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Structure of networks that evolve under a combination of growth and contraction
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We present analytical results for the emerging structure of networks that evolve via a combination of growth
(by node addition and random attachment) and contraction (by random node deletion). To this end we consider
a network model in which at each time step a node addition and random attachment step takes place with
probability Padd and a random node deletion step takes place with probability Pdel = 1 − Padd. The balance
between the growth and contraction processes is captured by the parameter η = Padd − Pdel. The case of pure
network growth is described by η = 1. In the case that 0 < η < 1, the rate of node addition exceeds the rate of
node deletion and the overall process is of network growth. In the opposite case, where −1 < η < 0, the overall
process is of network contraction, while in the special case of η = 0 the expected size of the network remains
fixed, apart from fluctuations. Using the master equation and the generating function formalism, we obtain a
closed-form expression for the time-dependent degree distribution Pt (k). The degree distribution Pt (k) includes
a term that depends on the initial degree distribution P0(k), which decays as time evolves, and an asymptotic
distribution Pst (k) which is independent of the initial condition. In the case of pure network growth (η = 1),
the asymptotic distribution Pst (k) follows an exponential distribution, while for −1 < η < 1 it consists of a sum
of Poisson-like terms and exhibits a Poisson-like tail. In the case of overall network growth (0 < η < 1) the
degree distribution Pt (k) eventually converges to Pst (k). In the case of overall network contraction (−1 < η < 0)
we identify two different regimes. For −1/3 < η < 0 the degree distribution Pt (k) quickly converges towards
Pst (k). In contrast, for −1 < η < −1/3 the convergence of Pt (k) is initially very slow and it gets closer to Pst (k)
only shortly before the network vanishes. Thus, the model exhibits three phase transitions: a structural transition
between two functional forms of Pst (k) at η = 1, a transition between an overall growth and overall contraction at
η = 0, and a dynamical transition between fast and slow convergence towards Pst (k) at η = −1/3. The analytical
results are found to be in very good agreement with the results obtained from computer simulations.
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I. INTRODUCTION

In the past 25 years or so, the field of network research
has emerged as a major field of study, which significantly
contributed to the understanding of the structure and dynamics
of biological, social, and technological networks [1–5]. It
was found that empirical networks are typically small-world
networks that exhibit fat-tailed degree distributions with scale-
free structures [6–8]. Much theoretical effort has focused on
generic processes of network expansion or growth. It was
found that newly formed nodes tend to connect preferentially
to nodes of high degree and that this property leads to the
emergence of scale-free networks with power-law degree dis-
tributions of the form P(k) ∼ k−γ , where 2 < γ � 3 and the
second moment of the degree distribution diverges [7–10]. In
particular, the Barabási-Albert (BA) model exhibits a scale-
free structure that emerges from the preferential-attachment
process [7]. In this model, at each time step a new node is
added to the network and forms links to m of the existing
nodes, such that the probability of an existing node of degree
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k to gain a link to the new node is proportional to k. The
degree distribution of the BA network exhibits a power-law
tail with γ = 3. Variants of the BA model were shown to yield
power-law distributions with exponents in the range 2 < γ �
3 [9–11]. Another important class of network growth models
is based on the duplication of existing nodes, where a new
(daughter) node is connected to each neighbor of the dupli-
cated (mother) node with probability p, and in some cases it is
also connected to the mother node itself [12–20]. The degree
distributions of node duplication networks follow a power-law
distribution, where γ is a monotonically decreasing function
of p [13,15,18,19].

The opposite scenario of network contraction has attracted
increasing attention in recent years. For example, the con-
traction processes of social networks was recently studied
[21,22]. Such networks may lose users due to loss of interest,
concerns about privacy, or due to their migration to other
social networks. Another example is the evolution of gene
networks, in which it was recently found that the process of
gene loss plays a significant role [23]. A different context of
great practical importance is the cascading failure of power
grids [24,25], in which the functional part of the network
quickly contracts. Infectious processes such as epidemics
that spread in a network [26,27] lead to the contraction of
the subnetwork of the susceptible (or uninfected) nodes and
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may thus be considered as network contraction processes.
Similarly, network immunization schemes [28] also belong
to the class of network contraction processes because they
induce the contraction of the subnetwork of susceptible nodes.
The framework of network contraction is especially relevant
in the context of neurodegeneration, which is the progres-
sive loss of structure and function of neurons in the brain.
Such processes occur in normal aging [29], as well as in a
large number of incurable neurodegenerative diseases such as
Alzheimer, Parkinson, Huntington, and amylotrophic lateral
sclerosis, which result in a gradual loss of cognitive and
motoric functions [30]. These diseases differ in the specific
brain regions or circuits in which the degeneration occurs. The
analysis of the evolving structure may provide useful insight
into the structural aspects of the loss of neurons and synapses
in neurodegenerative processes [31].

Network contraction processes, which may result from
inadvertent failures or from deliberate attacks, were studied
using the framework of percolation theory [32–43]. It was
shown that scale-free networks are resilient to attacks tar-
geting random nodes [32] but are vulnerable to attacks that
target high-degree nodes or hubs [33]. In both cases, when the
number of deleted nodes exceeds some threshold, the network
breaks down into disconnected components [32–34,44–47].
This analysis provided important insights into the final stages
of network collapse. However, until recently the evolution of
complex networks in the early and intermediate stages of their
contraction process, before fragmentation, had not been stud-
ied in sufficient detail. Understanding the patterns that emerge
in the early and intermediate stages of network failures or
attacks is crucial for their detection and for devising ways to
fix the network and block such attacks.

Recently we considered the evolution of complex networks
during generic contraction and collapse scenarios [48,49].
These scenarios include random node deletion, preferential
node deletion, and propagating node deletion. The random
node deletion process describes random failures or random at-
tacks that do not target any specific type of nodes. The process
of preferential node deletion describes attacks that prefer-
entially target high degree nodes, while propagating node
deletion describes processes that propagate from an infected
node to its neighbors. To analyze these processes we derived
a master equation for the time dependence of the degree dis-
tribution Pt (k) in each one of the three network contraction
scenarios. In the scenario of random node deletion, the master
equation is exact for any ensemble of initial networks, while in
the scenarios of preferential and propagating node deletion, it
is exact for the case of configuration model networks, in which
there are no degree-degree correlations [50–54]. However, it
was shown to provide reasonably accurate results for the time-
dependent degree distributions even in networks that exhibit
degree-degree correlations. Using the master equation we es-
tablished that when networks contract via any of the node
deletion scenarios described above, their degree distributions
evolve towards a Poisson distribution, namely, they become
Erdős-Rényi (ER) networks [55–57]. These networks belong
to an ensemble of maximum entropy random graphs [51].

The emerging structure of networks that evolve under a
combination of growth and contraction processes was studied
in Refs. [58–60]. These papers focus on the regime in which

the overall process is of network growth. A particularly in-
teresting case is of networks that grow via a combination of
preferential attachment and random attachment, which exhibit
a degree distribution with a power-law tail. It was found that
under low rate of random node deletion the degree distri-
bution maintains its power-law tail. However, above some
threshold (that depends on the mixture of random attachment
and preferential attachment) the power-law tail is lost and is
replaced by a discrete exponential degree distribution (which
is also known as a geometric distribution). The phase bound-
ary between the two phases was calculated (using different
parametrizations), giving rise to highly insightful phase dia-
grams [59,60]. The combination of growth via node addition
and random attachment and contraction via random node
deletion was also studied [58]. In the limit of pure growth
this model gives rise to networks that exhibit an exponential
(geometric) degree distribution [20,58]. As mentioned above,
Refs. [58–60] focus on the steady-state solution of the degree
distribution in the case where the overall process is of net-
work growth. The complementary regime in which the rate of
node deletion exceeds the rate of node addition has not been
studied.

In this paper we analyze the emerging structure of net-
works that evolves under a combination of growth (via node
addition and random attachment) and contraction (via random
node deletion). We derive a master equation for the time
dependence of the degree distribution under this combination
of growth and contraction processes. Using the generating
function formalism we obtain a closed-form expression for
the degree distribution Pt (k). It includes a term that depends
on the initial condition, which decays as time evolves, and
an asymptotic term, which is an attractive fixed point. We
identify a phase transition between the phase of pure network
growth and the phase that combines growth and contraction.
This transition implies that even the slightest rate of node
deletion leads to a qualitative change in the nature of the
degree distribution. In the regime of overall network growth,
Pt (k) eventually converges towards the asymptotic steady-
state form Pst (k). In contrast, in the regime of overall network
contraction the asymptotic degree distribution is not always
reached due to the finite lifetime of the network. This gives
rise to a second phase transition, between the phase of overall
network growth and the phase of overall network contraction.
In the phase of overall network contraction we identify a third
transition, between the case of low deletion rate, in which the
degree distribution Pt (k) quickly approaches Pst (k), and the
case of high deletion rate, in which the convergence of Pt (k) is
initially very slow and gets closer to Pst (k) only shortly before
the network vanishes. The analytical results are found to be in
very good agreement with the results obtained from computer
simulations.

The paper is organized as follows. In Sec. II we describe
the dynamical model that combines growth (via node addition
and random attachment) and contraction (via random node
deletion). In Sec. III we derive a master equation for the time-
dependent degree distribution Pt (k). In Sec. IV we use the
master equation to derive a differential equation for the gen-
erating function Gt (u) of the degree distribution and present
its time-dependent solution. In Sec. V we present a closed-
form expression for the degree distribution Pt (k), obtained
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from Gt (u). In Sec. VI we calculate the mean and variance
of the degree distribution. The results are summarized and
discussed in Sec. VII. In Appendix A we solve the differential
equation for Gt (u) and extract the degree distribution Pt (k). In
Appendix B we calculate the degree distribution Pt (k) in the
special case of pure network growth.

II. THE MODEL

Consider a network that evolves as follows. At each time
step, one of two possible processes takes place: (a) A growth
step– with probability Padd an isolated node (of degree k = 0)
is added to the network. The node addition is followed by the
addition of m edges between pairs of random nodes (which
have not been connected before). This is done by repeating
the following step m times, where each time two random
nodes (which have not been connected before) are selected
and connected to each other by an edge. (b) Contraction step–
with probability Pdel = 1 − Padd a random node is deleted,
together with its edges.

When a growth step is selected at time t , the network size
increases according to Nt+1 = Nt + 1, while the degrees of the
m pairs of newly connected nodes increase from ki to ki +
1. When a contraction step is selected at time t , the network
size decreases according to Nt+1 = Nt − 1. Consider a node of
degree k, whose neighbors are of degrees k′

r , r = 1, 2, . . . , k.
Upon deletion of such a node the degrees of its neighbors are
reduced to k′

r − 1, r = 1, 2, . . . , k.
We denote the initial number of nodes in the network at

time t = 0 by N0. The expectation value of the number of
nodes in the network at time t is

Nt = N0 + ηt, (1)

where

η = Padd − Pdel. (2)

The parameter η provides a convenient classification of
the possible scenarios. The case of pure growth is described
by η = 1. For 0 < η < 1 the overall process is of network
growth, while for −1 � η < 0 the overall process is of net-
work contraction. In the special case of η = 0 the network
size remains the same, apart from possible fluctuations. It is
convenient to express the probabilities Padd and Pdel in terms
of the parameter η, namely,

Padd = 1 + η

2
(3)

and

Pdel = 1 − η

2
. (4)

In the case of −1 < η < 0 it is convenient to define the
normalized time variable

τ = |η|t
N0

, (5)

which measures the fraction of nodes that are deleted from
the network up to time t . The expected size of the contracting
network at time t can be expressed by Nt = N0(1 − τ ). Note
that the network vanishes at τ = 1.

In the model considered here the m edges added at time t
connect pairs of existing random nodes. This model is differ-
ent from the random attachment model studied in Ref. [58],
in which the new edges connect the new node to m random
nodes in the network. Thus, in the model of Ref. [58] the
degree of the new node upon its addition to the network is
k = m. As a result, the degree distribution exhibits a cusp at
k = m, separating between the regime of low degrees, k < m,
and the regime of high degrees, k > m. In the model studied
here, the new node is added with degree k = 0 and gains links
one at a time in subsequent time steps. As a result, the degree
distribution exhibits the same functional form over the whole
range of possible values of k. In that sense, the model studied
here is somewhat simpler, while fundamentally belonging to
the same class of random attachment models.

III. THE MASTER EQUATION

Consider an ensemble of networks of size N0 at time t =
0, whose initial degree distribution is given by P0(k). The
networks evolve under a combination of growth (via node
addition and random attachment) and contraction (via random
node deletion). Below we derive a master equation [61,62]
that describes the time evolution of the degree distribution

Pt (k) = Nt (k)

Nt
, (6)

where Nt (k), k = 0, 1, . . . , is the number of nodes of degree
k at time t and Nt = ∑

k Nt (k) is the network size at time t .
The master equation formulation was used before in network
growth processes [9,10] and in processes that combine growth
and contraction [58–60].

In general, the master equation accounts for the time evo-
lution of the degree distribution Pt (k) over an ensemble of
networks of the same initial size N0 and initial degree dis-
tribution P0(k), which are exposed to the same dynamical
processes. In order to derive the master equation, we first
consider the time evolution of Nt (k), which can be expressed
in terms of the forward difference

�t Nt (k) = Nt+1(k) − Nt (k). (7)

In the case of a growth step, the addition of an isolated
node increases by 1 the number of nodes of degree k = 0,
namely, Nt (0) → Nt (0) + 1. The contribution of this process
to the evolution of Nt (k) is given by

At (k) = Padd δk,0, (8)

where δi, j is the Kronecker delta symbol. The probability that
a random node of degree k will gain an additional edge at time
t is given by

Ut (k → k + 1) = 2mPadd
Nt (k)

Nt
. (9)

Similarly, the probability that a random node of degree k −
1 will gain an additional edge is

Ut (k − 1 → k) = 2mPadd
Nt (k − 1)

Nt
. (10)

Here we use the convention that Nt (−1) = 0.
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In the case of a contraction step, the probability that the
node selected for deletion at time t is of degree k is given by
Nt (k)/Nt . Thus the rate of change of Nt (k) due to a deletion of
a node of degree k is given by

Dt (k) = −Pdel
Nt (k)

Nt
. (11)

Consider the case in which the process that takes place at
time t is the deletion of a random node. In case that the deleted
node is of degree k′, it affects k′ adjacent nodes, which lose
one link each. The probability of each one of these k′ nodes to
be of degree k is given by kNt (k)/[Nt 〈K〉t ], where 〈K〉t is the
mean degree. We denote by Wt (k → k − 1) the expectation
value of the number of nodes of degree k that lose a link at
time t and are reduced to degree k − 1. Summing up over all
possible values of k′, we find that the effect of node deletion
on neighboring nodes of degree k is given by

Wt (k → k − 1) = Pdel
kNt (k)

Nt
. (12)

Similarly, the effect on neighboring nodes of degree k + 1 is

Wt (k + 1 → k) = Pdel
(k + 1)Nt (k + 1)

Nt
. (13)

Combining the effects on the time dependence of Nt (k) we
obtain

�t Nt (k) = At (k) + [Ut (k − 1 → k) − Ut (k → k + 1)]

+ Dt (k) + [Wt (k + 1 → k) − Wt (k → k − 1)].

(14)

By inserting the expressions for At (k), Dt (k), Ut (k − 1 →
k), Ut (k → k + 1), Wt (k → k − 1), and Wt (k + 1 → k) from
Eqs. (8), (11), (9), (10), (12), and (13), respectively, we obtain

�t Nt (k) = Padd

[
δk,0 + 2m

Nt (k − 1) − Nt (k)

Nt

]

+ Pdel
(k + 1)[Nt (k + 1) − Nt (k)]

Nt
. (15)

Since nodes are discrete entities, the processes of node
addition and deletion are intrinsically discrete. Therefore the
replacement of the forward difference �t Nt (k) by a time
derivative of the form dNt (k)/dt involves an approximation.
The error associated with this approximation was shown to be
of order 1/N2

t , which quickly vanishes for sufficiently large
networks [48]. Therefore the difference equation (15) can be
replaced by the differential equation

d

dt
Nt (k) = Padd

[
δk,0 + 2m

Nt (k − 1) − Nt (k)

Nt

]

+ Pdel
(k + 1)[Nt (k + 1) − Nt (k)]

Nt
. (16)

The derivation of the master equation is completed by
taking the time derivative of Eq. (6), which is given by

d

dt
Pt (k) = 1

Nt

d

dt
Nt (k) − Nt (k)

N2
t

d

dt
Nt . (17)

Inserting the time derivative of Nt (k) from Eq. (16) and us-
ing the fact that dNt/dt = η [from Eq. (1)], we obtain the

following master equation:

d

dt
Pt (k)

= 1 + η

2Nt
[δk,0 − Pt (k)] + m(1 + η)

Nt
[Pt (k − 1) − Pt (k)]

+ 1 − η

2Nt
[(k + 1)Pt (k + 1) − kPt (k)], (18)

where we have also expressed Padd and Pdel in terms of η, using
Eqs. (3) and (4). In essence, the master equation consists of a
set of coupled ordinary differential equations for Pt (k), k =
0, 1, 2, . . . . In Eq. (18) we use the convention that Pt (−1) =
0. For a given initial size N0 and initial degree distribution
P0(k), the master equation can be solved by direct numerical
integration.

In the case of pure growth (η = 1) the master equation is
reduced to the form

d

dt
Pt (k) = 1

Nt
[δk,0 − Pt (k)] + 2m

Nt
[Pt (k − 1) − Pt (k)]. (19)

IV. THE GENERATING FUNCTION

Below we solve the master equation using the generating
function formalism. We denote the generating function by

Gt (u) =
∞∑

k=0

ukPt (k), (20)

which is the Z transform of the degree distribution Pt (k) [63].
Multiplying Eq. (18) by uk and summing up over k, we ob-
tain a partial differential equation for the generating function,
which is given by

N0

(
1 + ηt

N0

)∂Gt (u)

∂t
− 1 − η

2
(1 − u)

∂Gt (u)

∂u

+ 1 + η

2
[2m(1 − u) + 1]Gt (u) = 1 + η

2
. (21)

This is a first-order inhomogeneous linear partial differen-
tial equation of two variables. Note that η = 1 is a singular
point of this differential equation. At η = 1 the coefficient
of the term that includes the derivative of Gt (u) with respect
to u vanishes, thus reducing the order of the equation. This
is reflected in the fact that for η = 1 the steady-state solu-
tion of Eq. (21) is of a different nature than the solution for
−1 < η < 1, implying a structural phase transition at η = 1.

For the analysis of Eq. (21) it is useful to define the param-
eter

r = 1 + η

1 − η
. (22)

In the regime of overall network growth, in which 0 < η < 1,
the parameter r is a monotonically increasing function of η,
which rises from r = 1 for η = 0 to r → ∞ at η → 1. In the
regime of overall network contraction, where −1 < η < 0, r
is also a monotonically increasing function of η, which rises
from r = 0 at η = −1 to r = 1 at η = 0.

In Appendix A we use the method of characteristics to
solve Eq. (21) and obtain the generating function Gt (u) for
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−1 � η < 1. It is given by

Gt (u) = αr
t e−2rm(1−αt )(1−u)G0[1 − αt (1 − u)]

+ r
∫ 1

αt

yr−1e−2rm(1−u)(1−y)dy, (23)

where G0(x) is the generating function of the initial degree
distribution P0(k) and

αt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 + ηt

N0

)− 1−η

2η 0 < η < 1

exp
(− t

2N0

)
η = 0(

1 − |η|t
N0

) 1+|η|
2|η| −1 � η < 0.

(24)

The generating function Gt (u), given by Eq. (23), consists
of two terms. The first term depends on the degree distribution
of the initial network while the second term does not depend
on the properties of the initial network. Note that Gt (1) = 1,
reflecting the normalization of the distribution Pt (k). Plugging
u = 1 in the first term of Eq. (23) shows that the weight of the
first term is equal to

wt = αr
t , (25)

where αt decreases monotonically as time evolves (from its
initial value of α0 = 1). Therefore the decay of wt as time
evolves controls the rate at which the information about the
initial network structure is lost.

Note that in Eq. (24) the expression αt = (1 + ηt/N0)−
1−η

2η

is valid for any η �= 0. However, there is a qualitative dif-
ference in the behavior of αt between the regime of overall
network growth (η > 0) and the regime of overall network
contraction (η < 0). This difference is emphasized by the
presentation of Eq. (24), where we express it somewhat differ-
ently in the two regimes. More specifically, in the regime of
overall network growth the parameter αt gradually decreases
towards zero as time evolves and the network continues to
grow for an unlimited period of time. In contrast, in the regime
of overall network contraction, αt reaches zero after a finite
time, namely, at

tvanish = N0

|η| , (26)

which is the time it takes for the network to vanish completely.
In Fig. 1 we present the coefficient wt as a function of t/N0

for networks that evolve under a combination of growth (via
random node addition and random attachment) and contrac-
tion (via random node deletion) for (a) 0 � η < 1 and (b)
−1 < η < 0, obtained from Eq. (24), where r is given by
Eq. (22). In the case that η � 0, the coefficient wt decreases
monotonically as a function of t but converges towards 0
only asymptotically. In the case that η < 0, the coefficient wt

vanishes after a finite time tvanish, given by Eq. (26).
For −1 < η < 0 the weight wt can be expressed in the

form

wt =
(

1 − t

tvanish

) 1−|η|
2|η|

. (27)

In this range the time derivative of wt is given by

dwt

dt
= − 1 − |η|

2|η|tvanish

(
1 − t

tvanish

) 1−3|η|
2|η|

. (28)

FIG. 1. The coefficient wt as a function of t/N0 for networks that
evolve under a combination of growth via random node addition and
random attachment and contraction via random node deletion for
(a) 0 � η < 1 and (b) −1 < η < 0, obtained from Eqs. (24) and (25),
where r is given by Eq. (22). In the case that η � 0, the coefficient
wt decreases monotonically as a function of t but converges towards
0 only asymptotically. When η < 0, the coefficient wt vanishes at
a finite time tvanish = N0/|η|. The curve of wt vs t/N0 is convex for
−1/3 < η < 0 and concave for −1 < η < −1/3.

This derivative represents the rate at which the memory of
the initial network is lost. For −1/3 < η < 0 the exponent in
Eq. (28) is positive, while for −1 < η < −1/3 it is negative.
Therefore, as η crosses −1/3 the derivative dwt/dt |t=tvanish

changes discontinuously from 0 to −∞. Such discontinuous
changes represent a typical behavior at a phase transition.

In Fig. 2 we present the coefficient wt as a function of
t/tvanish for networks that evolve under a combination of
growth (via random node addition and random attachment)
and contraction (via random node deletion) for −1 < η < 0.
As t → tvanish the slope dwt/dt vanishes for −1/3 < η < 0
and diverges for −1 < η < −1/3.

As time evolves the first term in Eq. (23) decreases while
the second term increases and flows towards an asymptotic
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FIG. 2. The coefficient wt as a function of t/tvanish for networks
that evolve under a combination of growth via random node addition
and random attachment and contraction via random node deletion
for η = −1/11, −1/5, −1/3, −1/2, and −5/7 (from left to right),
obtained from Eq. (27), which is valid for η < 0. The curve of wt vs
t/N0 is convex for −1/3 < η < 0 and concave for −1 < η < −1/3,
while for η = −1/3 it follows a straight line.

state, given by

Gst (u) = r
∫ 1

0
yr−1e−2rm(1−u)(1−y)dy. (29)

Expressing the integral in terms of the lower incomplete
gamma function γ (s, x), given by Eq. (A8) in Appendix A,
we obtain

Gst (u) = re−2rm(1−u)[−2rm(1 − u)]−rγ [r,−2rm(1 − u)].

(30)

Using this notation, one can express Eq. (23) in the form

Gt (u) = αr
t e−2rm(1−αt )(1−u)G0[1 − αt (1 − u)]

+
{

1 − γ [r,−2rmαt (1 − u)]

γ [r,−2rm(1 − u)]

}
Gst (u), (31)

where the first term captures the memory of the degree distri-
bution of the initial network while the second term includes
the components that do not depend on the initial degree dis-
tribution. As time evolves, the first term decays while the
second term converges towards the asymptotic form, given by
Eq. (30).

V. THE DEGREE DISTRIBUTION

In Appendix A we extract the time-dependent degree dis-
tribution Pt (k) from the generating function Gt (u). It is given
by

Pt (k) = αr
t

e−2rm(1−αt )

k!

k∑
i=0

(
k

i

)
αi

t

d iG0(u)

dui

∣∣∣∣
u=1−αt

[2rm(1 − αt )]
k−i + re−2rm (2rm)k

k!

∫ 1

αt

yr−1e2rmy(1 − y)kdy. (32)

The dependence of Pt (k) on the initial degree distribution
P0(k) is captured by first term of Eq. (32), while the second
term is an asymptotic solution that does not depend on the
initial condition. This asymptotic solution is essentially an
attractive fixed point. The rate of convergence depends on the
parameter η. More precisely, it is regulated by the coefficient
wt = αr

t , which appears in front of the term that captures
the initial condition. As mentioned in the previous section,
the dependence of wt on time is different in the regime of
overall network growth (η > 0) and the regime of overall net-
work contraction (η < 0). For η > 0 the coefficient wt decays
asymptotically like

wt ∼ t− r
r−1 . (33)

Thus for sufficiently long times the memory of the initial
degree distribution is completely lost, and Pt (k) approaches
its asymptotic form.

In the case of η < 0 the coefficient wt decays as time
evolves until it vanishes at a finite time tvanish. At the point
η = −1/3 there is transition from a convex shape of wt as
a function of the time t (for −1/3 < η < 0) to a concave
shape (for −1 � η < −1/3), as can be seen in Fig. 2. For
η > −1/3, as t → tvanish the derivative dwt/dt → 0. In con-
trast, for η < −1/3, as t → tvanish the derivative dwt/dt →
−∞. This sharp discontinuity in dwt/dt |tvanish at η = −1/3

pinpoints the location of the dynamical transition. Note that
the value of η = −1/3 corresponds to the situation in which
Padd = 1/3 and Pdel = 2/3, namely, on average there are two
node deletion steps for each node addition step.

From Eq. (32) one observes that on top of the overall
dependence on wt , the rate of convergence of Pt (k) towards
its asymptotic value depends on the degree k. The asymptotic
form of Pt (k) in the long time limit can be obtained by insert-
ing αt = 0 in Eq. (32). It yields

Pst (k) = re−2rm (2rm)k

k!

∫ 1

0
yr−1e2rmy(1 − y)kdy. (34)

The right-hand side of Eq. (34) can be expressed in the
form

Pst (k) = e−2rm (2rm)k

k!
rB(k + 1, r) 1F1

(
r

k + r + 1

∣∣∣∣2rm

)
,

(35)

where B(m, n) is the beta function and 1F1(·) is the conflu-
ent hypergeometric function [64]. The tail of the steady-state
degree distribution Pst (k), where k 	 r, can be reduced to

Pst (k) 
 	(r + 1)k−re−2rm (2rm)k

k!
. (36)
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This tail resembles the Poisson distribution in the sense that it
satisfies the condition that Pst (k)/Pst (k − 1) ∝ 1/k.

In the special case of η = 0 (where r = 1), which repre-
sents a perfect balance between the growth and contraction
processes, the distribution Pst (k) takes a particularly simple
form,

Pst (k; η = 0) = 1

2m

[
1 − 	(k + 1, 2m)

	(k + 1)

]
, (37)

where 	(s, x) is the upper incomplete gamma function, which
can be expressed in terms of the lower incomplete gamma
function, in the form 	(s, x) = 	(s) − γ (s, x). The steady-
state degree distribution for the special case of balanced
growth and contraction was calculated in Ref. [58] for a
slightly different model. The degree distribution Pst (k; η = 0),
given by Eq. (37), resembles the degree distribution presented
in Eq. (20) of Ref. [58]. The difference in the prefactors
reflects the variation in the details of the growth mechanism
between the two models.

The discontinuity in the derivative dwt/dt |tvanish across η =
−1/3 has interesting implications on the evolution of the
degree distribution Pt (k) in the late stages of the contraction
process. For η > −1/3 there is a significant time window
in which wt is small and thus the time-dependent degree
distribution Pt (k) is in the vicinity of Pst (k). In contrast, for
η < −1/3 the weight wt decreases slowly until the very late
stages of the contraction process and then falls down sharply
as the time tvanish is approached. Therefore, there is only an
extremely short time window in which Pt (k) is in the vicinity
of Pst (k).

As discussed in Sec. IV, the case of η = 1 corresponds
to a singular point of the equation for the generating func-
tion Gt (u) [Eq. (21)]. Therefore this case requires a special
treatment. In Appendix B we solve the master equation for
the special case of pure growth (η = 1) and obtain the time-
dependent degree distribution Pt (k) in this case too. It is given
by

Pt (k; η = 1) = β2m+1
t P0(k) +

k∑
i=1

β2m+1
t

i!
(−2m ln βt )

i

× [P0(k − i) − Pst (k − i; η = 1)]

+ (
1 − β2m+1

t

)
Pst (k; η = 1), (38)

where βt is given by Eq. (B7), and

Pst (k; η = 1) = 1

2m + 1

(
2m

2m + 1

)k

(39)

is the steady-state degree distribution obtained at long times.
Comparing Eq. (36) to Eq. (39) describing the degree distri-
bution in the case of pure growth, we conclude that there is a
phase transition at η = 1. In the case of pure growth (η = 1),
the degree distribution follows an exponential distribution
whose tail decays more slowly than Eq. (36), which applies
in the range of −1 < η < 1.

Consider the special case in which the initial network is
generated using the random attachment model. This model
is obtained by choosing η = 1, where the number of edges
added in each growth step is denoted by m0 until the network
size reaches N0 nodes. Using the results of Appendix B, it is

found that for a sufficiently large network size N0 the gener-
ating function of the resulting network converges towards its
steady-state form, which is given by

G0(u) = 1

2m0(1 − u) + 1
. (40)

The initial network is then exposed to a combination of
node addition with random attachment and random node
deletion, characterized by −1 < η < 1, where the number of
edges added in each growth step is m. Inserting G0(u) from
Eq. (40) into Eq. (32) and carrying out the differentiation, we
obtain

Pt (k) = αr
t

e−2rm(1−αt )

2m0αt + 1

k∑
i=0

(
2m0αt

2m0αt + 1

)i [2rm(1 − αt )]k−i

(k − i)!

+ re−2rm (2rm)k

k!

∫ 1

αt

yr−1e2rmy(1 − y)kdy. (41)

Interestingly, the sum in Eq. (41) takes the form of a
convolution between an exponential distribution and a Pois-
son distribution. The mean of the exponential distribution is
equal to 2m0αt , while the mean of the Poisson distribution is
2rm(1 − αt ). The exponential distribution descends from the
initial degree distribution, which is given by Eq. (39), while
the Poisson distribution emerges from the dynamics of the
attachment and deletion processes. The Poisson distribution
describes the degree distribution of an Erdős-Rényi network,
which is a maximal entropy network with a given value of the
mean degree. Therefore the Poisson distribution in Eq. (41) re-
flects the randomization of the degrees as the network evolves
in time.

Consider the case in which the initial network is an
Erdős-Rényi network with mean degree c, whose degree dis-
tribution is known to be a Poisson distribution. In this case the
time-dependent degree distribution takes a particularly simple
form, namely,

Pt (k) = αr
t e−[αt c+2rm(1−αt )] [αt c + 2rm(1 − αt )]k

k!

+ re−2rm (2rm)k

k!

∫ 1

αt

yr−1e2rmy(1 − y)kdy. (42)

The first term in Eq. (42) represents a Poisson distribution
whose mean degree evolves in time, extrapolating between the
initial value of the mean degree, c, and a final value of 2rm.
The second term does not depend on the initial network and is
identical to the corresponding term that is obtained for other
initial conditions. In this case the initial network is a maximal
entropy network. For overall network contraction, under con-
ditions of sufficiently high deletion rate (−1 < η < −1/3) the
first term of Eq. (42) maintains this property for a long time
window with a decreasing mean degree. This resembles the
behavior in the limit of pure network contraction, discussed in
Refs. [48,49].

In Fig. 3 we present analytical results (solid line), ob-
tained from Eq. (39), for the steady-state degree distribution
Pst (k) of networks that evolve under conditions of pure growth
(η = 1) via node addition and random attachment with m = 4.
To examine the convergence towards the steady-state degree
distribution, we also present simulation results (circles) for
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FIG. 3. Analytical results (solid line) for the asymptotic degree
distribution Pst (k) of networks that evolves under conditions of pure
growth (η = 1) via node addition and random attachment with m =
4, obtained from Eq. (39). To examine the convergence towards
the steady state, we also present simulation results (circles) for the
time-dependent degree distribution Pt (k) for a network grown from
an initial ER network of size N0 = 100 with mean degree c = 3 up
to a size of N = 104. The tail of the degree distribution obtained
from the simulations deviates from the steady-state distribution. This
deviation is due to the slow convergence of Pt (k) towards Pst (k) in the
case η = 1. This conclusion is supported by the very good agreement
between the simulation results (circles) and the corresponding ana-
lytical results (dashed line) for Pt (k) at t = N − N0, obtained from
Eq. (38).

the time-dependent degree distribution Pt (k) for a network
grown from an initial ER network of size N0 = 100 with mean
degree c = 3 up to a size of N = 104. The tail of the degree
distribution obtained from the simulations deviates from the
steady-state distribution. This deviation is due to the slow
convergence of Pt (k) towards Pst (k) in the case η = 1. This
conclusion is supported by the very good agreement between
the simulation results (circles) and the corresponding analyt-
ical results (dashed line) for Pt (k) at t = N − N0, obtained
from Eq. (38).

In Fig. 4 we present analytical results (solid lines), ob-
tained from Eq. (37), for the steady-state degree distributions
Pst (k) of networks that evolve under a combination of growth
(via node addition and random attachment) and contraction
(via random node deletion) in the regime of overall network
growth (0 < η < 1). Results are presented for (a) η = 3/4,
(b) η = 1/2, and (c) η = 1/4. We also present simulation
results (circles), which are shown for N = 10 000. The initial
network used in the simulations is an ER network of size
N0 = 100 with mean degree c = 3. In the case of η = 1/2
and η = 1/4, the analytical results are in very good agree-
ment with the simulation results, which means that the degree
distribution in the simulation has already converged to its
steady-state form Pst (k). In the case of η = 3/4 one finds that
at N = 10 000 the tail of the degree distribution Pt (k) devi-
ates from the steady-state distribution Pst (k). This deviation
is due to the slow convergence of Pt (k) as η is increased
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FIG. 4. Analytical results (solid lines), obtained from Eq. (35),
for the steady-state degree distributions Pst (k) of networks that evolve
under a combination of growth (via node addition and random at-
tachment) and contraction (via random node deletion) in the regime
of overall network growth (0 < η < 1). Results are presented for
(a) η = 3/4, (b) η = 1/2, and (c) η = 1/4. We also present simu-
lation results (circles), which are shown for N = 10 000. The initial
network used in the simulations is an ER network of size N0 = 100
with mean degree c = 3. In the case of η = 1/2 and η = 1/4, the
analytical results are in very good agreement with the simulation
results, which means that the degree distribution in the simulation has
already converged to its steady-state form Pst (k). In the case of η =
3/4 one finds that at N = 10 000 the tail of the degree distribution
Pt (k) deviates from the steady-state distribution Pst (k). This deviation
is due to the slow convergence of Pt (k) as η is increased towards 1.
To justify this conclusion, we also present analytical results (dashed
line) for Pt (k), obtained from Eq. (42) at t = (N − N0)/η, which are
in very good agreement with the simulation results (circles).
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FIG. 5. Analytical results (solid lines) for the asymptotic degree
distributions Pst (k) of networks that evolve under a combination of
growth (via node addition and random attachment) and contraction
(via random node deletion) in the special case of η = 0 in which
the network size is fixed, apart from possible fluctuations. The initial
network is an ER network of size N0 = 104 with mean degree c = 3.
The analytical results for Pst (k) are obtained from Eq. (37). The
analytical results are in very good agreement with the simulation
results (circles), which are shown for t = 6N0, where the degree
distribution has already converged to its asymptotic form Pst (k).

towards 1. To justify this conclusion, we also present analyt-
ical results (dashed line) for Pt (k), obtained from Eq. (42) at
t = (N − N0)/η, which are in very good agreement with the
simulation results (circles).

In Fig. 5 we present analytical results (solid lines), obtained
from Eq. (37), for the steady-state degree distribution Pst (k)
of networks that evolve under a combination of growth (via
node addition and random attachment) and contraction (via
random node deletion), in the special case of η = 0 in which
the network size is fixed, apart from possible fluctuations. We
also present simulation results (circles). The initial network is
an ER network of size N0 = 104 with mean degree c = 3. The
analytical results are in very good agreement with the sim-
ulation results (circles), which are shown for t = 6N0, where
the degree distribution has already converged to its asymptotic
form Pst (k).

In Fig. 6 we present analytical results (solid lines) for the
time-dependent degree distributions Pt (k) of networks that
evolve under a combination of growth (via node addition
and random attachment) and contraction (via random node
deletion) in the regime of overall network contraction for (a)
η = −1/4, (b) η = −1/2, and (c) η = −3/4. In each frame
the degree distribution Pt (k), obtained from Eq. (41), is shown
(right to left) for τ = 0, τ = 1/4, τ = 1/2, and τ = 3/4,
where the normalized time τ is the fraction of nodes that
have been deleted [Eq. (5)]. The long-time degree distribution
Pst (k), obtained from Eq. (35), is also shown (dashed lines).
The initial condition at t = 0 is a network obtained from
random node addition and random attachment with m0 = 8,
and it consists of N = 12, 500 nodes. Thus the initial degree
distribution P0(k) is given by Eq. (39), with m replaced by m0.
The simulation results (circles) are in very good agreement
with the corresponding analytical results. As time evolves the
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FIG. 6. Analytical results (solid lines) for the degree distribu-
tions of networks that evolve under a combination of growth via
random node addition and random attachment and contraction via
random node deletion in the regime of overall network contraction
for (a) η = −1/4, (b) η = −1/2, and (c) η = −3/4. In each frame
the degree distribution Pt (k) is shown (right to left) for τ = 0,
τ = 1/4, τ = 1/2, and τ = 3/4, where the normalized time τ is the
fraction of nodes that have been deleted [Eq. (5)]. The asymptotic
distribution Pst (k) is also shown (dashed lines). The initial network
is obtained from random node addition and random attachment with
m0 = 8 and it consists of N0 = 12 500 nodes. The analytical results
for Pt (k) are obtained from Eq. (41). The simulation results (circles)
are in very good agreement with the corresponding analytical re-
sults. As time evolves the time-dependent degree distribution Pt (k)
converges towards the asymptotic distribution Pst (k). For η = −1/4,
the degree distribution Pt (k) approaches Pst (k) when a significant
fraction of the network is still in place. In contrast, for η = −1/2 and
−3/4 the convergence of Pt (k) is initially very slow and moves closer
to Pst (k) only shortly before the network vanishes. The transition
between the two dynamical behaviors takes place at η = −1/3.
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time-dependent degree distribution Pt (k) converges towards
the asymptotic distribution Pst (k). For η = −1/4 the degree
distribution Pt (k) approaches Pst (k) when a significant frac-
tion of the network is still in place. In contrast, for η = −1/2
and −3/4 the convergence of Pt (k) is initially very slow, and it
gets closer to Pst (k) only shortly before the network vanishes.
The transition between the two dynamical behaviors takes
place at η = −1/3.

VI. THE MEAN AND VARIANCE OF THE DEGREE
DISTRIBUTION

The mean degree at time t can be obtained from

〈K〉t = d

du
Gt (u)

∣∣∣∣
u=1

. (43)

Inserting Gt (u) from Eq. (23) into Eq. (43), we obtain

〈K〉t = αr+1
t 〈K〉0 + (

1 − αr+1
t

)〈K〉st, (44)

where

〈K〉st = 2rm

r + 1
. (45)

In Fig. 7 we present analytical results (solid lines), ob-
tained from Eq. (44), for the mean degree 〈K〉t vs time t
for networks that evolve under a combination of growth (via
node addition and random attachment) and contraction (via
random node deletion) for (a) 0 � η < 1 and (b) −1 < η < 0.
The mean degree of the initial network is 〈K〉0 = 16. In the
case that η > 0, the mean degree gradually converges towards
its asymptotic value. When η < 0, the network vanishes at a
finite time tvanish = N0/|η|.

In Fig. 8 we present analytical results (solid lines) for
the mean degree 〈K〉t vs t/tvanish for networks that evolve
under a combination of growth (via node addition and random
attachment) and contraction (via random node deletion) for
−1 < η < 0.

To obtain the variance Vart (K ) we use the cumulant gener-
ating function, which is given by

Ft (x) = ln Gt (e
x ). (46)

The variance is obtained from

Vart (K ) = d2

dx2
Ft (x)

∣∣∣∣
x=0

. (47)

By inserting Ft (x) from Eq. (46) into Eq. (47) we obtain

Vart (K ) = αr+2
t Var0(K ) + αr+1

t

[
(αt − 1)〈K〉2

0

+ (
αr+1

t − 2αt + 1
)〈K〉0

]
−αr+1

t

(
αr+1

t − 1
)
(〈K〉0 − 〈K〉st )

2

+ 2αr+1
t (αt − 1)(r + 1)

[
r + 1

r + 2
〈K〉st − 〈K〉0

]
〈K〉st

+ (
1 − αr+1

t

)
Varst (K ), (48)

where

Varst (K ) = 2rm[(2m + 1)r2 + 3r + 2]

(r + 1)2(r + 2)
(49)
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FIG. 7. Analytical results (solid lines), obtained from Eq. (44),
for the mean degree 〈K〉t vs time t for networks that evolve under a
combination of growth (via node addition and random attachment)
and contraction (via random node deletion) for (a) η = 1, 3/4, 1/2,
1/4, and 0 (from top to bottom), and (b) η = −1/10, −1/4, −1/2,

and −3/4 (from top to bottom). In all cases the initial network has a
mean degree of 〈K〉0 = 16. When η > 0 the mean degree gradually
converges towards its asymptotic value. In the case where η < 0 the
network vanishes at a finite time tvanish = N0/|η|.

is the variance of Pst (k), given by Eq. (35). Note that at t = 0
the right-hand side of Eq. (48) is reduced to Var0(K ), while in
the long time limit it converges towards Varst (K ).

The mean 〈K〉t (η = 1) and variance Vart (K ; η = 1) of the
degree distribution Pt (k; η = 1) in the case of η = 1 are cal-
culated in Appendix B. The steady-state results 〈K〉st (η = 1)
and Varst (K ; η = 1) coincide with those obtained from 〈K〉t

and Vart (K ), respectively, in the limit of η → 1 (r → ∞).

VII. SUMMARY AND DISCUSSION

We presented analytical results for the time-dependent
degree distribution Pt (k) of networks that evolve under the
combination of growth (via node addition and random at-
tachment) and contraction (via random node deletion). When
the rate of node addition exceeds the rate of node deletion,
the overall process is of network growth, while in the opposite
case the overall process is of network contraction. Using the
master equation and the generating function formalism we
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FIG. 8. Analytical results (solid lines), obtained from Eq. (44),
for the mean degree 〈K〉t vs t/tvanish for networks that evolve under a
combination of growth (via node addition and random attachment)
and contraction (via random node deletion) for η = −3/4, −1/2,
−1/4, and −1/10 (from top to bottom). The initial network has a
mean degree of 〈K〉0 = 16.

obtained a closed-form expression for the degree distribution
Pt (k). It includes a term that depends on the initial condi-
tion P0(k), which decays as time evolves, and a long-time
asymptotic term Pst (k), which is an attractive fixed point. In-
terestingly, the expression for Pt (k) is identical in the regimes
of overall growth and overall contraction.

The model of network growth via node addition and ran-
dom attachment can be considered as the simplest network
growth model. It gives rise to networks that exhibit an expo-
nential degree distribution. Similarly, the model of network
contraction via random node deletion can be considered as
the simplest network contraction model. The contracting net-
works converge towards the ER structure, which exhibits a
Poisson degree distribution whose mean degree decreases as
time proceeds. The combination of growth via node addition
and random attachment and contraction via random node
deletion yields novel structures which depend on the balance
between the rates of the two processes.

In Fig. 9 we present the phase diagram of networks that
evolve under a combination of growth (via node addition
and random attachment) and contraction (via random node
deletion) in terms of the growth rate −1 � η � 1. The case
of η = 1 represents pure network growth via node addition
and random attachment. The case of 0 < η < 1 represents
a combination of growth and contraction where the overall
process is of network growth. The case of η = 0 represents
a balance between the growth and contraction processes such
that on average the network size remains fixed. The case of
−1 < η < 0 represents a combination of growth and contrac-
tion where the overall process is of network contraction. The
case of η = −1 corresponds to pure contraction via random
node deletion.

At η = 1 there is a structural phase transition between the
steady-state degree distribution at η = 1, which follows an
exponential distribution, given by Eq. (39), and the steady-
state degree distribution in the regime of 0 < η < 1, given
by Eq. (35), which decays like a Poisson distribution. This

FIG. 9. The phase diagram of networks that evolve under a com-
bination of growth via random node addition and random attachment
and contraction via random node deletion, in terms of the growth
rate −1 � η � 1. The case of η = 1 represents pure network growth
via node addition and random attachment. The case of 0 < η < 1
represents a combination of growth and contraction where the overall
process is of network growth. The case of η = 0 represents a balance
between the growth and contraction processes such that on average
the network size remains fixed. The case of −1 < η < 0 represents
a combination of growth and contraction where the overall process
is of network contraction. The case of η = −1 corresponds to pure
contraction via random node deletion. At η = 1 there is a structural
phase transition between the exponential degree distribution in the
asymptotic state for η = 1 and the asymptotic Poisson-like degree
distribution in the regime of 0 < η < 1, whose tail decays faster
than the exponential distribution. At η = 0 there is a phase transition
between the η > 0 phase, which exhibits an ever-growing network
whose degree distribution converges to an asymptotic form, and the
η < 0 phase, in which the network vanishes after a finite time tvanish.
At η = −1/3 there is a dynamical transition. For −1/3 < η < 0
the degree distribution Pt (k) quickly converges towards Pst (k). In
contrast, for −1 < η < −1/3 the convergence of Pt (k) is initially
very slow, and it approaches Pst (k) only shortly before the network
vanishes.

degree distribution essentially consists of a linear combination
of Poisson distributions. Its tail is dominated by the Poisson
component with the largest mean degree, given by Eq. (36).
This transition implies that even the slightest rate of node
deletion leads to a qualitative change in the nature of the
steady-state degree distribution. From a technical point of
view, η = 1 is a singular point in the differential equation (21)
for the generating function Gt (u), where the order of the
equation changes. The phase transition at η = 1 essentially
emanates from this singularity.

At η = 0 there is a phase transition between the η >

0 phase, which exhibits an ever-growing network, and the
η < 0 phase, in which the network vanishes after a finite time.
Surprisingly, the expression for the time-dependent degree
distribution Pt (k), given by Eq. (41), is identical on both sides
of the transition. However, the qualitative behavior of the
coefficient αt is fundamentally different on both sides. For
η > 0 the coefficient αt gradually decays as time evolves but
remains positive at any finite time. In contrast, for η < 0 it
decays to zero after a finite time tvanish, at which point the
whole network vanishes.
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At η = −1/3 there is a dynamical transition between a
phase of slow network contraction for −1/3 < η < 0 and a
fast contracting phase for −1 � η < −1/3. In the phase of
slow contraction the degree distribution converges towards
Pst (k) and remains in its vicinity for a finite time window,
before the network vanishes. In the fast contracting phase the
network size quickly decreases and vanishes before the weight
of Pst (k) becomes significant. In this case, the evolution of the
degree distribution Pt (k) during the contraction process qual-
itatively resembles the case of pure network contraction via
random node deletion (η = −1), considered in Refs. [48,49].

The behavior of the degree distribution Pt (k) in the sce-
nario of overall network contraction −1 < η < 0 can be
considered in the context of dynamical processes that exhibit
intermediate asymptotic states [65,66]. These are states that
appear at intermediate timescales, which are sufficiently long
for such structures to build up, but shorter than the timescales
at which the whole system disintegrates. The intermediate
timescales can be made arbitrarily long by increasing the ini-
tial size of the system, justifying the term “asymptotic.” More
specifically, in the regime of −1/3 < η < 0 the intermediate
asymptotic state exhibits the degree distribution Pst (k), while
in the regime of −1 � η < −1/3 the intermediate asymptotic
degree distribution is dominated by the first term of Pt (k),
given by Eq. (32).
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APPENDIX A: CALCULATION OF THE DEGREE
DISTRIBUTION Pt (k)

In this Appendix we solve the master equation [Eq. (18)]
for −1 � η < 1 and obtain the time-dependent degree dis-
tribution Pt (k). In the first step we solve the differential
equation (21) using the method of characteristics and obtain
the time-dependent generating function Gt (u). The method
of characteristics applies to hyperbolic partial differential
equations. In this method the partial differential equation is
reduced to a set of ordinary differential equations called char-
acteristic equations.

The characteristic equations of Eq. (21) can be written as

du

dt
= −1 − η

2

1 − u

N0 + ηt
(A1)

and

dGt (u)

du
= 1 + η

1 − η

[(
2m + 1

1 − u

)
Gt (u) − 1

1 − u

]
. (A2)

Solving Eq. (A1), one obtains a relation between u and t
via an integration constant C1. In the case of η �= 0, it is given
by

C1 = (1 − u)
2η

1−η

N0 + ηt
, (A3)

while in the case of η = 0 it is given by

C1 = (1 − u)e−t/2N0 . (A4)

In order to solve Eq. (A2), we express the generating func-
tion in the form

Gt (u) = G(h)
t (u) + G(p)

t (u), (A5)

where G(h)
t (u) is the homogeneous part and G(p)

t is the inho-
mogeneous part of Gt (u). Solving for the homogeneous part,
we obtain

G(h)
t (u) = C2e2rmu(1 − u)−r, (A6)

where C2 is an integration constant and r is defined in Eq.
(22). Solving Eq. (A2) for the inhomogeneous part of Gt (u),
we obtain

G(p)
t (u) = re−2rm(1−u) γ [r,−2rm(1 − u)]

[−2rm(1 − u)]r
, (A7)

where

γ (s, x) =
∫ x

0
t s−1e−t dt (A8)

is the lower incomplete gamma function [64]. Inserting
G(h)

t (u) from Eq. (A6) and G(p)
t (u) from Eq. (A7) into Eq. (A5)

and extracting the integration constant C2, we obtain

C2 = e−2rmu(1 − u)rGt (u)

− re−2rm(1 − u)r γ [r,−2rm(1 − u)]

(−2rm)r
. (A9)

Starting with the case of η �= 0, we combine the solutions
of the two characteristic equations and obtain the solution of
Eq. (21), which is given by

Gt (u) = e2rmu(1 − u)−rF

[
(1 − u)

2η

1−η

N0 + ηt

]

+ re−2rm(1−u) γ [r,−2rm(1 − u)]

[−2rm(1 − u)]r
, (A10)

where F is an arbitrary function. In order to impose the initial
condition G0(u) we set t = 0 in Eq. (A10) and obtain

G0(u) = e2rmu(1 − u)−rF

[
(1 − u)

2η

1−η

N0

]

+ re−2rm(1−u) γ [r,−2rm(1 − u)]

[−2rm(1 − u)]r
. (A11)

Solving for the arbitrary function F , we obtain

F

[
(1 − u)

2η

1−η

N0

]
= e−2rmu(1 − u)rG0(u)

− re−2rm γ [r,−2rm(1 − u)]

(−2rm)r
. (A12)

We introduce the variable

z = (1 − u)
2η

1−η

N0
. (A13)

Expressing u in terms of z, we obtain

u = 1 − (zN0)
1−η

2η . (A14)
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Rewriting Eq. (A12) in terms of the variable z, we obtain

F (z) = e−2rm[1−(zN0 )
1−η
2η ](zN0)

r(1−η)
2η G0

[
1 − (zN0)

1−η

2η

]
− re−2rm γ

[
r,−2rm(zN0)

1−η

2η

]
(−2rm)r

. (A15)

Inserting F (z) from Eq. (A15) into Eq. (A10), we obtain

Gt (u) = αr
t e−2rm(1−u)(1−αt )

× G0[1 − αt (1 − u)] + re−2rm(1−u)

× γ [r,−2rm(1 − u)] − γ [r,−2rmαt (1 − u)]

[−2rm(1 − u)]r
,

(A16)

where

αt =
(

1 + ηt

N0

)− 1−η

2η

. (A17)

A similar analysis applies to the special case of η = 0.
In this case one needs to use the special expression for C1,
given by Eq. (A4). It yields the same form of Gt (u), given by
Eq. (A16), but with a different expression for αt , which in the
case of η = 0 is given by

αt = exp
(
− t

2N0

)
. (A18)

To simplify Eq. (A16) we first denote

S(u) = γ [r,−2rm(1 − u)] − γ [r,−2rmαt (1 − u)]. (A19)

Replacing γ (s, x) by its integral representation (A8), one can
express S(u) in the form

S(u) =
∫ −2rm(1−u)

−2rmαt (1−u)
xr−1e−xdx. (A20)

Substituting x = −2rm(1 − u)y in Eq. (A20), we obtain

S(u) = [−2rm(1 − u)]r
∫ 1

αt

yr−1e2rm(1−u)ydy. (A21)

By plugging S(u) from Eq. (A21) into Eq. (A16), one obtains

Gt (u) = αr
t e−2rm(1−u)(1−αt )G0[1 − αt (1 − u)]

+ r
∫ 1

αt

yr−1e−2rm(1−u)(1−y)dy. (A22)

The time-dependent degree distribution is obtained by dif-
ferentiating the generating function Gt (u):

Pt (k) = 1

k!

∂kGt (u)

∂uk

∣∣∣∣
u=0

. (A23)

Inserting Gt (u) from Eq. (A22) into Eq. (A23), we obtain the
main result of this Appendix, namely,

Pt (k) = αr
t

e−2rm(1−αt )

k!

k∑
i=0

(
k

i

)
αi

t

d iG0(u)

dui

∣∣∣∣
u=1−αt

[2rm(1 − αt )]
k−i + re−2rm (2rm)k

k!

∫ 1

αt

yr−1e2rmy(1 − y)kdy. (A24)

This is a closed-form analytical expression for the time-
dependent degree distribution Pt (k). It is based on the initial
degree distribution P0(k), which is encoded in the generating
function at time t = 0, G0(u).

APPENDIX B: CALCULATION OF Pt (k) IN THE CASE
OF PURE NETWORK GROWTH

The case of pure network growth via node addition and
random attachment is obtained for η = 1. Inserting η = 1 in
Eq. (21), we obtain

(N0 + t )
∂Gt (u; η = 1)

∂t

= −[2m(1 − u) + 1]Gt (u; η = 1) + 1. (B1)

The characteristic equations in this case are given by

du

dt
= 0 (B2)

and

dGt (u; η = 1)

dt
= 1 − [2m(1 − u) + 1]Gt (u; η = 1)

N0 + t
. (B3)

From Eq. (B2) one finds that on the characteristic lines the
variable u is a constant that does not depend on time. Solving

Eq. (B3) it is found that

Gt (u; η = 1) = F (u)(N0 + t )−[2m(1−u)+1] + 1

2m(1 − u) + 1
,

(B4)

where F (u) is a yet unknown function of u that does not
depend on time. By inserting t = 0 into Eq. (B4), we obtain

G0(u) = F (u)(N0)−[2m(1−u)+1] + 1

2m(1 − u) + 1
. (B5)

Extracting F (u) from Eq. (B5) and inserting it back into
Eq. (B4), we obtain

Gt (u; η = 1) = β
2m(1−u)+1
t G0(u)

+ [
1 − β

2m(1−u)+1
t

] 1

2m(1 − u) + 1
, (B6)

where

βt =
(

1 + t

N0

)−1

. (B7)

In the long time limit, the generating function converges
towards a steady state of the form

Gst (u; η = 1) = 1

2m(1 − u) + 1
. (B8)
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Expanding Eq. (B8) in powers of u, we obtain the steady-state
degree distribution

Pst (k; η = 1) = 1

2m + 1

(
2m

2m + 1

)k

, (B9)

which is an exponential distribution. The mean of the distri-
bution Pst (k; η = 1) is given by

〈K〉st (η = 1) = 2m, (B10)

and its variance is given by

Varst (K ; η = 1) = 2m(2m + 1). (B11)

The time-dependent degree distribution is obtained by ex-
panding the right-hand side of Eq. (B6) in powers of u. It
yields

Pt (k; η = 1) = β2m+1
t P0(k) + β2m+1

t

k∑
i=1

[2m ln βt ]i

i!

×[P0(k − i) − Pst (k − i; η = 1)]

+ [
1 − β2m+1

t

]
Pst (k; η = 1). (B12)

The mean degree can be obtained from Eq. (43), where
Gt (u; η = 1) is taken from Eq. (B6). It is given by

〈K〉t (η = 1) = βt 〈K〉0 + (1 − βt )2m. (B13)

To obtain the variance Vart (K ) we use the cumulant gener-
ating function, which is given by

Ft (x; η = 1) = ln Gt (e
x; η = 1). (B14)

The variance is obtained from

Vart (K ; η = 1) = d2

dx2
Ft (x; η = 1)

∣∣∣∣
x=0

. (B15)

Inserting Ft (x; η = 1) from Eq. (B14) into Eq. (B15), one
finds that

Vart (K ; η = 1)

= βt Var0(K ; η = 1) + (1 − βt )Varst (K ; η = 1)

+βt (1 − βt )[〈K〉0(η = 1) − 〈K〉st (η = 1)]2

− 4mβt ln βt [〈K〉0(η = 1) − 〈K〉st (η = 1)].

(B16)
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