ← G(t)
(8) {C1, . . . ,Cr}

← Infer(G[V (t) \ V̂birth], C ′(t −1))
(9) if V̂birth 	= ∅ then
(10) G ← G[V̂birth]
(11) S ← Sample(G, n′)
(12) {Cr+1, . . . ,Cr+q}

← Infer (G, StaticCluster (G[S]))
(13) r ← r + q
(14) end if
(15) for u ∈ {1, . . . , r}, where |Cu| > a do
(16) C′ ← Cu ∩ S(t −1)
(17) G′ ← G[C′]
(18) Let A be the adjacency matrix of G′. Calculate the

eigenvalues λ1, λ2, . . . of B′ [defined in (12)].
(19) Calculate q as the maximum value of i such that

λi >
√

λ1.
(20) if q > 1 then
(21) Gu ← G[Cu]
(22) C ′′ ← StaticCluster(Gu[C′])
(23) {Cu,Cr+1, . . . ,Cr+q−1}

← Infer(Gu, C ′′)
(24) r ← r + q − 1
(25) end if
(26) end for

044306-13

ANDRE BECKUS AND GEORGE K. ATIA PHYSICAL REVIEW E 106, 044306 (2022)

(27) for community pairs u, u′ ∈ {1, . . . , r} do
(28) if (18) holds then
(29) Cu ← Cu ∪ Cu′

(30) Cu′ ← ∅
(31) end if
(32) end for
(33) C(t) ← {Cv | v = 1, . . . , r }
(34) V − ← V (t −1) \ V (t)
(35) S(t) ← S(t −1) \ V −

(36) Re-proportion sketch S(t) such that it contains
min{n′, |C|} nodes from each community C ∈ C(t).

(37) end for

Steps (1)–(3) cluster the first graph snapshot. This estimate
is used to construct a balanced sketch in step (4). The remain-
der of the algorithm processes subsequent snapshots. Step (8)
reevaluates the community membership of existing nodes, as
well as new nodes joining existing communities. Steps (9)–
(14) partition the set of newborn communities. Meanwhile,
Steps (15)–(26) handle splits within each community. Only
communities with size greater than a are checked, as the
spectral estimates become unreliable for small communities.
We set a=20. Steps (27)–(32) handle merges among pairs
of communities. Finally, steps (34)–(36) generate the new
sketch.

APPENDIX C: DERIVATIONS FOR ANALYSIS IN SEC. VII

In this section, we denote a binomial random variable hav-
ing n trials with probability of success p by Bin(n, p). All of
the binomial random variables found in this section indicate
the number of edges between nodes and/or communities.
Unless otherwise indicated, we assume that the number of
edges is sufficient such that np � 10, and that the network is
sparse enough such that n(1 − p) � 10. This justifies the use
of Assumption 1 [24]. We denote a normal random variable
with mean μ and variance σ 2 by N (μ, σ 2).

1. Initial sketch

We comment here on the validity of the exact recovery
analysis. The SBM model used for analyzing exact recov-
ery in Ref. [25] does not have fixed community sizes, but
rather defines a probability distribution over communities.
The membership of each node is then sampled from this
distribution. In fact, the initial sketch G′(0) adheres to this
model, since the probability that a given node in the sketch
belongs to community u is |Ĉu(0)|

N ′ .

2. Inferring community membership

Let m′
(u→·) =

∑
w 	=u m′

u→w be the total number of sketch
nodes moving out of community u, and m′

(·→u) =
∑

w 	=u m′
w→u

be the total number of sketch nodes moving into community
u. Then,

si,v (t) = Sv
out + Sv

in

n′ , (C1)

where

Sv
in ∼

{
Bin(n′ − m′

(u→·), pin), v = u
Bin(m′

v→u, pin), v 	= u
, (C2a)

Sv
out ∼

{
Bin(m′

(u→·), pout), v = u
Bin(n′ − m′

v→u, pout), v 	= u
. (C2b)

Since the random variables in (C2) are mutually indepen-
dent, it follows from Assumption 1 that si,u(t) − si,v (t) ∼
N (μ�s, σ

2
�s) for any v 	= u, where

μ�s = (pin − pout)(n′ − m′
(u→·) − m′

v→u)

n′ ,

σ 2
�s = pin(1 − pin) + pout(1 − pout)

n′

− [pin(1 − pin) − pout(1 − pout)](m′
(u→·) − m′

v→u)

n′2 .

(C3)

We note that if there are few moving nodes or few edges
between communities, then Sv

in and Sv
out may not be well

approximated by a normal random variable. Nonetheless, in
these cases the expected values of Sv

in and Sv
out are small

enough that they do not contribute significantly to the bound
regardless.

Let f ∼N (μ, x
n′). If (24) holds, then μ�

�−1(1− 1−α
q̂(t)−1)

√
x
n′ and hence P (f <0)� 1−α

q̂(t)−1 . Furthermore,

from Assumption 2, we have μ�s �μ and σ 2
�s � x

n′ , and thus
P (si,u(t) < si,v (t)) � P (f < 0). Then, by applying the
union bound, the probability of successfully inferring the
community membership of node i is

P

⎛⎜⎝ q̂(t)⋂
w=1
w 	=u

si,u(t) > si,w(t)

⎞⎟⎠ = 1 − P

⎛⎜⎝ q̂(t)⋃
w=1
w 	=u

si,u(t) < si,w(t)

⎞⎟⎠
� 1 −

q̂(t)∑
w=1
w 	=u

P (si,u(t) < si,w(t))

= α. (C4)

3. Split detection

Following a similar line of reasoning as in Sec. VII A, exact
recovery is efficiently solvable if

2n′

ln(2n′)
> 2(

√
pin − √

pu,u′)−2 . (C5)

On the other hand, from (13), the split is asymptotically de-
tectable in the spectrum of B′ if

n′(pin − pu,u′)2 > pin + pu,u′ , (C6)

which is equivalent to

p2
u,u′ − pu,u′

(
2pin + 1

n′

)
+ pin

(
pin − pin

n′
)

� 0. (C7)

The bounds in (29) follow directly by solving (C5) and (C7)
in terms of pu,u′ .

044306-14

SKETCH-BASED COMMUNITY DETECTION IN EVOLVING … PHYSICAL REVIEW E 106, 044306 (2022)

4. Merge detection

Define m̂ = q̂(t)n′(n′−1)/2 as the maximum possible
number of intracommunity edges at time t . Then,

p̂in = P̂in

m̂
, (C8a)

p̂u,u′ = P̂u,u′

(n′)2
(C8b)

where P̂in ∼ Bin(m̂, pin), and P̂u,u′ ∼ Bin((n′)2, pu,u′ (t)).
Since P̂in and P̂u,u′ are independent, it follows from
Assumption 1 that p̂in − p̂u,u′ ∼ N (μ−, σ 2

m) and p̂in + p̂u,u′ ∼
N (μ+, σ 2

m), where μ± = pin ± pu,u′ .
Let β ′ = 1 − 1−α

2 . If condition (30) holds, then

p2
u,u′ − pu,u′

(
2pin + 2�−1(β ′)σm + d2

n

)
+ [

pin + �−1(β ′)σm
]2 − d2 pin − �−1(β ′)σm

n
< 0, (C9)

which in turn implies that

μ− + �−1(β ′)σm < d

√
μ+ − �−1(β ′)σm

n
. (C10)

Then, from (C10) and the union bound, the probability that
(18) will indicate a split state is

P

(
p̂in − p̂u,u′ < d

√
p̂in + p̂u,u′

n

)
� P

(
p̂in − p̂u,u′ < μ− + �−1(β ′)σm⋂
d

√
p̂in + p̂u,u′

n
> d

√
μ− − �−1(β ′)σm

n

)
� 1 − P (p̂in − p̂u,u′ < μ− + �−1(β ′)σm)

− P (p̂in + p̂u,u′ > μ+ − �−1(β ′)σm)

= α (C11)

We can justify (32) using a similar argument.

5. Detecting the birth event

From (C1) and (C8a) and under Assumption 1 with no
moving nodes,

si,v (t) ∼ N
(

pout,
pout(1 − pout)

n′

)
, 1 � v � q̂(t) (C12)

p̂in ∼ N
(

pin,
pin(1 − pin)

m̂

)
(C13)

Then P (p− � p̂in � p+) = 1 − β, and therefore

P

(
p̂in − 3

√
p̂in(1 − p̂in)

n′ < p− − 3

√
p+(1 − p−)

n′

)
� 1 − P (p− � p̂in � p+) = β. (C14)

Furthermore, for any community v,

P

(
si,v (t) � pout + �−1(1 − β)

√
pout(1 − pout)

n′

)
= β.

(C15)

Condition (21) is equivalent to

pout + �−1(1 − β)

√
pout(1 − pout)

n′ � p− − 3

√
p+(1 − p−)

n′ .

(C16)

Then, the probability that the condition inside (17) will fail for
a particular v is

P (si,v (t) � p̂in − 3σ̂)

= P

(
si,v (t) � p̂in − 3

√
p̂in(1 − p̂in)

n′

)

� P

(
si,v (t) � pout + �−1(1 − β)

√
pout(1 − pout)

n′

⋃
p̂in − 3

√
p̂in(1 − p̂in)

n′ < p− − 3

√
p+(1 − p−)

n′

)

� P

(
si,v (t) � pout + �−1(1 − β)

√
pout(1 − pout)

n′

)

+ P

(
p̂in − 3

√
p̂in(1 − p̂in)

n′ < p− − 3

√
p+(1 − p−)

n′

)
= 2β. (C17)

Consequently, the probability that the condition will hold
for all communities is

P

⎛⎜⎝ q̂(t)⋂
v=1
v 	=u

si,v (t) + 3σ̂ < p̂in

⎞⎟⎠

= 1 − P

⎛⎜⎝ q̂(t)⋃
v=1
v 	=u

si,v (t) + 3σ̂ � p̂in

⎞⎟⎠
� 1 −

q̂(t)∑
v=1
v 	=u

P (si,v (t) + 3σ̂ � p̂in)

= 1 − 2[q̂(t) − 1]β = α. (C18)

APPENDIX D: NUMERICAL RESULTS: DETAILS OF
ALGORITHMS USED IN COMPARISON

For the algorithm of Yang et al. [17], we use the same
tuning strategy as in the experimental results section of Ref.
[17]. Specifically, we use the same temperature and iteration
sequences, with α = 0.8, β = 0.5, γ = 1, μkk = 10. We run
five instances of the algorithm with (1) αkk = 1, βkl = 1; (2)
αkk = 5, βkl = 1; (3) αkk = 10, βkl = 1; (4) αkk = 102, βkl =
10; and (5) αkk = 104, βkl = 10, and then take the community

044306-15

ANDRE BECKUS AND GEORGE K. ATIA PHYSICAL REVIEW E 106, 044306 (2022)

assignments among the five trials yielding the highest average
modularity (modularity is defined as in Ref. [17]). For the
algorithm of Dinh et al. [14], we use the CNM algorithm [7]
for the static clustering step, as in Ref. [14]. When running the
ESPRA algorithm, we use the same parameters as used in the
experimental results of Ref. [26]: α = 0.8, β = 0.5. The algo-
rithm (Independent) applies StaticCluster to each snapshot to

obtain community estimates {C1, . . . ,Cq}. To provide conti-
nuity in the community assignments of the nodes, community
u in each snapshot at time t >0 is matched to the community at
time t −1 having the largest overlap according to the Jaccard
coefficient. Specifically, for each community u, we set the new
estimate as Cu(t)=Cu′ where u′ = arg max1�v�q

|Cu∩Cv (t−1)|
|Cu∪Cv (t−1)| .

[1] C. Aggarwal and K. Subbian, Evolutionary network analysis: A
survey, ACM Comput. Surv. 47, 1 (2014).

[2] D. Greene, D. Doyle, and P. Cunningham, Tracking the evolu-
tion of communities in dynamic social networks, in Proceedings
of the International Conference on Advances in Social Networks
Analysis and Mining, Odense, Denmark (IEEE, Piscataway, NJ,
2010), pp. 176–183.

[3] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine,
Synopses for massive data: Samples, histograms, wavelets,
sketches, Found. Trends Databases 4, 1 (2011).

[4] M. Rahmani, A. Beckus, A. Karimian, and G. K. Atia, Scalable
and robust community detection with randomized sketching,
IEEE Trans. Signal Process. 68, 962 (2020).

[5] A. Beckus and G. K. Atia, Scalable community detection in
the heterogeneous stochastic block model, in Proceedings of
the IEEE 29th International Workshop on Machine Learning
for Signal Processing (MLSP’19), Pittsburgh, PA, USA (IEEE,
Piscataway, NJ, 2019), pp. 1–6.

[6] J. Shang, L. Liu, X. Li, F. Xie, and C. Wu, Targeted revision: A
learning-based approach for incremental community detection
in dynamic networks, Physica A 443, 70 (2016).

[7] A. Clauset, M. E. J. Newman, and C. Moore, Finding commu-
nity structure in very large networks, Phys. Rev. E 70, 066111
(2004).

[8] N. Dakiche, F. B.-S. Tayeb, Y. Slimani, and K. Benatchba,
Tracking community evolution in social networks: A survey,
Inf. Process. Manage. 56, 1084 (2019).

[9] S. Zhang and H. Zhao, Community identification in networks
with unbalanced structure, Phys. Rev. E 85, 066114 (2012).

[10] C. Granell, R. K. Darst, A. Arenas, S. Fortunato, and S. Gómez,
Benchmark model to assess community structure in evolving
networks, Phys. Rev. E 92, 012805 (2015).

[11] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic block-
models: First steps, Soc. Networks 5, 109 (1983).

[12] G. Rossetti and R. Cazabet, Community discovery in dynamic
networks: A survey, ACM Comput. Surv. 51, 1 (2018).

[13] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, Tracking evolv-
ing communities in large linked networks, Proc. Natl. Acad. Sci.
USA 101, 5249 (2004).

[14] T. N. Dinh, Y. Xuan, and M. T. Thai, Towards social-aware
routing in dynamic communication networks, in Proceedings of
the IEEE International Performance Computing and Commu-
nications Conference (IPCCC’09), Scottsdale, AZ, USA (IEEE,
Piscataway, NJ, 2009), pp. 161–168.

[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
Fast unfolding of communities in large networks, J. Stat. Mech.
(2008) P10008.

[16] J. He and D. Chen, A fast algorithm for community detection in
temporal network, Physica A 429, 87 (2015).

[17] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, Detecting com-
munities and their evolutions in dynamic social networks—A
Bayesian approach, Mach. Learn. 82, 157 (2011).

[18] A. Ghasemian, P. Zhang, A. Clauset, C. Moore, and L. Peel,
Detectability Thresholds and Optimal Algorithms for Commu-
nity Structure in Dynamic Networks, Phys. Rev. X 6, 031005
(2016).

[19] K. S. Xu and A. O. Hero, Dynamic stochastic blockmodels for
time-evolving social networks, IEEE J. Sel. Top. Sign. Process.
8, 552 (2014).

[20] M. Pensky and T. Zhang, Spectral clustering in the dynamic
stochastic block model, Electron. J. Statist. 13, 678 (2019).

[21] P. Jiao, T. Li, H. Wu, C.-D. Wang, D. He, and W. Wang,
HB-DSBM: Modeling the dynamic complex networks from
community level to node level, IEEE Trans. Neural Netw.
Learn. Syst., 1 (2022).

[22] C. Matias and V. Miele, Statistical clustering of temporal net-
works through a dynamic stochastic block model, J. R. Stat.
Soc. B 79, 1119 (2017).

[23] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L.
Zdeborová, and P. Zhang, Spectral redemption in clustering
sparse networks, Proc. Natl. Acad. Sci. USA 110, 20935 (2013).

[24] J. Devore, Modern Mathematical Statistics with Applications
(Springer, New York, 2012).

[25] E. Abbe, Community detection and stochastic block models:
Recent developments, J. Mach. Learn. Res. 18, 1 (2018).

[26] P. Wang, L. Gao, and X. Ma, Dynamic community detection
based on network structural perturbation and topological simi-
larity, J. Stat. Mech. 2017, 013401 (2017).

[27] T. Aynaud, E. Fleury, J.-L. Guillaume, and Q. Wang, Communi-
ties in Evolving Networks: Definitions, Detection, and Analysis
Techniques (Springer, Berlin, 2013), pp. 159–200.

[28] P. Jaccard, The distribution of the flora in the alpine zone. 1,
New Phytol. 11, 37 (1912).

[29] B. Karrer and M. E. J. Newman, Stochastic blockmodels and
community structure in networks, Phys. Rev. E 83, 016107
(2011).

[30] Y. He, A. Beckus, and G. K. Atia, Scalable community de-
tection in the degree-corrected stochastic block model, in
Proceedings of the IEEE 31st International Workshop on Ma-
chine Learning for Signal Processing (MLSP’21), Gold Coast,
Australia (IEEE, Piscataway, NJ, 2021), pp. 1–6.

[31] M. E. J. Newman and M. Girvan, Finding and evaluating
community structure in networks, Phys. Rev. E 69, 026113
(2004).

044306-16

https://doi.org/10.1145/2601412
https://doi.org/10.1561/1900000004
https://doi.org/10.1109/TSP.2020.2965818
https://doi.org/10.1016/j.physa.2015.09.072
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1016/j.ipm.2018.03.005
https://doi.org/10.1103/PhysRevE.85.066114
https://doi.org/10.1103/PhysRevE.92.012805
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1145/3172867
https://doi.org/10.1073/pnas.0307750100
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1016/j.physa.2015.02.069
https://doi.org/10.1007/s10994-010-5214-7
https://doi.org/10.1103/PhysRevX.6.031005
https://doi.org/10.1109/JSTSP.2014.2310294
https://doi.org/10.1214/19-EJS1533
https://doi.org/10.1109/TNNLS.2022.3149285
https://doi.org/10.1111/rssb.12200
https://doi.org/10.1073/pnas.1312486110
https://jmlr.org/papers/v18/16-480.html
https://doi.org/10.1088/1742-5468/2017/1/013401
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.69.026113

